高超声速飞行器摩阻预估 - 中国科学院力学研究所机构知识 …

高超声速飞行器摩阻预估 - 中国科学院力学研究所机构知识 …
高超声速飞行器摩阻预估 - 中国科学院力学研究所机构知识 …

高超声速飞行器鲁棒控制系统的设计

高超声速飞行器鲁棒控制系统的设计 Christopher I. Marrison and Robert F. Stengel Princeton University, Princeton, New Jersey 08544 本文设计了高超声速飞行器纵向平面鲁棒控制系统。飞行器纵向平面的非线性数学模型包含了28个不确定参数。利用遗传算法搜索每个控制器的系数设计空间;利用蒙特卡洛算法检验每个搜索点处的稳定性和鲁棒性。补偿器的鲁棒性用概率函数来表示,该函数表示在参数可能变动范围内,闭环系统的稳定性等性能指标落入允许范围的概率。设计了一性能指标函数,使其最小,从而产生可能控制器系数空间。这种设计方法综合考虑了不同的设计目标,辨识了鲁棒性指标下的系数的不确定性。这种方法有效利用了计算工具,广泛考虑了工程知识,设计出了能够应用于实际的控制系统。 本文中用到的符号: a ——声速,ft/s D C ——阻力系数 L C ——升力系数 ()M C q ——俯仰角速率引起的俯仰力矩系数 ()M C α——攻角引起的俯仰力矩系数 ()M C E δ——舵偏引起的俯仰力矩系数 T C ——发动机推力系数 c ——参考长度,80ft D ——阻力,lbf h ——高度,ft yy I ——俯仰转动惯量,6710?slug-ft 2 L ——升力,lbf M ——马赫数 yy M ——绕俯仰轴的转动力矩,lbf-ft m ——质量,9375slugs q ——俯仰速率,rad/s E R ——地球半径,20 903 500 ft r ——距地心距离,ft S ——参考面积,3603ft 2 T ——推力,lbf V ——速度,ft/s α——攻角,rad

中国科学院力学研究所岗位管理实施办法

中国科学院力学研究所岗位管理实施办法 (力发人教字〔2007〕134号) 第一章总则 第一条根据中国科学院《关于印发〈中国科学院岗位管理实施办法〉的通知》(科发人教字〔2007〕207号)的有关规定,为实现我所人力资源管理的科学化、规范化、制度化,结合我所科技发展的规划,制定本办法。 第二条围绕我所科技发展规划的要求,遵循按需设岗、职数控制、结构合理、动态优化、管理规范的原则,按照院核定的岗位总量和结构比例科学设置各类岗位。 第三条本办法适用于我所在岗人员。所级领导干部按照干部人事管理权限的有关规定执行。 第二章岗位类别与岗位等级 第四条我所设置创新岗位和项目聘用两种岗位,分别包括科技、支撑和管理三类岗位。 第五条科技岗位是指各实验室(研究部)从事基础研究和战略高技术研究工作,具有相应专业技术水平和能力要求的工作岗位。我所科技岗位包括自然科学研究系列、工程技术系列专业技术岗位。 科技岗位执行自然科学研究系列或工程技术系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 第六条支撑岗位是指为我所科技工作提供技术支撑和辅助性工作的岗位,主要设置在实验平台技术支撑、实验室(研究部)学术与行政助理、网络与图书信息保障、学会期刊出版等岗位。 支撑岗位主要执行专业技术系列中的工程技术系列、实验技术系列、图书资料和出版系列等专业技术岗位,也包括工勤技能系列岗位。 对兼有管理职责要求的支撑岗位,确因工作需要,也可执行职员系列。 支撑岗位的等级设置按照《中国科学院岗位管理实施办法》规定(见附

表1)。 第七条管理岗位是指职能部门承担领导职责或管理职责的工作岗位。管理岗位主要执行职员系列,等级设置按照《中国科学院岗位管理实施办法》规定(见附表1)。 对兼有专业技术职责要求的科技管理岗位,根据工作需要,可设置为相应的专业技术岗位。会计、审计等国家有职业资格要求的岗位,设置相应的专业技术岗位。 第八条项目聘用岗位系列的设置与等级同上述创新岗位,但原则上,不设置正高级专业技术岗位和五级及以上职员岗位。 第三章岗位结构比例 第九条创新岗位中科技、支撑与管理三类岗位的宏观结构比例为70%、20%、10%。 第十条创新科技岗位(含执行专业技术系列的管理岗位)中,高级科技岗位(专业技术一至七级岗位)的比例占科技岗位总数的70%,正高级岗位(专业技术一至四级岗位)不超过高级科技岗位总数的40%。其中:正高级科技岗位中,专业技术一级岗位为国家专设的特级岗位,由国家实行总量控制和管理,专业技术二级、三级、四级岗位之间的宏观结构比例为2:4:4; 副高级科技岗位中,专业技术五级、六级、七级岗位之间的结构比例为3:4:3; 中级科技岗位中,专业技术八级、九级、十级岗位之间的结构比例为4:4:2; 初级科技岗位中,专业技术十一级、十二级岗位之间的结构比例为8:2。 第十一条创新支撑岗位中,高级支撑岗位(专业技术三至七级岗位)不超过支撑岗位总数的50%,正高级支撑岗位(专业技术三至四级岗位)不超

