可变配气技术

可变配气技术
可变配气技术

可变配气技术详解(1)

说到可变配气相位,可变气门行程这类名字大家可能会有点陌生,但如果说到本田的VTEC,丰田的VVTi,还有保时捷的Variocam等这些名字可能就很熟悉了。其实这些只是车厂给他们的可变配气技术的不同命名而已,在技术上都是共通的,而这些英文缩写翻译成中文以后就是上面所说的可变配气相位和可变气门行程技术。要想了解可变配气技术,那首先得了解汽车配气机构的工作原理和特性了。

目前主流车型的配气机构都是用的每缸4气阀(两进两排)设计。(如图)

这种设计最大的好处就是能获得较大的进气支管截面积,从而得到较大的进气流量提高发动机工作效率。传统的多气门发动机的气门行程是不可变的,这就是说他只有一个固定的行程。让我们想想,在设计气门行程参数时会有一个什么样的问题呢?如果气门行程设置得较大,那么在发动机高转速时混合气的进气效率肯定是很高的,因为发动机在高转速时空气流速很快,这就需要较大的气门开口才能让混合气尽可能的充满汽缸,但在低转速范围,效果却截然相反,因为发动机在低转速范围时,进气管内的空气流速很慢,这就需要活塞向下行程时

能产生足够的负压才能尽可能的把混合气体吸入到汽缸。

那么怎么样得到较大的负压呢?我们不妨做个实验。我们可以找一根喝饮料用的塑料软管,当把塑料软管的一头放在空气中另一头放在口中用较慢的速度吸气时可以感到塑料软管内很通畅,但能吸到口中的空气很少;如果用手指稍微堵住吸管的一头再用较慢的速度吸气时,可以明显感觉到吸管内真空度变大,且能吸入口中的空气较多了。发动机的吸气原理也是一样的,所以在低转速时如果气门的开度较大,就会因为进气管内的真空度不够而吸气效率下降。所以汽车设计师在选择气门开度时既不能太大,也不能太小。如果开度大那么虽然高转速时功率能提高,但低转速时由于进气量太小,会让发动机的扭力下降,工作不稳定,严重时甚至熄火。反之如果选择较小的气门开度,那么低转速时的扭力虽然提高了,但高转速时的功率却发挥不出来。这就产生了一对矛盾。所以设计师只能选择一个折中的气门行程来尽可能的兼顾到高低转速的动力发挥。在这种情况,如果能设计一种机构可以随转速的高低来自动调节气门的行程不就可以让发动机既能在低转速时扭力充沛,又能在高转速时发挥出更大的功率了。所以可变气门行程机构就诞生了。其功能就是随发动机转速而改变气门的行程。当发动机低转速时使用短行程,高转速时使用长行程,这样就能很好的解决上面所说的配气

矛盾了。功能都是这样,但不同的厂家在设计时由于控制方式的不同那么在性能的发挥上也就有高低之分了。总的来说可以分为两类:一类是两段可变行程,一类是无级可变行程。前者的代表车型是保时捷和本田,后者的代表就是宝马了。我们先来看看宝时捷的设计(如图):

图中每个进气门分别有两组凸轮控制,一组是高速凸轮,一组是低速凸轮。红色圆框内就是可变气门行程的控制机构。当发动机在低转速范围时,红色的控制活塞是落在气门座内的。这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。当发动机在高转速范围时,红色的控制活塞在液压的驱动下从气门座推入到气门顶中,等于是把气门座和气门刚性的连接在一起,当高速凸轮驱动气门座时就能带动气门向下行程获得较大的气门开度。但这种设计只能在一定程度上获得更好的进气,因为他只有两段调节气门开度,本田的VTEC也是相同的功能,只是控制方式不同罢了。所以当驾驶车辆加速时,发动机由高转速向低转速过度到改变气门行程的临界值时,驾驶者会感觉到动力瞬间提升,比较唐突,会影响乘坐的舒适感。要解决这

个问题,就必须让气门行程能够在一定范围内无段级调节。宝马就解决了这个问题(如图)是宝马的可变气门行程控制机构:

宝马的控制机构是由电机驱动的,电机通过蜗杆传动齿轮,然后由齿轮上的凸轮带动摇臂运动来改变摇臂的控制角,然后在凸轮轴的驱动下由摇臂带动气门运动。所以通过改变摇臂的角度就可以改变气门的行程了。由于是通过电机控制的,所以可以在一定区域内做无段级调节气门开度,这样驾驶起来就会毫无唐突感,舒适性更强,配气机构在各转速下的适应性也更强,能最大限度的提高发动机充气效率。目前宝马已经把这套系统装备到了他的主流发动机机上,象以宝马745i,530i,330i为代表的直列6缸发动机和V型8缸发动机都装备了该系统。

可变配气技术详解(2)

既然通过改变气门行程这个办法可以改善发动机在高转速和低转速时的动力表现,那么改变其他的配气参数能不能同样达到兼顾高低转速是动力输出的目的呢?让我们来看看在配气机构中还有哪些参数是随转速影响的吧。

四行程发动机的四个行程(进气,压缩,做功,排气)想必大家一定都了解吧。而这种四个行程的描述方法是对于活塞汽缸而言的,那么在与此同时,配气机构又是如何工作的呢?当发动机处于进气行程是,进气门打开排气门关闭;压缩冲程时进气门和排气门都关闭,做功冲程是进气门和排气门也是同时关闭以保证汽缸内能产生足够的压力,排气行程时进气门关闭排气门打开。从理论上来说这些动作都是严格按照四个冲程的顺序循环进行的,那么理所当然人们会想到,当汽缸活塞做功完成以后,活塞到达下止点时排气门打开,活塞从下止点运动到上止点这个行程用来排出汽缸内的废气,当排气完成活塞达到上止点时排气门关闭进气门打开开始进气形成,然后活塞继续运动到下止点时进气门关闭完成进气,准备压缩。

