壤中流和地表径流耦合下的红壤坡地氮素迁移输出过程模拟

壤中流和地表径流耦合下的红壤坡地氮素迁移输出过程模拟
壤中流和地表径流耦合下的红壤坡地氮素迁移输出过程模拟

面源氮磷流失生态拦截工程 一、工程目的和意义 农业面源氮磷流失由农田排水和径流、乡村生活污水及农户畜禽养殖尾水等组成,其污水源具有面广、量大、分散、间歇的峰值和高无机沉淀物负荷的特点。采用生态湿地处理技术、生态隔离带技术及农区自然塘池缓冲与截留技术可以减少表土径流及氮磷污染物的流失。特别是生态沟渠塘改造是目前最为经济有效的生态湿地处理工程。 据实地勘察和初步估算,乡村面源氮磷流失的大部分淌入现有用于排水的沟渠塘流经入湖河道汇聚到太湖,许多沟渠塘成了农村固体废弃物的堆积场所,成为农业污染源的重要传播途径,必须尽快加以工程化技术改造,建立新型的沟渠塘生态湿地系统。 二、工程内容和特点 工程主要内容为先清除垃圾、清除淤泥、清除杂草,沟渠塘岸边种植垂柳、草被植物,侧面和底部搭配种植各类氮磷吸附能力强的半旱生植物和水生植物,减缓水速,促进流水携带颗粒物质的沉淀,有利于构建植物对沟壁、水体和沟底中逸出养分的立体式吸收和拦截,从而实现对农业面源污染排出养分的控制。整个植物系统最终达到“拦截污水、拦截泥沙、拦截漂浮物”的目的,不仅具有净化水质、绿化村庄、美化环境的效果,而且具有一定的经济价值。南京土壤所“863”科技计划最新研究成果显示,该系统对农田径流中总氮、总磷的去除效果分别达到48.36%和40.53%。 经工程化改造后,现有排水沟渠塘去污能力进一步提升,成本

大幅度降低。具有排水和湿地系统的双重功效,不仅可以吸附农田、漫溢水中氮、磷营养物质,而且能拦截蔬菜园地径流表层肥沃土壤进入河道,还可作为部分农村生活污水、畜禽养殖场尾水导流截污的排放通道之一。生态拦截工程与农村分散居住农户生活污水生物净化池、入湖河道控制性种养水生植物构成了农村面源氮磷流失的生态拦截和净化吸附的新型农业湿地系统,并且不占用耕地,符合太湖流域平原水网地区农田沟渠的实际,尤其适用于太湖、长荡湖、滆湖入湖河道两侧等周边水功能区域,具有巨大的推广应用潜力。 三、工程设计和管理维护 1、沟渠改造 充分利用现有排水沟渠,对其进行一定的工程改造,建设成生态拦截型沟渠塘系统。对淤积严重,连通度差或杂草丛生的区段,先进行清淤,拓宽沟渠容量。为保证水生植物正常生长,清理时要保留部分原有水生植物和一定量的淤泥。 2、渠体设计 渠体的断面为等腰梯形,沟壁和沟底均为土质,配置多种植物,并设置透水坝、拦截坝和节制闸等辅助性工程设施,使之在具有原有的排水功能基础上,增加对排水中氮、磷养分的拦截、吸附、沉积、转化和吸收利用。生态沟渠建设可以考虑适度增加沟渠的蜿蜒性,延长排水时间。建设密度应能满足排水和生态拦截的需要,分布在农田四周与农田区外的沟渠连接起来,并利用地形地貌将低洼地或者弃养渔塘改造成生态池塘,种植富集氮、磷的水生蔬菜,增加二次或三次净化,进一步提高系统的生态拦截能力。 3、植物配置

农田氮、磷的流失与水体富营养化① 司友斌王慎强陈怀满② (中国科学院南京土壤研究所南京210008 摘要农田氮、磷的流失,不仅造成化肥的利用率降低,农业生产成本上升,还对水环境造成污染,引起水体富营养化。本文讨论了农田氮磷流失对水体富营养化的贡献、农田氮磷流失途径及影响因素,提出了减少农田氮磷流失、控制水体富营养化的措施。 关键词农田氮素;农田磷素;淋溶作用;水体富营养化 肥料提供了植物生长必需的营养元素,对保持作物高产稳产起了重要的作用,但是由施肥不当或过量施肥带来的环境污染问题也越来越突出,其中农田氮磷流失引起的水体富营养化问题目前已受到人们的普遍关注。 1水体富营养化的表现及形成原因 水体富营养化通常是指湖泊、水库和海湾等封闭性或半封闭性的水体,以及某些滞留(流速<1米/分钟河流水体内的氮、磷和碳等营养元素的富集,导致某些特征性藻类(主要是蓝藻、绿藻等的异常增殖,致使水体透明度下降,溶解氧降低,水生生物随之大批死亡,水味变得腥臭难闻。引起水体富营养化起关键作用的元素是氮和磷。研究表明,对于湖泊、水库等封闭性水域,当水体内无机态总氮含量大于 0.2mg/L,PO3-4-P的浓度达到0.02mg/ L时,就有可能引起藻华(Algae Bloms现象的发生。 据对我国25个湖泊的调查,水体全氮无一例外超过了富营养化指标,全磷只有2个湖泊(大理洱海和新疆博斯腾湖低于0.02mg/L的临界指标,其余92%的湖泊皆超过了这个标准,比国际上一般标准高出10倍或10倍以上(表1。 表1我国25个湖泊中的全N全P浓度(mg/L及所占比例[1]