高超声速飞行器动力技术介绍及部分国家发展现状

一、高超声速飞行器技术发展路径及动力技术介绍 1.1 高超声速飞行器技术发展路径 高超声速飞行器区别与其他飞行器最大的特点是高度一体化,使得飞行器机身与推进系统密不可分,从某种意义上来说是无法划分出一个所谓的“发动机”进行研制的,这样的“发动机”也只有在与机身合二为一才能发挥其真实的性能,也才能真正的运行起来。因此,高超声速飞行器首先是“自顶而下”地分解研究对象和研究阶段,随着技术的发展再逐步地整合各部分的研究,逐级、逐步形成一个完整的飞行器研究对象。从总体方案设计的完整的飞行器作为研究对象可划分为四个层次的研究:气动/推进一体化研究、全流动通道推进系统研究、超然冲压模型发动机研究、超然冲压发动机部件研究,将高超声速飞行器自顶而下分解后就,再从分解出来的底层部件逐步发展“自下而上”到顶层飞行器。同时“自顶而下”的技术分解和“自下而上”的技术集成这两条路线又是有交互的,在试验研究的任何阶段发现问题,都应当反馈到飞行器总体的设计,重新定义部件、子系统的研究对象。 图1.1 1.2 高超声速飞行器动力技术介绍 气动/推进一体化研究 全流动通道推进系统研究 超然冲压模型发动机研究 超然冲压发动机部件研究

高超声速飞行器的核心关键技术包括超燃冲压发动机技术、高超声速飞行器组合推进系统技术、高超声速飞行器机身推进一体化设计技术、高超声速飞行器热防护技术、高超声速飞行器导航制导与控制技术、高超声速飞行器风洞实验技术。下面的篇幅分别对超燃冲压发动机和组合推进系统技术做简要介绍: (1)超然冲压发动机概念介绍 超燃冲压发动机是高超声速飞行器推进技术的核心技术,超然冲压发动机与亚燃冲压发动机同属于吸气式喷气发动机,由进气道、燃烧室和尾喷管构成,没有压气机和涡轮等旋转部件,高速迎面气流经进气道减速增压,直接进入燃烧室和燃料混合燃烧,产生高温燃气经尾喷管加速后排出,从而产生推力。 超燃冲压发动机通常可以分为双模态冲压发动机和双燃烧室冲压发动机。双模态冲压发动机是指发动机根据不同的来流速度,其燃烧室分别工作于亚声速燃烧状态、超声速燃烧状态、超声速燃烧/亚声速燃烧/超声速燃烧状态。双燃烧室冲压发动机是指同一发动机同时具有亚燃冲压和超燃冲压双循环的超燃冲压发动机,采用双循环的主要目的是用亚燃冲压发动机点燃超然冲压发动机来解决煤油燃料的点火和稳定燃烧问题。 (2)超声速燃烧概念 在一定的压缩和膨胀效率的条件下,进入发动机的空气有一最佳压缩量,使得发动机的效率最高。燃料的热值和过程的效率越高,其

中科院力学所科技成果——高速列车系列技术

中科院力学所科技成果——高速列车系列技术2008年科技部与原铁道部签订了两部联合行动计划即《中国高速列车自主创新行动计划》,启动了国家支撑计划重大项目“高速列车关键技术研究及装备研制”,目标是研制最高运行时速380公里的新一代高速列车。在此背景下,初步形成了目前的高速列车空气动力学科研团队。 团队核心成员主要围绕高速列车气动性能和气动噪声评估、气动优化设计、动模型气动实验技术、列车结构静/动强度评估和设计、气动对车辆运行安全性和舒适性影响等开展研究。涉及空气动力学、结构动力学、车辆动力学、噪声工程、实验技术等多学科系统耦合问题。该团队参与了我国已研制和在研的所有高速列车气动性能评估和气动定型设计,具有较强的团队精神、科研攻关能力,对我国高速列车设计技术提升和高铁产业的发展起到了不可替代的作用。 技术介绍及特点 在国家科技支撑计划重大项目“中国高速列车关键技术研究及装备研制”的资助下,中国科学院力学研究所高速列车团队形成了较完备的高速列车空气动力学设计技术。建立了优化设计方法和动模型实验平台,形成了我国高速列车空气动力学研究体系。其主要特点有: 1、基于压缩空气加速、磁涡流非接触制动、实验快速恢复等发明技术,研制了世界上规模最大、实验速度最高的双向运行高速列车动模型实验平台。同时,研制了具有弹性隔振支撑、加减速段限位和实验段自动切换的车载六分量测力天平,填补了动模型气动力测量的

技术空白。利用该平台,已为我国多种高速列车研制提供了气动实验支撑数据。 2、发展了多目标优化设计方法,构建了高速列车气动优化设计平台。以气动阻力、尾车升力和远场气动噪声为设计目标,通过优化,得到了性能更优的标准动车组气动方案。大西线线路考核试验表明,中国标准动车组具有更加优良的气动性能。 3、本项目发展的高速列车气动优化设计技术,已用于我国CRH380系列、中国标准动车组、更高速度等级高速列车、城际列车等研制,为中国高速铁路发展做出了突出贡献。参与“京沪高速铁路工程”项目获2015年国家科学技术进步特等奖。主持“高速列车空气动力学优化设计及评估技术”项目分别获2016年中国力学科技进步一等奖和2014年第五届中国侨界创新成果贡献奖。参与“设计时速380公里高速动车组技术研发及应用”项目获2012年铁道科技进步特等奖。 应用领域 1、高速列车的气动特性评估 2、高速列车动模型试验 3、高速列车外形优化设计 技术成熟度及应用案例 1、CRH380系列高速列车气动定型设计 针对新一代CRH380A高速列车研制,完成了多种头型方案无横风和不同强度横风运行场景下的气动性能和气动噪声评估;完成了单

A280-飞机总体设计-matlab-SRR-DT12-新型高超声速飞行器

飞机总体设计 新一代高超声速无人机——“赤隼” 第一阶段SRR总结报告 学院名称:航空科学与工程学院 专业名称:飞行器设计与工程 组号:DT12 组长:殷海鹏 2013 年 4月 1日

目录 一、任务陈述 (4) 二、市场需求 (4) 三、相关竞争实施方案 (5) 1. 天基信息系统 (5) 2. 空基侦查系统 (5) 四、运行理念 (6) 1. 潜在运用对象 (6) 2. 载荷能力 (6) 3. 典型任务剖面 (6) (1)任务剖面1(侦查过程中发现重要作战目标) (6) (2)任务剖面2(侦查过程中未发现重要作战目标) (6) 五、系统设计需求 (6) 1. 设计要求 (6) (1)X-43A (7) (2)X-51A (7) (3)HTV-2 (7) (4)HTV-3X (8) 六、新技术与新概念 (8) 1. 激光雷达 (8) 2. 气动布局 (8) 3.热防护 (8) 七、初始参数 (9) 方案一 (9) 方案二 (10) 八、人员分工 (10) 九、本阶段总结及下阶段任务计划 (11) 十、参考资料 (12)

图表目录 图1 天基信息系统 (5) 图2 空基侦察系统 (5) 图 3 X-43A (7) 图 4 X-51A (7) 图 5 HTV-2 (7) 图 6 方案一概念草图 (9) 图7 方案二概念草图 (10) 表 1 方案一初始参数 (9) 表 2 方案二初始参数 (10) 表 3 小组人员分工表 (10)

一、任务陈述 在新世纪的战争中,高超声速飞行器的优势主要体现在以下三个方面:首先是可以迅速打击数千或上万公里外的各类军事目标,大大地拓展了战场的空间。其次,突防能力更加强大,防空系统的拦截概率因反应时间太短而大幅度下降,具有较高的突防成功率。第三,超高速的飞行可以使得雷达难以探测,是一种新型的隐身方案。在新的战争形态中,信息战变得越发重要,侦查机是获取信息的重要来源,同时针对重要目标,在侦查同时具有一定攻击能力会使侦查起到意想不到的效果。从目前中国的空军机种来看,急需一款高超声速无人侦查机,此机最好还能有一定的攻击力,在侦查到重要目标时给予高效打击,对增强我国国防力量有重要作用。 二、市场需求 臭鼬工厂曾预测飞行器的下一场革命将来自于‘速度’,其速度优势会让各国现役防空导弹统统变成废铜烂铁。高超声速飞行器具有广阔的应用前景和巨大的军事价值。纵观21世纪的战场需求,高超声速飞行器已是不可缺少的攻击型和防御型兵器,世界各国都在加速这方面的研究工作,美国当前Ma为8-10的飞行器正在试验,而在2025年计划装备Ma为12-15的飞行器。澳、俄、法、德、日等很多国家对于高超声速飞行器的相关技术、功能、应用价值展开了积极的探讨与研究,并制定了一系列技术发展计划。从市场规模的角度来看,此类飞行器各国都有投入,但由于技术原因,规模较小而成功率偏低,在这种情况下,能率先设计生产出超高声速无人机的国家必能在错综复杂的国际环境下争取到先机,对于现在的世界态势和中国的防御性国防策略来说,我国对超高声速无人机有着极其重要的需求,比如马航失事后,如果能出动10Ma的侦察机进行快速侦查,必可得到最新最真实的情报,在新的战争理念中,被发现就是被消灭,侦察机与其他飞机相比必将会有着更高的军事地位。

中国科学院大气物理研究所

中国科学院大气物理研究所 中国科学院大气物理研究所简介 大气物理研究所前身是1928年成立的原中央研究院气象研究所。现有职工325人,其中科技人员251人,有中国科学院院士7人,研究员46人,副研究员和高级工程师86人,中级科技人员108人。大气所是博士、硕士学位授予单位和博士后流动站建站单位。是中国科学院博士生重点培养基地,国家毕业生就业重点保证单位。现有在学博士生211人,硕士生105人,博士后18人。 大气物理研究所主要研究大气中各种运动和物理化学过程的基本规律及其与周围环境的相互作用,特别是研究在青藏高原、热带太平洋和我国复杂陆面作用下的东亚天气气候和环境的变化机理、预测理论及其探测方法,以建立东亚气候系统和季风环境系统的理论体系及遥感观测体系,发展新的探测和试验手段,为天气、气候和环境的监测、预测和控制提供理论和方法。四个优势创新研究领域是:气候系统动力学和预测理论研究、大气环境和人类生存环境变化动力学和预测理论研究、中层大气与遥感理论和技术研究、中小尺度天气系统与灾害研究。 大气物理研究所拥有的科研部门包括:大气科学和地球流体力学数值模拟国家重点实验室、大气边界层物理与大气化学国家重点实验室、中国科学院东亚区域气候-环境重点实验室、中层大气遥感与探测开放实验室、云降水物理与强风暴实验室、国际气候与环境科学中心、竺可桢--南森国际研究中心、灾害性气候研究与预测中心、中国生态系统研究络大气分中心、季风系统研究中心。另外还设有信息科学中心。 2005年,大气物理所知识创新工程全面推进阶段工作进展顺利,科研工作取得若干重要进展,气候数值模式、模拟及气候可预报性研究项目荣获2005年度国家自然科学二等奖;获得湖北省科技进步一等奖1项,中国人民解放军科学技术进步二等奖1项,中国气象局气象科技奖成果应用奖一等奖 1项,国家教育部科学技术进步二等奖1项。共发表科技论文469篇,其中ScI收录论文126篇,申报专利5项。队伍建设和人才培养工作成效显著,叶笃正荣获国家科学技术最高奖,并作为第一主持人荣获国家科学技术进步二等奖;吕达仁当选为中国科学院院士。一批科研和管理人员以及研究生获得了各类奖项,取得佳绩。制度化、民主化、科学化三化建设继续向前推进。 2005年,申请获得973项目北方干旱化与人类适应1项、973课题2项、863专题3项;获得国家自然科学基金各类项目29项,包括4个重点基金、面上基金23项,杰出A和杰出B各1项;获院方向性项目3项,课题1项。还获