全N全P <0.2>1.0>2.0>5.0<0.02>0.1>0.2>0.5 湖泊数 %0 21 84 13 52 5 20 2 8 16 64 12 48 6 24

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 径流量与径流系数 径流系数 径流系数,一定地区任意时段内径流量(或得流总量)与同时段内相应的降水量之比值。以小数或百分数计。 径流系数(runoff coefficient),一定地区任意时段内径流量(或径流总量)与同时段内相应的降水量之比值。以小数或百分数计。即:径流系数=径流量/降水量 在干旱地区,径流系数小,甚至趋近于零;在湿润地区较大,径流系数同所取时段不同分别称为次径流系数、洪峰径流系数、月径流系数、年径流系数和多年平均径流系数。 径流系数(runoff coefficient)是一定汇水面积地面径流量(毫米)与降雨量(毫米)的比值,是任意时段内的径流深度y(或径流总量W)与同时段内的降水深度x(或降水总量)的比值。径流系数说明在降水量中有多少水变成了径流,它综合反映了流域内自然地理要素对径流的影响。其计算公式为a=y/x。 同一流域面积、同一时段内径流深度(R)与降水量(P)的比值称为径流系数,以小数或百分数计,表示降水量中形成径流的比例,其余部分水量则损耗于植物截留、填洼、入渗和蒸发。 径流系数同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。计算式为:α=R/P,式中α为径流系数,R为径流深度,P为降水深度。α值变化于0~1之间,湿润地区α值大,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。根据计算时段的不同,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。径流系数综合反映流域内自然地理要素对降水─径流关系的影响。 径流量 中文名称:径流量 英文名称:runoff 定义:为时段流量,可分地面径流、地下径流两种。表示径流大小的方式有

采用地面分类计算法计算平原区地表水资源量 本次水资源调查评价中,地表水资源量计算是一个很重要的部分。在有水文径流实测资料的地区是通过实测资料还原和一致性分析后的径流量系列,作为评价地表水资源量的依据。但我省的平原区,尤其是珠江三角洲平原区,基本上没有能满足要求的径流实测资料,因此,只能采用其它方法计算平原区的地表水资源量。 由于我省降雨资料丰富,基本上每个县级以上城市都有气象局的蒸发资料,因此可通过降雨和蒸发资料来计算平原区的地表水资源。本次根据我省的实际情况,我们采用南京水文所水资源室推荐的地面分类计算法来计算平原区的地表水资源。 1计算方法 南方水网地区水资源分区下垫面一般可分为水面、城镇建设区、水田和旱地(包括非耕地)四种类型。根据不同下垫面的特点采用不同的方法计算其产水深,从而求出整个水资源分区的产水量。以1天为计算时段,采用逐日计算。 ①、水面产水深 水面产水为年降雨量与年蒸发量之差,即: 式中: R w 为为时段水面产水量(mm ); P 为为时段降雨量(mm ); K e 为为蒸发皿折算系数; E o 为时段蒸发皿蒸发量(mm )。 ②、城镇建成区产水 城镇建设区特点是下垫面透水性较差,产水量可简单表示为降雨量乘以径流系数,即: o e W E K P R ?-=P C R I I ?=

式中: R I为时段不透水地面产水量(mm); C I为径流系数; P为为时段降雨量(mm); ③、水田产水 水田的产水由排水及渗漏形成的壤中径流两部分组成。当水田的蓄雨深小于最大蓄雨深时不排水,当蓄雨大于最大雨深时则超出部分排水,保持水田蓄雨不大于最大蓄雨深,当蓄雨消耗完后则依靠灌溉使水田保持适宜水深。本次计算定义水田蓄雨容量为水田最大蓄雨深和水田适宜水深的上、下限均值之差,根据《广东省一年三熟灌溉定额》,我省的水田蓄雨容量在水稻的生长期平均为50mm。另外,在水田蓄雨期间每天还要产生渗漏,由于广东省平原区的地下水位较高,在自然条件下,渗漏量在一个月内基本能从土壤中流出,渗漏水基本上排入地表径流。我省的水田以壤土为主,根据《广东省一年三熟灌溉定额》,水田日渗漏强度取壤土的早稻和晚稻的均值,为2.75mm/d。灌溉水量因为需要还原,为了不重复计算,因此在此不考虑。 Hh = P + Ho - E R – S 若Hh ≥Hr 则Hh = Hr 若Hh≥2.75 则S = 2.75 R R = P + Hh – Hr + S 式中: Hh为水田蓄雨深 Ho为水田初始蓄雨深 S 为水田渗漏量

湖北省稻田地表径流氮磷养分流失规律初探 摘要:在湖北省水稻主要种植区设置3个田间原位监测点,采用径流池收集地表径流的方法,研究水稻田地表径流产生和氮磷养分流失的规律。结果表明,2010年,全省稻田平均产生地表径流8次,产流量平均为304.5mm,产流系数为34.7%,径流主要发生在4~8月降雨比较集中的时段;施肥后全省稻田年平均总氮的流失量为4.90~10.67kg/hm2,总磷流失量为0.63~1.44kg/hm2;径流水中总氮平均浓度为1.83~3.83mg/l,总磷浓度为0.16~0.49mg/l;可溶态氮是地表径流氮素流失的主要形态,约占总氮的70.2%~86.7%,其中尤以硝态氮的流失量最大,占总氮的51.8%~69.5%,铵态氮流失量较小,约占总氮的7.4%~34.9%;磷素的流失以颗粒态磷为主,占总磷的60.4%~87.7%;肥料氮、磷养分流失量平均分别为当季施肥量的0.46%和0.37%。施肥和径流量是影响地表径流氮、磷流失的主要因素,施肥导致氮、磷养分流失量增加,径流产生量大的时段,其氮、磷的流失量也增加。 关键词:氮磷养分流失;地表径流;稻田;养分形态;湖北省 abstract:experimentalplots insituwereconductedinthem ainriceplantingregionsofhu