PID高超声速飞行器姿态控制中的应用展望

Oct.2010航天控制 v。1.28,N。.5AerospaceContr。1 。93?分数阶肼A∥在高超声速飞行器 姿态控制中的应用展望 齐乃明秦昌茂宋志国 哈尔滨工业大学,哈尔滨150001 摘要高超声速飞行器的发展是一个必然的趋势,但是其具有强耦合、严重非 线性、大范围气动环境变化的特点,这对飞行器的姿态控制系统提出了更高的要 求。本文简述了现代控制及智能控制在姿态控制器中的应用,回顾了传统PID 及其改进控制技术,针对新的被控对象特点,介绍了分数阶P,1矿及其发展。由 于分数阶PPIY"具有比传统PID更好的鲁棒性和控制性能,展望分数阶川1矿 控制在高超声速飞行器姿态控制中得到更广泛的应用。 关键词高超声速飞行器;姿态控制;传统PID;分数阶P,1矿 中图分类号:V448.2文献标识码:A 文章编号:1006.3242(2010)05-0093-06 ProspectofFractional-OrderPIADpController forHypersonicMissileAttitudeControl QINaimingQINChangmaoSONGZhiguo HarbinInstituteofTechnology,Harbin150001,China AbstractThe developmentofhypersonicmissileisaninevitabletrend.Therequirementofattitudecontrols弘temforaerocrafiishigherbecausethecharacteristicsofastrongcoupling,seriousnonlinearandlarge—scaleenvironmentalparametersarechangedinaerodynamic.Inthispaper,themoderncontrolandintelli—gent controlthatappliedtoattitudecontrolarebriefed,andclassicalPIDcontroltechnologyanditsim—provementarereviewed.thefractionalorderPI、D“controlleranddevelopmentforfknell3objectfeaturesarealsointroduced.Asaresult,fractionalorderPI、D“controlisbetterthanclassicalPIDcontrolinrobustnessandcontrolperformance.Therefore,fkfractionalorderP11D“controlwillbe埘池矽usedinhypersonicmissileattitudecontr01. KeywordsHypersonicmissile;Attitudecontrol;ClassicalPIDcontrol;FractionalorderP11D9controller 高超声速飞行器以美国的超一x计划飞行器及通用航空飞行器(CAV)[13为代表,计划实施对全球的快速打击,俄罗斯、日本等国也在积极研制高超声速飞行器,而我国尚处于起步阶段。 高超声速飞行器的飞行速度和高度变化大,可全空域机动飞行但其大范围气动环境的变化引起系统参数变化范围大,各通道间耦合影响也变大,使其成为具有强耦合、严重非线性并带有不确 收稿日期:2009-07-26 作者简介:齐乃明(1962一),男,哈尔滨人,教授,博士生导师,主要研究方向为航天器飞行动力学控制与仿真;秦昌茂(1985一),男,江西人,博士,主要研究方向为高超声速飞行器制导与控制;宋志国(1987一),男,黑龙江人,硕士, 主要研究方向为高超声速飞行器制导与控制。

中国科学院流固耦合系统力学重点实验室

中国科学院流固耦合系统力学 重点实验室 Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences 季报 2019年第1期(总第17期) 目录 中科院流固耦合系统力学重点实验室现场评估工作顺利完成 (2) 中科院流固耦合系统力学重点实验室召开2019年室务会 (3) 中国航空学会空气动力学分会飞行载荷专业工作会在扬州召开 (6) 圆柱阵列波浪力幅值的波动现象和预报公式 (8) 轻质金属点阵圆柱壳结构制备与力学性能研究进展 (9) 力学所提出一种大幅提升3D打印点阵结构力学性能的新方法 (11) 雾化稠油掺稀降粘技术研究进展 (12) 南海天然气水合物试采安全评价研究进展 (14) 油气水多相流量计研究进展 (15) 空化致板间液滴界面稳定性研究获得多个奖项 (16) 空泡与柔性膜的流固耦合研究获得2019度中国力学大会优秀墙报奖. 18