beiprovincein2010,therunoffwaterineachplot was collectedandtested,toinvestigatetheregularpatternofthesurfacerunoffeventsandthenitrogenandphosphoruslossesofthe ricefield.theresultsshowedthatthesurfacerunoffeventsusuallyoccurredinrainingseasonfromapriltoaugust.onaverage,8timesofrunoffeventsoccurredinayear,theannualamountofrunoffwas304.5mmandtherunoffgenerationcoefficientwas34.7%; theannualamountofnitrogenlossesfromricefieldwas4.90~10.67kg/hm2,thephosphoruslosseswas0.63~1.44kg/hm2.themeanconcentrationofnitrogenlosseswas1.83~3.83mg/land0.16~0.49mg/lforthe

径流量与径流系数 令狐采学 径流系数 径流系数,一定地区任意时段内径流量(或得流总量)与同时段内相应的降水量之比值。以小数或百分数计。 径流系数(runoff coefficient),一定地区任意时段内径流量(或径流总量)与同时段内相应的降水量之比值。以小数或百分数计。即:径流系数=径流量/降水量 在干旱地区,径流系数小,甚至趋近于零;在湿润地区较年夜,径流系数同所取时段不合辨别称为次径流系数、洪峰径流系数、月径流系数、年径流系数和多年平均径流系数。 径流系数(runoff coefficient)是一定汇水面积空中径流量(毫米)与降雨量(毫米)的比值,是任意时段内的径流深度y(或径流总量W)与同时段内的降水深度x(或降水总量)的比值。径流系数说明在降水量中有几多水酿成了径流,它综合反应了流域内自然地理要素对径流的影响。其计算公式为a=y/x。 同一流域面积、同一时段内径流深度(R)与降水量(P)的比值称为径流系数,以小数或百分数计,暗示降水量中形成径流的比例,其余部分水量则损耗于植物截留、填洼、入渗和蒸发。 径流系数同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数暗示。计算式为:α=R/P,式中α为径流系数,R为径流深度,P为降水深度。α值变更于0~1之间,湿润地区

α值年夜,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,标明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。根据计算时段的不合,可分为多年平均径流系数、年平均径流系数和洪水径流系数等。径流系数综合反应流域内自然地理要素对降水─径流关系的影响。 径流量 中文名称:径流量 英文名称:runoff 界说:为时段流量,可分空中径流、地下径流两种。暗示径流 年夜小的方法有流量、径流总量、径流深、径流模数等。 应用学科:地理学(一级学科);水文学(二级学科) 径流量 在水文上有时指流量,有时指径流总量。即一按时段内通过河流某一断面的水量。 计算公式为:径流量=降水量蒸发量 单位为:立方米/秒 将瞬时流量按时间平均,可求得某时段(如一日、一月、一年等)的平均流量,如日平均流量、月平均流量、年平均流量等。在某时段内通过的总水量叫做径流总量,如日径流总量、月径流总量、年径流总量等。以立方米、万立方米或亿立方米计。 多年平均径流量 指多年径流量的算术平均值。以米3/秒计。用以总括历年的径流资料,估计水资源,并可作为丈量或评定历年径流变更、最年

流域地表径流系数的计算方法研究 摘要:径流系数是描述降雨和径流关系的重要参数 ,在雨洪控制利用系统的理论研究、 规划、 设计计算中应用广泛 ,在流域或区域的雨水径流总量、 径流峰流量、 流量过程线以及非点源污染物总量、 各设施规模的计算中也起着极其重要的作用。由于径流系数有着不同的含义,其相应的统计计算方法、适用条件、应用目的和取值不尽相同。而且要获得流域的径流系数通常是比较困难的,在一些特殊流域基本上很难获得能满足要求的径流实测资料,尤其在多年平均径流量的计算中实测数据资料往往相当缺乏,在这样的情况下有必要利用一些特殊的方法去满足工程建设对水文数据的需求。本文综合了大量的数据以及列举了多个例子,详细地介绍了不同情况下径流系数的推求方法,并在此基础上研究总结提出了过程中发现的一些问题和心得。 关键词:流域 径流量 降雨量 径流系数 一 引言 流域径流系数是指同一流域面积、同一时段内径流量与降水量的比值,以小数或百分数表示。计算式为:α=R/P ,式中α为径流系数,R 为径流深度,P 为降水深度。α值变化于0~1之间,湿润地区α值大,干旱地区α值小。我国台湾地区河流年平均径流系数>0.7,表明径流十分丰富;径流贫乏的海滦河平原,年平均径流系数仅有0.1。 根据计算时段的不同,可分为瞬时雨量径流系数、雨量径流系数、年径流系数、多年平均径流系数等。径流系数综合反映流域内自然地理要素对降水─径流关系的影响。 瞬时雨量径流系数是指某一特定的流域或汇水面上 ,降雨期间随时间变化的径流厚度和降雨厚度之间的瞬时变化关系 ,是一个动态的变量 ,这个意义上的径流系数就是瞬时雨量径流系数。雨量径流系数是指降雨时 ,在某一汇水面上产生的径流量 (厚度 )和降雨量 (厚度 )的比值 ,一般用于估计一场降雨在某一汇水区域内单位面积产生的平均径流厚度。年径流系数和多年平均径流系数反映了流域降雨厚度和径流厚度长时间的关系 ,是一个累积结果。在各种径流系数中应用较为广泛的是年径流系数和多年平均径流系数。径流系数的计算主要是要计算流域相应时间段内径流量与降雨量。 二 径流量的计算 (一) 年径流量的计算 流域年降雨次数为n 次,且每次降雨所产生的径流量均有实测数据资料,则流域的年径流量可按下式计算。 Q=∑=n 1 i Qi (1) 式中 Q ——流域年径流总量(mm ); Q i ——第i 次降雨产生的径流量(mm )。 (二) 多年平均径流量的计算 1.有长期实测资料的多年平均径流量的计算 所谓的有长期实测资料,是指实际观测的年数n 在20年以上。它包括有丰、平、枯水年的观测资料,由它计算的径流量多年平均值基本上是稳定的。在这种情况下,可以由下式(2)计算径流量的多年平均值,以此值代表多年平均径流量,即:

南方水网区农田氮磷流失 治理技术

(一)技术基本情况 农业面源污染是影响水环境、土壤环境和农村生态环境质量的重要因素之一,由于其涉及范围广、随机性大、隐蔽性强、不以溯源、难以监管等原因,治理的难度很大,已经成为我国现代农业和社会可持续发展的瓶颈。据全国第一次污染源普查数据,农业源排放的总氮、总磷占总排放量的57.2%和67.4%,控制农业源氮磷排放是实现水环 境质量根本改善的核心。然而在农业源氮磷排放中,来自农田的氮磷排放又占很大比例。因此,要实现农业面源污染的有效控制,必须首先控制农田面源污染。 南方水网区农田氮磷流失治理集成技术,即源头减量(reduce),农田氮磷投入源头减量技术;过程拦截(retain),农田径流排放的 过程拦截技术;养分再利用(reuse),养分循环利用技术;末端修复(restore),末端的生态修复技术。 (二)技术示范推广情况 农业农村从2013年起,在三峡库区兴山县、太湖流域宜兴市、 巢湖流域巢湖市、洱海流域洱源县开展农业面源综合防治示范区建设。四个示范区核心示范面积达11585亩,其中巢湖流域示范区核心面积2500亩,洱海流域示范区核心面积2320亩,太湖流域示范区核心面积约1500亩,三峡库区示范区核心面积5265亩。通过源头控制、过程拦截、末端处理等工程的建设,实现了示范区畜禽粪便、农村污水处理利用率90%以上,化学需氧量、总氮和总磷排放量分别减少40%、30%和30%以上,有效改善了当地农业生态环境和人居环境。

为推广上述示范区建设取得的可复制可推广的技术模式,2016 年农业农村部会同国家发展改革委,在太湖、淮河、巢湖、洞庭湖、鄱阳湖、洱海、三峡库区及丹江口库区等典型流域整县推进实施农业面源综合治理试点项目,总结一批成功治理范例和适用模式。每个试点项目的示范区覆盖耕地面积2万亩以上,养殖量不小于2万头猪当量,中央补助资金3000万元,总投资约4000万元。 (三)提质增效情况 1.农田氮磷投入源头减量技术。在保证水稻高产的基础上,减少氮肥投入10-20%,提高氮肥农学效率10-20%,减少氮排放20%以上。 2.农田径流排放的过程拦截技术。在保障农田排水的同时,对排水中的氮磷进行高效去除,氮磷的拦截率在40%以上。 3.养分循环利用技术。径流氮磷平均浓度下降70-80%,并通过氮素回用减少稻田氮肥投入20%。 4.末端的生态修复技术。通过高效吸收氮磷植物群落的合理搭配(经济型、景观型)、生态浮床/岛的组合应用、水位落差的设计以及高效脱氮除磷环境材料与微生物的应用等等,形成了农田面源污染治理的最后一道屏障。同时,水生植物定期收获后进行资源化再利用,生产成有机肥回用农田。 (四)技术获奖情况 南方水网区农田氮磷流失治理集成技术被列入农业农村部2018年十项重大引领性农业技术之一。