中科院流固耦合系统力学重点实验室现场评估工作顺利完成 7月15日,中科院前沿科学与教育局、中科院重点实验室现场评估专家组一行14人莅临中科院力学所,对依托力学所建设的流固耦合系统力学重点实验室进行现场评估。专家组组长顾逸东院士主持了评估会议并宣布了现场评估的议程安排。力学所所长秦伟,党委书记、副所长刘桂菊,副所长魏宇杰,副所长尹明及流固耦合系统力学重点实验室学术委员会主任、实验室主任参加会议。 实验室主任黄晨光做实验室主任工作报告,围绕发展定位与研究方向、科研任务与代表性成果、队伍建设与人才培养、开放交流与运行管理等方面,向专家组汇报了评估期内的发展成果和工作成效。杨国伟研究员、王展研究员分别做“高速列车气动设计与流固耦合动力学特性研究”和“极端海洋环境及其与工程结构的流固耦合理论”代表性成果报告。专家组肯定了实验室取得的成绩以及工作亮点,并就汇报和自评估报告中的存疑事项进行了交流。 现场评估专家组还查看了高速列车动模型试验平台、海洋流固土耦合实验室、多相流体力学实验室、冲击与耦合效应实验室的科研仪器建设、大型科研仪器设备使用共享等情况,同时,参观了实验室的展板窗口。在此基础上,专家组召开会议,根据现场考核情况对实验室进行打分,并初步形成了评估意见。 经过努力,实验室顺利完成了此次中科院重点实验室现场评估工作,并在评估中充分展现了自身的优势和特色,最终取得良好的评估成绩。 在国家科技创新基地优化整合的背景下,实验室将积极适应新形势和新要求,进一步加强实验室建设和运行管理工作,全面提升科研平台建设水平和运行效率,为加快科技创新提供良好的条件支撑。 (流固耦合系统力学重点实验室供稿)

X-51及高超声速飞行器简介

美国X-51A飞行器及总体设计及其关键技术简介 Xxx 摘要:从计划的背景、飞行器的构造、热防护材料研发测试以及实际飞行试验等方面对X-51A 的发展计划作了较为详细的介绍,并据此对美国发展高超声速飞行技术的研究流程和理念有个一定的了解与认识。 关键词:X-51A 高超声速导弹热防护系统结构材料飞行器 引言:美国自二十世纪九十年代启动“全球敏捷打击”计划以来,一直处于低速发展过程中,该计划近期开始迅速升级,从改造“三叉戟”导弹开始,美国正推出一系列先进攻击武器概念,包括飞机、无人机和导弹。其中,X-51高超声速巡航导弹是美国武器库目前速度最快的全球打击武器,可以在一小时内攻击地球上任一目标。 1项目概况 巡航导弹在美国武器系统中具有特殊的地位,在未来信息化战争中,巡航导弹不要要成为首选的打击武器,也是美军实行远程军事打击的必备武器。 美国于20世纪90年代启动的“全球敏捷打击”计划自推出以来一直处于低速发展过程中,直至近年该计划开始迅速发展。美国从改造三叉戟导弹开始,陆续推出一系列的先进攻击武器概念,包括新一代的飞机、无人机和导弹。 X-51A计划是由美国空军研究试验室(AFRL)、国防高级研究计划局(DARPA)、NASA、波音公司和普惠公司联合实施的旨在验证高超声速飞行能力的计划。终极目标是发展一种马赫数达到5~7的可以在1 h内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。X-51A于2010年2月中旬进行了首次高超声速飞行试验。 X-51A的首飞创造了又一个人类历史记录———超燃冲压发动机推进的历时最长的高超声速飞行,刷新了X2 43创造的12 s的记录。X2 51A首飞的成功意味着, 超燃冲压发动机将提供一种全新的快速全球打击能力。据称,该高超声速导弹将能够在60 min内实施全球打击。美国国防部/NASA的X2 51A项目则是这一新型武器系统方案的关键部分。X2 51A 的飞行试验对于空间进入、侦察、打击、全球到达以及商业运输等都有重要意义。 2 X-51A计划的背景 美国空军认为,高超声速推进技术是美国亟须发展的关键领域之一,为了达到这一目的,必须走“阶梯式发展”的道路。1979年首次发射的先进战略空射导弹(ASLAM)是早期的高超声速导弹,它使用高速冲压发动机实现了马赫数为5. 5的飞行,虽然达到了高超声速,但由于冲压发动机的燃烧是在亚声速状态下进行,效率非常低。解决这一问题的方法是使用超燃冲压动机,于是X-51A计划应运而生。 20世纪90年代中期,国家空天飞机(NASP,NationalAerospace Plane)计划终止后,美国空军转而投资HyTech(Hypersonic Technology)计划以延续其对高超声速技术的研究。2004年1月, AFRL选择波音公司与普惠公司共同制造SED-WR的验证机,由波音公司制造机身,普惠公司

全国研究所代码 (标准)

研究所代码 代码研究所 80005 中国科学院武汉岩土力学研究所 80007 中国科学院力学研究所 80008 中国科学院物理研究所 80009 中国科学院高能物理研究所 80010 中国科学院声学研究所 80012 中国科学院理论物理研究所 80014 中国科学院上海原子核研究所 80017 中国科学院近代物理研究所 80018 中国科学院国家天文台南京天文光学技术研究所80019 中国科学院国家天文台长春人造卫星观测站80020 中国科学院武汉物理与数学研究所 80021 中国科学院紫金山天文台 80022 中国科学院上海天文台 80023 中国科学院云南天文台 80024 中国科学院国家授时中心 80025 中国科学院国家天文台 80026 中国科学院声学研究所东海研究站 80027 中国科学院渗流流体力学研究所 80028 中国科学院新疆理化技术研究所 80029 中国科学院自然科学史研究所 80030 中国科学院理化技术研究所 80032 中国科学院化学研究所 80033 中国科学院广州化学研究所 80035 中国科学院上海有机化学研究所 80036 中国科学院成都有机化学研究所 80037 中国科学院长春应用化学研究所 80038 中国科学院大连化学物理研究所 80039 中国科学院兰州化学物理研究所 80040 中国科学院上海硅酸盐研究所 80041 中国科学院过程工程研究所 80042 中国科学院生态环境研究中心 80043 中国科学院山西煤炭化学研究所 80045 中国科学院福建物质结构研究所 80046 中国科学院青海盐湖研究所 80053 中国科学院兰州地质研究所 80054 中国科学院古脊椎动物与古人类研究所 80055 中国科学院南京地质古生物研究所 80057 中国科学院测量与地球物理研究所 80058 中国科学院大气物理研究所 80060 中国科学院地理科学与资源研究所 80061 中国科学院南京地理与湖泊研究所