地表水源污染现状 【摘要】:随着世界人口城市化进程的加快以及人类生活水平的提高,城市的需水量在逐年增加,排水量在逐年增大,水体污染日趋严重,解决城市的水资源短缺和水质污染问题已是迫 在眉睫。 人类活动和自然过程对地表和地下水水质的污染,依排放方式可分为点污染源和非点污染源。点污染源主要由工矿企业废水和城镇生活污水形成;非点污染源也称面污染源,指在较大范围内,溶解性或固体污染物在降雨径流等作用下,通过地表或地下径流进入受纳水体,造成的污染。本次点污染源调查评价包括工矿企业废污水排放调查、城镇生活污水调查及集约化、规模化养殖污染源调查三部分。非点污染源调查包括农田径流营养成分流失调查、农村生活污水及生活垃圾排放量调查、分散式禽畜养殖污染物排放情况调查、城市径流污染物流失调查、水土流失状况及非点源污染负荷调查等五大类。调查项目主要为化学需氧量、氨氮、总氮和总磷。 [关键词]:污染方式调查方式 (一)点源污染调查 1、工业污染源调查 2000年我国工业废水排放总量为515亿m3,相当于工业用水量的64%左右。其中COD 排放量为1249万t,氨氮为112万t。平均万元产值废水排放量37.4m3;万元工业产值COD 排放量为9.1kg、氨氮为0.8kg。 我国东中西部地区工业化程度不同,工业污染源排放量也不同。东部地区工业废水、COD 和氨氮的排放量分别为253亿m3、681万t、46万t;中部地区则分别为179亿m3、388万t和45万t;西部地区分别是84亿m3、180万t、22万t。 2000年全国一般工业万元GDP排水量为135m3,工业废水排放系数为0.67。废水排放系数呈由北向南、由西向东增加的趋势。南方水资源丰富地区排放系数较高,一般在0.70以上;北方水资源短缺地区排放系数较低,一般在0.60以下 2、城镇生活污染源调查 2000年全国城镇(包括所有具有下水管网的建制市和建制镇)生活污水排放总量为231亿m3,约相当于城镇生活用水量的72%。其中COD排放量为672万t,氨氮为72万t。东部地区城镇生活污水和污染物COD、氨氮的排放量分别为133亿m3、416万t、41万t,中部地区分别为62亿m3、179万t、22万t,西部地区分别是36亿m3、77万t、8万t。2000年全国城镇生活污水排放系数为0.72,人均生活污水排水指标为151L/人日。城镇生活污水排放系数和人均排污指标呈现出由北向南、由西向东增加的趋势。北方地区城镇生活污水排水指标一般在95~130L/人日,南方地区一般在130~260L/人日。

土 壤(Soils), 2009, 41 (6): 857~861 坡耕地氮磷流失及其控制技术研究进展① 吴电明1,2, 夏立忠2*, 俞元春1, 李运东2 (1 南京林业大学,南京 210037; 2 中国科学院南京土壤研究所,南京 210008) 摘 要:坡耕地N、P流失是造成农业面源污染的重要原因。文章综述了国内外有关坡耕地N、P流失的过程特征,降雨、土壤、地形、耕作与管理因素对N、P流失的影响等方面工作的研究进展,探讨了不同控制措施,如覆盖、植物篱、保护性耕作、坡改梯等,控制N、P流失的控制机制、效果和可操作性;并进一步对坡耕地N、P流失的研究与控制方面等今后应加强研究的趋势进行了展望。 关键词: 坡耕地;氮磷流失;控制技术 中图分类号: S157.1 坡耕地土壤养分流失是由于降雨作用于表层土壤,引起表层土壤N、P等养分溶解流失,或径流泥沙含有和吸附的颗粒态养分随径流迁移,进入水体的过程。坡耕地养分流失一方面造成了土壤质量退化、土地生产力下降,另一方面养分进入河流、湖泊等水体,引发了水体富营养化等一系列问题[1]。而施肥量的逐年增加,养分利用率低下,更加剧了农业面源污染[2],并直接威胁到居民饮用水安全。因此,开展坡耕地养分流失研究具有重要的现实意义。 早在1905年,英国科学家Warrington[3]就开始注意到土壤中N素淋失的问题,并在此后几十年中一直没有中断对养分流失的研究。但当时偏重土壤侵蚀方面,养分流失没有得到足够重视。直到19世纪50 ~ 70年代,由于肥料投入的增加造成了湖泊污染,养分流失问题才受到关注。近年来,坡耕地养分流失的研究主要集中于人工模拟降雨探讨不同土地利用方式下养分流失的机理,建立基于3S技术支撑的预测模型,通过农业利用方式的调整和工程及管理技术的改进,控制N、P养分流失[4-5]。本文主要针对坡耕地土壤N、P 流失的特征,主要影响因素的作用机制以及控制技术的研究进展进行系统阐述,为下一步深入研究提供技术思路。 1 坡面径流氮磷流失的形态与过程特征 坡面N、P流失是降雨和径流驱动下,坡面土壤侵蚀及土壤N、P随径流迁移的过程。深入揭示降雨产流、径流侵蚀和养分流失过程特征,剖析关键影响因素的作用机制,是探讨坡面N、P流失控制技术的理论基础。 坡耕地土壤养分流失通过两个途径:一是土壤养分溶解于坡耕地表面的径流,随着径流而损失;二是径流携带的泥沙本身含有或吸附的有机无机养分。通过前者损失的养分称为溶解态,后者为颗粒态。黄土高原与长江中上游紫色土坡耕地的试验表明,坡面径流养分流失以颗粒态为主[5-6]。从损失养分在不同粒径分布结构体来看,泥沙中<0.02 mm的微团聚体和<0.002 mm的黏粒是养分流失的主要载体[7]。而径流携带的泥沙对P有富集作用,且不同粒径团聚体对P的富集作用和富集系数也不同[4]。 径流产生不同阶段养分流失有规律性变化。在不同的产流阶段中,以初始阶段N、P流失严重,径流中养分输出浓度最高[8];并且土壤养分流失随时间的变化与泥沙流失的趋势一致,泥沙中速效养分的含量在降雨前期较高,而后逐渐减少,最后平稳。在年际变化中,以每年第一次产流浓度最大。 可见,人们已经认识到坡面径流养分流失的形态、载体分布与流失规律,但对于影响坡面径流养分流失过程的关键因素,尤其是可以人为调控影响要素的作用机理,缺乏深入的研究,不利于坡耕地农业面源污染的有效控制。 ①基金项目:国家自然科学基金项目(30870410)、中国科学院西部行动计划项目(KZCX2-XB2-07-02)和国家林业公益性行业科研专项(200804040)资助。 * 通讯作者 (lzxia@https://www.360docs.net/doc/e518148837.html,) 作者简介:吴电明 (1985—) , 男, 山东菏泽人, 硕士研究生, 主要从事土壤与农业生态研究。Email: dmwu@https://www.360docs.net/doc/e518148837.html,