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术

中国科学院力学研究所研发成功等离子体生活垃圾气化发电技术 我国生活垃圾处理方式主要是填埋和焚烧。填埋不仅侵占大量土地,还污染地下水,是不得已而为之的选择。尽管如此,对于土地资源紧张的地区已没有多少场地可供填埋使用。焚烧法虽然减容比高,并能回收能量,但却因二噁英等污染问题遭到公众强烈反对,急需发展新一代的绿色环保、节能降耗的替代焚烧技术。 等离子体是物质第四态,具有许多异于固态、液态和气态的独特的物理化学性质,如温度和能量密度都很高、可导电和发光、化学性质活泼并能加强化学反应等,环保性能优良。通过电弧放电产生高达7000 C的等离子体,将垃圾加热至很高的温度,从而迅速有效地摧毁废物。可燃的有机成分充分裂解气化,转化成可燃性气体,可以用于能源回收,一般称为“合成气”(主要成分是CO+H )。不可 2 燃的无机成分经等离子体高温处理后成为无害的渣体。 采用等离子体处理垃圾是目前减容效果最显著、无害化最彻底、资源化程度最高的绿色环保技术。与焚烧法相比,等离子体技术最突出的优点有: (1)处理温度高:有害物质摧毁更彻底,二噁英前驱体被彻底破坏分解; (2)可采用还原性气氛或部分氧化性气氛,采用电能作为外加热源,二次污染物排放比焚烧低2-3个数量级,裂解底渣是无害的; (3)合成气流量约为焚烧烟气量的5-10%,易于净化,后处理设备尺寸大大减小,节约了投资成本; (4)能源回收效率高,将筛上物制成合成气,后续利用气体发动机发电,发电效率可高达39%,而焚烧法采用蒸汽轮机,发电效率很难超过22%; (5)等离子体系统可快速启动与停机,等离子体核心工艺灵活,可根据不同的处理目的搭配不同的配套系统; (6)整套设备紧凑,占地小,经济效益好。

高超声速飞行器技术研究中心

高超声速飞行器技术研究中心 来源:国防科技大学更新时间:2010-6-28 8:56:26 点击:11502次高超声速飞行器技术研究中心成立于2009年10月,中心下设高超声速飞行器总体技术研究室、高超声速推进技术研究室、燃气引射技术研究室、燃烧流动与传热研究室四个研究室。中心共有研究人员33名,具有高级专业技术职务的教师19名,具有博士学位的教师31名。高超声速推进技术团队2008年成为国家教育部“长江学者和创新团队发展计划”的创新团队。 近年来,依托“航空宇航推进理论与工程”国家重点学科和“飞行器设计”国家重点(培育)学科,结合流体力学、固体力学、材料学等相关学科,在保持火箭发动机研究特色与优势的基础上,在高超声速飞行器总体设计、超燃冲压发动机、地面模拟试验、超声速流动燃烧机理等方面研究取得了重大进展。2009年获得国家技术发明二等奖1项。 在国家、教育部以及军队相关计划的支持下,中心已建成占地120亩、建筑面积11000平方米的高超声速飞行器技术试验基地,拥有系列化的超燃冲压发动机直连式试验台和自由射流试验系统,配备了激光光谱燃烧流动诊断PLIF系统、Malven激光测粒仪、PDA粒子动态分析仪、高速纹影仪、PIV、CVI/CVD等先进观测设备和多机并行计算集群系统,为高超声速飞行器关键技术攻关和基础研究奠定了坚实基础。 中心承担了本科、硕士、博士学员的多门课程教学和基础研究条件建设任务。新建了基础研究试验大楼,建成了多个基础研究实验平台,并配备了先进试验仪器和测量设备。这些基础研究试验平台完全向学员开放,对于学员进行高水平论文研究、实验能力的培养以及综合素质的提高提供了有力的支撑和保障。 中心的主要研究方向有: ●飞行器总体技术 本研究方向重点开展高超声速飞行器总体一体化设计、飞行器布局优化设计及应用等方面的研究。 ●高超声速推进技术 本研究方向主要开展超燃冲压发动机、发动机地面试验与飞行试验技术、高超声速飞行器机体/推进系统一体化设计、超声速燃烧与流动机理等方面的研究。 ●燃气引射技术 本研究方向主要开展航空航天发动机高空模拟试验系统等方面的研究。 ●发动机燃烧、流动与传热机理研究

高超声速飞行器发展现状

高超声速飞行器 一、国内外高超声速飞行器研制现状 高超声速飞行器技术是21世纪航空航天技术的新制高点,是航空史上继发明飞机、突破声障飞行之后第三个划时代的里程碑,同时也将开辟进入太空的新方式。高超声速飞行器技术的突破,将对国际战略格局、军事力量对比、科学技术和经济社会发展以及综合国力提升等产生重大和深远的影响。因此,世界主要国家一直把高超声速飞行器研制作为科技发展的最前沿阵地,从人力、物力、财力等各方面给予大力支持。自20世纪50年代末开始探索超声速燃烧冲压发动机技术以来,经过几十年的探索,美国、俄罗斯、法国、德国、日本、印度和澳大利亚等国在20世纪90年代初陆续取得了技术上的重大突破,并相继进行了地面试验和飞行试验。这表明高超声速技术从进行概念和原理探索的基础研究阶段,进入了以某种高超声速飞行器为应用背景的先期技术开发阶段。各国技术开发的主要应用目标近期为高超声速巡航导弹,中期为高超声速飞机,远期为吸气式推进的跨大气层飞行器、空天飞机。高超声速飞行器技术是21世纪航空航天技术的制高点,也是重要的军民两用技术。虽然目前仍存在不少技术难题,而且耗费巨大,但从世界各研制国目前的发展势头来看,以超燃冲压发动机为动力的高超声速巡航导弹有可能在2010年前后问世。预计到2025年,以超燃冲压发动机为动力的高超声速飞机和空天飞机也有可能投入使用,并将在军事、政治和经济等领域产生重大影响。 1 美国 1.1 Hyper2X计划 经过较长时间的研究和实践,美国在高超声速飞行器的设计研制方面积累了丰富的经验。作为试验性高超声速飞行研究计划,Hyper2X计划是对以往所做工作的一次检验。Hyper2X计划是美国国家航空航天局(NASA)近年来重点开展的高超声速技术研究计划,主要目的是研究并验证可用于高超声速飞机和可重复使用的天地往返系统的超燃冲压发动机技术,并验证高超声速飞行器的设计方法和试验手段。1997年1月,NASA与兰利研究中心、德莱顿飞行研究中心签订合同,Hyper2X计划正式启动。Hyper2X计划的试验飞行器代号为X243,根据演示验证的任务不同分为X243A、X243B、X243C和X243D,共4个型号。 1.1.1 X243A X243A技术由位于弗吉尼亚州汉普顿的NASA兰利研究中心和位于加利福尼亚州爱德华的NASA德莱顿飞行研究中心负责开发。其中机身和发动机由位于田纳西州塔拉荷马的ATKGASL公司(原微型飞行器公司)制造,位于加利福尼亚州亨亭顿的波音公司鬼怪工厂负责部分系统工程、热防护、操纵、导航和控制设计以及飞行控制软件、内部布局和结构设计。X243A的助推器是经过改装的飞马座运载火箭的第一级,该系统由位于亚利桑那州昌德勒的轨道科学公司提供X243A机身长3.66m,高660mm,翼展1.53m,质量1360kg,由采用液氢燃料的双模态超燃冲压发动机推进。1997年3月,NASA选定ATKGASL公司为飞行研究任务装配X243A无人驾驶研究飞行器。1997年12月,轨道科学公司对飞马座运载火箭成功进行了关键的设计审查。1998年,1台超燃冲压发动机作为第一部硬件交付NASA,随后这台发动机在兰利研究中心的2.44m八支点高温风洞中进行了一系列测试。1999年10月,第一架X243A交付德莱顿飞行研究中心。2000年,X243A在ATKGASL公司的

中国科学院理化技术研究所科研物资采购管理暂行办法

中国科学院理化技术研究所 科研物资采购管理暂行办法 为规范理化所科研物资采购管理,严格执行国家相关法规和管理制度,根据财政部和中国科学院有关事业单位国有资产管理实施办法以及政府采购的相关规定,结合我所实际情况特制订《理化所科研物资采购管理暂行办法》。 一、科研物资采购范围 科研物资采购范围包括科研材料与科研设备等。 科研材料主要指用于科研活动直接需要和间接需要的不纳入固定资产管理的各类物资; 科研设备包括整机设备、自行研制设备、委托加工设备等。 二、科研物资采购经费 科研物资采购经费包括课题项目经费、所公用经费以及研究所其它经费等。 三、科研物资采购流程 科研物资采购流程包括采购计划报批、确定采购方案、实施采购、验收入库等环节。 1.采购计划报批:

凡属政府采购范围内的科研物资,采购部门须在采购计划报批之前,根据上级部门的统一要求提前跨年度申报预算(具体申报时间以所资产办下发通知为准)。 采购3万元(含)以上科研物资,采购部门须填报《理化所科研物资采购审批表》(附件1)。其中主管业务部门须依据项目任务书或科研活动的需要对物资采购申请进行严格把关。 其中对于采购金额在50万元(含)以上的进口设备,采购部门实施采购前,还需通过资产办组织所外专家进行评审,并上报财政部审批。 2.确定采购方案: 采购部门在完成《理化所科研物资采购审批表》逐级审批后,即可进入采购方案的论证阶段。须组建采购小组,由采购小组组织并通过调研和论证等方式确定采购方案,填报《理化所科研物资采购方案论证报告》(附件2)。 对于单项或批量采购金额一次性在50万元(含)以上的科研物资,须执行政府采购相关规定。 对于单项或批量采购金额一次性在120万元(含)以上的科研物资,须采用公开招标方式(由资产办组织实施),附招投标过程相关文件与材料。 对于委托加工与研制的科研物资,附选定供货商的资质证明等(有效期限内的营业执照、生产许可证复印件)。