第36卷第8期2015年8月 环境科学ENVIRONMENTAL SCIENCE Vol.36,No.8Aug.,2015 重庆市典型城镇区地表径流污染特征 王龙涛1,2,段丙政1,2,赵建伟1,2*,华玉妹1,2,朱端卫 1,2 (1.华中农业大学资源与环境学院生态与环境工程研究室,武汉430070;2.农业部长江中下游耕地保育重点实验室, 武汉430070) 摘要:以重庆大渡口区建胜镇为典型区域,选取水泥瓦屋顶、石棉瓦屋顶、水泥平屋顶、居民区水泥路面、餐饮沥青路面、油库沥青路面等不透水下垫面和附近一条合流制溢流渠为采样点,研究了城镇地表径流中营养性污染物和重金属排放特征.结果表明,路面径流中TSS 、COD 、TN 、TP 平均质量浓度为(1681.2?677.2)、(1154.7?415.5)、(12.07?2.72)、(3.32?1.15)mg ·L -1,普遍高于屋面径流污染物平均质量浓度:(13.3?6.5)、(100.4?24.8)、(3.58?0.70)、(0.10?0.02)mg ·L -1.不透水地表径流中,TDN 、TDP 分别占TN 、TP 的62.60%?34.38%、42.22%?33.94%.与中心城区相比,本城镇地表径流污染物质量浓度一般较高.合流制溢流中, TSS 、COD 、TDN 、TN 、TDP 、TP 为(281.57?308.38)、(231.21?42.95)、(8.16?2.78)、(10.60?3.94)、(0.38?0.23)、(1.51?0.75)mg ·L -1,重金属质量浓度均未超过地表水环境质量Ⅴ类标准.合流制溢流中大部分污染物存在初期冲刷效应,而TSS 的初期冲刷效应较弱.合流制溢流中, COD 、TP 与TSS 都具有显著正相关关系,NH +4-N 和TP 、TDP 、TN 、TDP 之间呈显著正相关关系,而NO - 3- N 和其它指标都呈负相关关系.关键词:城镇地表径流;营养性污染物;重金属;合流制溢流;初期冲刷 中图分类号:X522 文献标识码:A 文章编号:0250-3301(2015)08-2809-08 DOI :10.13227/j.hjkx.2015.08.011 收稿日期:2015-01-26;修订日期:2015-03-24 基金项目:国家自然科学基金项目(41371452, 40901264);国家水体污染控制与治理科技重大专项(2012ZX07307-002) 作者简介:王龙涛(1989 ),男,硕士研究生, 主要研究方向为城市面源污染与控制, E-mail :wanglongtaoxyz@qq.com *通讯联系人,E-mail :jwzhao2@163.com Pollution Characteristics of Surface Runoff of Typical Town in Chongqing City WANG Long-tao 1,2,DUAN Bing-zheng 1,2,ZHAO Jian-wei 1,2*,HUA Yu-mei 1,2,ZHU Duan-wei 1, 2 (1.Laboratory of Eco-Environmental Engineering Research ,College of Resources and Environment ,Huazhong Agricultural University ,Wuhan 430070,China ;2.Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River ),Ministry of Agriculture ,Wuhan 430070,China ) Abstract :Six kinds of impermeable underlying surface ,cement tile roof ,asbestos roof ,cement flat roof ,residential concrete pavement ,asphalt pavement of restaurants ,asphalt pavement of oil depot ,and a combined sewer overflow canal in the Jiansheng town of Dadukou district in Chongqing city were chosen as sample plots to study the characteristics of nutritional pollutants and heavy metals in town runoff.The research showed that the average mass concentrations of TSS ,COD ,TN ,TP in road runoff were (1681.2?677.2), (1154.7?415.5),(12.07?2.72),(3.32?1.15)mg ·L -1 ,respectively.These pollutants were higher than those in roof runoff which were (13.3?6.5),(100.4?24.8),(3.58?0.70),(0.10?0.02)mg ·L -1,respectively.TDN accounted for 62.60%?34.38%of TN ,and TDP accounted for 42.22%?33.94%of TP in the runoff of impermeable underlying surface.Compared with the central urban runoff ,town runoff in our study had higher mass concentrations of these pollutants.The mass concentrations of TSS , COD ,TDN ,TN ,TDP and TP in the combined sewer overflow were (281.57?308.38), (231.21?42.95),(8.16?2.78),(10.60?3.94),(0.38?0.23)and (1.51?0.75)mg ·L -1 ,respectively.The average levels of heavy metals in this kind of runoff did not exceed the class Ⅵlevel of the surface water environmental quality standard.Most pollutants in the combined sewer overflow had first flush.However ,this phenomenon was very rare for TSS.There was a significant positive correlation between TSS and COD ,TP in the combined sewer overflow.And this correlation was significant between NH +4-N and TP ,TDP ,TN ,TDP.However ,a negative correlation existed between NO - 3-N and all other indicators.Key words :town runoff ;nutritional pollution ;heavy metal ;combined sewer overflow ;first flush 随着城市化日益加快, 不透水下垫面的面积迅速增长,直接增加了城市面源污染的输出负荷.城市 化与洪峰形成时间具有线性关系[1],增大了洪峰风 险.城市地表径流含有大量的TSS 和大肠杆菌[2] 、 可溶盐[3]、营养物[4]、重金属[5] 等污染物,大量研 究表明这些物质降雨时被冲刷进入水体,造成严 重的水体污染 [6,7] .但这些研究成果大多在中心城区展开,城镇地表径流的研究还较为缺乏.国内外 一些学者已开展了一些城镇街尘污染研究,街尘 中重金属的累积分布 [8] 、粒径效应[9]、重金属污 染特性[10] 等研究都取得了一定成果,这为城镇地表径流研究提供了良好基础.目前我国中心城区 是3.6万km 2,县城的建成镇达1.65万km 2[11] ,城

龙源期刊网 https://www.360docs.net/doc/e518148837.html, 不同植物措施对南方红壤丘陵坡地地表径流系数和产沙量的影响 作者:陈海生 来源:《安徽农学通报》2018年第22期 摘要:采用野外径流小区实验,以自然裸露坡地为对照,利用2016年安吉县山湖塘综合观测场的降雨和土壤侵蚀过程数据,研究不同植物措施对降雨条件下红壤坡面产沙量和地表径流系数的影响。结果表明,在各种植物措施中,竹子保留地被小区的水土保持效果最好、最稳定,其次是竹子全面抚育小区,最差的是落叶经济林全面抚育小区。 关键词:植物措施;红壤丘陵坡地;径流系数;产沙量 中图分类号 S157 文献标识码 A 文章编号 1007-7731(2018)22-0071-02 坡面产流是指坡面上降雨和下垫面综合作用产生径流的过程。南方丘陵区红壤坡地降雨强度较大,土壤抗侵蚀不足,再加上人类过度开发造成的植被破坏,水土流失现象日益严重。丘陵坡地中植物具有蓄水保土、截留降水、减少地表径流、拦截泥沙等方面的作用。许多研究表明,植物措施能较好地调控南方红壤区坡面地表径流和土壤侵蚀。例如,梁娟珠在福建省长汀县的研究[1]认为,不同植被措施下坡面产流产沙分异规律明显,相对于裸地,盖度高的乔灌草、灌草、草本等措施的水土流失量最小,水土保持效果最为明显;黄鹏飞等在江西的研究[2]认为,不同植物措施对坡面年总径流深的消减效果,其中以柑橘加百喜草全园覆盖措施最好,其次为柑橘加百喜草带措施,柑橘纯林最差。本研究以安吉县山湖塘综合观测场标准径流小区为单元,研究在天然降雨条件下不同植物措施对南方丘陵区红壤坡地的水土保持效应,为该区域采取合适的植物措施用于控制土壤侵蚀提供依据。 1 材料与方法 1.1 自然概况安吉县山湖塘综合观测场属于太湖流域,地理坐标为东经119°34′00″,北纬30°37′00″。观测场建立在安吉水土保持科技示范园区内,位于递铺镇净土社区,距中心城区 8km。观测场所在的水保园区地貌类型属低山丘陵,土壤以红壤为主,土层浅薄,较易风化,从而导致水土流失严重。该区域总土地面积57.88hm2,土地利用状况为:有林地、疏林地和 荒坡35.88hm2,坡耕地20hm2,水面2hm2。原有水土流失面积31hm2,占总土地面积的 53.6%。 1.2 径流小区布设与监测内容安吉县山湖塘综合观测场,共设标准径流小区9个,尺寸均为20m×5m(长×宽),面积100m2,坡度20°。每个径流小区下均设3级集流池,每个集流池尺寸为1m×1m×0.9m(长×宽×高),每级之间设置5个分流孔,4个分流孔分流到池外,1个分流孔分流道下一级,集流池均没有遮盖。观测场各径流小区中,1号小区为梯地种植农作

一、中国地表径流基本概况 1. 径流按流动方式可分地表径流和地下径流 地表水亦称陆地水,包括河流、冰川、湖泊和沼泽4种水体。中国大小河流总长度约42万公里,流域面积在100平方公里以上的河流约5万多条,河川径流总量27115亿立方米。20世纪80年代中国冰川总面积5.65万平方公里,总储水量约为29640亿立方米,年融水量约达504.6亿立方米。这些冰川分布在许多江河源头,冰川融水为河流的重要补给来源,对西北干旱区河流水量补给影响尤大。中国湖泊面积在1平方公里以上的有2800余个(不包括时令湖),总面积约8万平方公里。其中面积在1000平方公里以上的有11个。中国湖泊分布很不均匀,以青藏高原和长江中下游平原最为集中,形成中国两大稠密湖区。此外,近40年来,兴建了许多人工湖泊,各种类型的水库达8.6万多座。中国沼泽分布很广,仅泥炭沼泽和潜育沼泽两类面积即达11万余平方公里,三江平原和若尔盖高原(见若尔盖沼泽)是中国沼泽最集中的两个区域。以下仅就地表水中的河流情况进行阐述。 2.河流流域和水系 中国河流一部分为注入海洋的外流流域;另一部分为流入封闭的湖沼或消失于沙漠,不与海洋沟通的内流流域。划分中国内外流域的主要分水界为北起大兴安岭西麓,经内蒙古高原南缘、阴山、贺兰山、祁连山、日月山、巴颜喀拉山、念青唐古拉山和冈底斯山,向西直抵国界。这一分界线大致与400毫米年降水量等值线或50毫米年径流深度等值线相当。此线以东,除小面积的内陆区外,全属外流流域。此线以西地区中,除额尔齐斯河外,全属内流流域。 在中国外流流域中,太平洋流域面积约占全国总面积的56.7%。分布于青藏高原东部及其以东的广大地区。中国主要的大河,如黑龙江、海河、黄河、淮河、长江、珠江等