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

中国科学院大气物理研究所

中国科学院大气物理研究所 2006年博士生入学试题 《大气化学》(满分100) 一、解释下列各对名词(每组2分,共计40分) 1)干沉降和湿沉降2)光学等效直径和空气动力学等效直径3)气溶胶及 PM 10、PM 2.5 4)热化学平衡和光化学平衡5)原生粒子和次生粒子6)元素 和同位素7)细粒子和硫酸盐8)反应物和前体物9)自由基和链式反应10)化学反应速率常数和平衡常数11)雾和光化学烟雾12)粒子数浓度和质量浓度13)pH 值和酸雨14)光化学反应和量子效率15)温室气体和温室效应16)人工降雨和凝结核17)爱根核和云18)酸雨和酸沉降19)大气寿命和半衰期20)均相化学反应和非均相化学反应 二、简答题(每题10分,共计20分) 1.写出《京都议定书》明确要求发达国家减少排放的6种(类)人造物质名称和 分子式,并从它们大气化学降解速率和过成的角度说明必须减少向大气排放这些物质的原因。(10分) 2.N 2 O是一种重要的温室气体,主要从土壤排放到大气,消耗于平流层。当前国 际上测量土壤N 2 O排放普遍使用的方法是用一定体积的箱子罩在一定面积的土壤 上,通过测量箱内N 2 O浓度随时间的变化率,从而计算其界面交换通量(单位时 间单位面积的质量)。设在两地分别测量土壤N 2 O的排放,采样箱参数和测定值如下表,请问A、B哪个排放通量大?(提示:使用理想气体状态方程,0 ℃=273.5 K ) (10分) (t0浓度是指开始罩箱时的N2O浓度;t1是指开始罩箱后的t1时刻N2O浓度) 三、述题(40分,每题20分) 1.目前城市大气中两种最重要的O 3前体物是VOC和NOx(NO+NO 2 ),下图显示的是 第1页共2页

国外吸气式高超声速飞行器发展现状

情报交流 本文2008 09 29收到,作者分别系中国航天科工集团第三研究院三一〇所工程师、助工、助工 国外吸气式高超声速飞行器发展现状 陈英硕 叶 蕾 苏鑫鑫 摘 要 以美国H yT ech 、H yF ly 、 X 51A 、猎鹰(FALCON )计划为重点,介绍了世界上几个主要的吸气式高超声速技术计划和飞行器研究情况,并对当前国外吸气式高超声速飞行器的发展现状进行了简要分析。 关键词 吸气式 高超声速 H yF ly X 51A FA LCON 引 言 高超声速飞行器是指在大气层内飞行速度达到M a =5以上的飞行器。自20世纪60年代以来,以火箭为动力的高超声速技术已广泛应用于各类导弹和空间飞行器,而目前世界各国正在积极发展另一类以吸气式发动机为动力的高超声速飞行器技术,它的航程更远、结构质量更轻、性能更优越。 实际上,吸气式高超声速技术的发展始于20世纪50年代,通过几十年的发展,美国、俄罗斯、法国、德国、日本、印度、澳大利亚等国自20世纪90年代以来已在高超声速技术方面陆续取得了重大进展,并相继进行了地面试验和飞行试验。高超声速技术实际上已经从概念和原理探索阶段进入了以高超声速巡航导 弹、高超声速飞机和空天飞机等为应用背景的先期技术开发阶段。 1 美国在高超声速技术领域独占鳌头 从1985年至1994年的10年间,美国国家空天飞机计划(NASP)大大推动了高超声速技术的发展。通过试验设备的大规模改造和一系列试验,仅美国NASA 兰利研究中心就进行了包括乘波体和超燃发动机试验在内的近3200次试验。通过这些试验掌握了M a <8的超燃发动机设计技术,并建立了数据库,从而为实际飞行器打下了牢固的技术基础。实际上,30多年来,兰利研究中心一直在进行这方面的研究,曾经在2.44m 高温风洞中研制和试验过22个发动机。在此基础上,美国于1996年开始,针对高超声速导弹、高超声速飞机和空天飞机的研制工作调整高超声速技术的研究目标,在发展和应用高超声速技术方面采取了更为稳妥的循序渐进策略,提出了更为现实的全方位的高超声速武器和先进航天器研制计划。NASA 和美国空军在2000年 12月达成协议,将联合进行高超声速技术的发展和验证。2001年,NASA 和美国国防部联合提出了国家航空航天倡议(NA I),重申了美国高超声速飞行器的发展战略:近期发展高超声速巡航导弹;中期重点发展全球到达的高超声速飞机;远期发展廉价、快速、可重复使用的航天运载器。 2001年6月到2004年11月,NAS A H yper X 计划的X 43A 进行了3次飞行试验,除第一次以失败告终外,第二次飞行试验实现了7倍声速飞行,第三次在大约33.5km 高度飞行时以M a =9.8(11270k m /h)的惊人速度载入世界飞行速度记录。X 43A 的成功飞行试验,验证了高超声速飞行器的设计概念、设计方法和地面试验结果。但2006年年初NASA 表示,将把航空领域的研究重点从之前的飞行演示验证重新转向基础研究和设计工具开发,同时,NASA 对其组织结构进行调整,将高超声速研究纳入基础航空部分。X 43高超声速研究小组的项目重点将进行基础性的技术研究而不是飞行试验。 下面就简要介绍一下美国开 25 飞航导弹 2008年第12期

相关文档
最新文档