水土流失实验 一、活动原理:自然地理环境的整体性原理 二、活动方案设计: 1.活动材料: 两个浅底圆盘、若干土壤、适量草皮、适量水 2.活动步骤: (1)将土壤分成两份,分别置于A,B两个圆盘中央,堆成形状大体相近的两个圆锥体。 (2)在A盘的土堆上覆盖一层草皮。 (3)分别将一杯清水在距土堆顶部约20厘米的高度慢慢淋至两盘内。 (4)比较A,B两盘土堆边缘泥土的多少。 三、活动结果:A盘土堆边缘泥土较少,B盘土堆边缘有较多泥土。 四、结果分析: 植物对降水有较大的节留作用,良好的植被能迟滞雨水从地表中流出的时间,控制地表经流,减少对地表的冲刷作用。 导致水土流失的原因有自然原因和人为原因。 ⑴自然因素。主要有地形、降雨、土壤(地面物质组成)、植被四个方面。 ①地形。地面坡度越陡,地表径流的流速越快,对土壤的冲刷侵蚀力就越强。坡面越长,汇集地表径流量越多,冲刷力也越强。 ②降雨。产生水土流失的降雨,一般是强度较大的暴雨,降雨强度超过土壤入渗强度才会产生地表(超渗)径流,造成对地表的冲刷侵蚀。 ③地面物质组成。 ④植被。达到一定郁闭度的林草植被有保护土壤不被侵蚀的作用。郁闭度越高,保持水土的越强。 ⑵人为因素。。 人为原因主要指地表土壤加速破坏和移动的不合理的生产建设活动,以及其他人为活动,如战乱。 引发水土流失的生产建设活动主要有陡坡开荒、不合理的林木采伐、草原过度放牧、开矿、修路、采石等。人类对土地不合理的利用、破坏了地面植被和稳定的地形,以致造成严重的水土流失。 在我国,人口多,粮食、民用燃料需求等压力大,在生产力水平不高的情况下,对土地实行掠夺性开垦,片面强调粮食产量,忽视因地制宜的农林牧综合发展,把只适合林,牧业利用的土地也辟为农田。大量开垦陡坡,以至陡坡越开越贫,越贫越垦,生态系统恶性循环;滥砍滥伐森林,甚至乱挖树根、草坪,树木锐减,使地表裸露,这些都加重了水土流失。另外,某些基本建设不符合水土保持要求,例如,不合理修筑公路、建厂、挖煤、采石等,破坏了植被,使边坡稳定性降低,引起滑坡、塌方、泥石流等更严重的地质灾害。 我国是个多山国家,山地面积占国土面积的2/3;我国又是世界上黄土分布最广的国家。山地丘陵和黄土地区地形起伏。黄土或松散的风化壳在缺乏植被保护情况下极易发生侵蚀。我国大部分地区属于季风气候,降水量集中,雨季降水量常达年降水量的60%~80%,且多暴雨。易于发生水土流失的地质地貌条件和气候条件是造成我国发生水土流失的主要原因。由于我国对自然资源使用不合理,我国多地区出现水土流失,如黄土高原、南方低山丘陵、河西走廊、宁蒙河套平原等。 就黄土高原而言,黄土高原地表支离破碎,千沟万壑,有70%是坡地,植被覆盖极差,

(2)地表径流污染物 本产业转移园规划区内已开发的区域为华鸿铜业,面积为20公顷,未开发面积为 407.57公顷。 根据历史气象资料统计,园区所在区域多年平均降雨量为22l6mm,径流系数按《环境影响评价技术导则—地表水环境》(HJ/T 2.3-93)中表15的推荐值,硬化地面(道路路面、人工建筑物屋项等)的径流系数可取值 0.80,其它绿化地面(草地、植被地表等)的径流系数可取 0.18。地表径流量估算公式如下:Qm103C Q A(3-1)式中:Qm——降雨产生的路面水量,m3 /a; C——集水区径流系数; Q——集水区多年平均降雨量,mm; A——集水区地表面积,m2。 通过地表径流量估算公式计算,可得目前园区地表年径流量,见表3-18。 表3-18不同类型区域地表径流量 地表类型 已建成区 未建成区 合计地面面积(ha) 20.0

407.57 427.57径流系数 0.80 0.18 ——地表径流量(万m3/a) 35.46 160.44 195.90对于地表径流中水污染物浓度参数选取,可类比《面污染源管理与控制手册》(科学普及出版社广州分社),具体取值见表3-19。一般来说,面源污水大部分的污染物出现在降雨前15分钟初期的雨水中,假定降雨集中在一年中的150天,每天连续6小时的降雨,6小时降雨的前15分钟为初期降雨,计算得出一年中的初期降雨总径流量为 8.16万m3 /a。 表3-19不同类型区域地表径流中水污染物浓度参数单位: mg/L污染源 农田径流 xx径流BOD57 30COD 80 20~600总氮93~10总磷 0.02~

0.6对于园区已建成区水中污染物的浓度可参考城市暴雨水,未开发区域可参考农业耕地雨水径流中水污染物的浓度,结合表3-19,计算本工业园区地表径流量,见表3-20。 表3-20工业园现状地表径流中主要水污染物排放负荷单位: t/a地表类型 已建成区 未开发区 合计初期雨水径流量 (万m3/a) 1.48 6.69 8.16BOD5 0.44 0.47 0.91COD 4.58 5.35 9.93总氮 0.10 0.60 0.70总磷

相关文档
最新文档