但事实上并不完全是这样的。由于混合气体本身的质量,使它也存在一定的惯性。当活塞运动到排气终了的上止点时,理应在这个时候打开进气门,通过马上到来的活塞进气行程产生的负压来吸气,由于混合气存在一定惯性,如果此时才打开进气门那么还需要一个时间给进气支管中的混合气加速,在这个时间内,混合气是不能进入到汽缸中的,所以这就浪费了一段活塞的行程,如果在排气终了活塞到达上止点之前进气门就打开了,那么就争取了混合气因为加速而浪费掉的时间,可以充分利用进气冲程时活塞向下运动的

全部行程吸气,这样效率更高;同样的道理当活塞到达进气冲程下止点时理论上应该要关闭进气门了,但由于混合气体的惯性,此时仍然能够进气,也就是说混合气体仍然在进入汽缸,这个过程虽然只有一瞬间,但是不容忽视,如果在活塞刚好达到下止点的时候关闭了进气门,那么势必会有一部分混合气体进入不到汽缸中,造成功率下降,发动机工作效率减低,所以此时进气门必须延时关闭才能保证混合气体尽可能的进入到汽缸中来。排气冲程也是一样的道理。所以必须在设计凸轮轴转角时考虑到这一点,给它设计一个进排气提前和延时的角度,这个角度统称为配气相位角,也叫配气正时角。有人肯定会有疑问,如果像这样进排气门都设置提前和延时角的话,那势必会让进气门和排气门有一个同时开启的瞬间?那么在压缩和做功的时候不会漏气吗?其实在气体质量惯性的作用下压缩和做功也是有一定迟滞的,只要配气相位角时间配合得好,就不会影响到压缩和做功。(如下图)是传统发动机配气相位角的设置方法。

了解了配气相位角的设置方法以后,我门就不难理解为什么需要可变配气相位了。就像前文所说的可变气门行程一样,发动机在不同的工况下吸气特征是不一样的,发动机在低转速时,进气速度慢,所以气门重叠角可以相对大一些,言下之意就是让气门提前打开和延时关闭的时间更长一些,这样才能充分进气;在高转速情况下,由于混合气流速很快,那么气门重叠角就应变小,让气门提前开启和延时关闭的时间减短,这样才不会造成进排气干涉。发动机才能在保证不发生进排气干涉的情况下,让其在各个工况都能得到充分的进气,从而提高了发动机的工作效率,也让发动机在低转时能有充分的扭力输出,高转速时能有更强大的功率输出,让发动机扭力输出得更平稳,特性曲线更线性。

那么发动机是怎么做到随着转速的变化而改变配气正时的呢?我们不妨先看看下图。图为保时捷可变配气正时的控制系统:

红色圆圈内的就是用来改变配气正时的控制机构了。实际上它是在凸轮轴的末端装上了一个带有液压控制机构的壳体,而正时链条是直接驱动该壳体的,壳体与凸轮轴之间充满了液压油,壳体就是通过液压油驱动凸轮轴运动的。(如图):

图为雷诺的可变配气正时控制机构。在凸轮轴与正时齿轮之间有两个液压室。一个为高压油区一个为低压油区。因此,只要调节两个油区之间的压力差,就能改变配气正时角了。而两个油区的油压是通过上图所标示的油压控制阀调节的。油压调节阀实质上就是一个电磁阀,通过电脑传输过来的脉冲电流来控制阀门的通断。当高压油路(图中红色的通道)接通时,整个油室处于加压状态,根据图中红色箭头的方向很容易判断,此时配气正时被推迟,重叠角增大,适用于低转速;当电磁阀控制黄色区域压力高于红色区域压

力时,凸轮轴会如图中黄色箭头所示,提前一个角度,这样重叠角减小,适用于高转速。下图能更直观的表现这一工作过程:

注:“图中蓝色部分是凸轮轴末端,白色部分是正时齿轮”。对于可变配气正时控制,虽然各大车厂的名字叫法各不相同,但其功能作用和控制方法多为大同小异,所以了解了这些控制方式和性能特征,对于车型的选择也可以重新定位。我国汽车工业起步较晚,所以技术比较落后。由于这种技术结构复杂,成本相对比传统技术要高一些,所以国内车厂大多没有使用这些技术,他们的配器机构都是传统设计。但也有少数厂家,引进了这些先进的发动机控制技术,比如现在广州本田雅格 2.4,新奥德塞 2.4,还有东风本田CR-V上使用的I-VTEC发动机都使用了这些技术。在家用经济型车中,广本飞度的1.5VTEC发动机是唯一使用了可变配气技术的车型。

可变配气技术详解(3)

除了配气会影响发动机吸气效率外,还有一个不容忽视的影响进气的因素就是进气管。不论是纯空气还是空气和汽油的混合物,都可以看成是有一定质量的流体,而流体是在进气管中流过的,根据流体力学和震动学的原理来优化进气管的设计对于提高发动机的吸气效率是非常重要的。具体方法有:把进气歧管内壁加工得非常光滑来减小气阻,也可以设计特殊的进气道形状让流体阻力得到优化,还可以减小空气滤清器的吸气阻力等等。这些都是传统对进气管的优化方法,现在大部分车都是这样做的。这里我们来介绍一种技术含量更高的进气道优化方法——可变进气管长度技术。

首先让我门来看看进气歧管的长度对汽车的进气有哪些影响吧。大家都知道,4行程发动机是曲轴每旋转两圈为一个周期,而这个周期的1/4的时间是用来进气的,也就是说在一个周期内1/4的时间进气门打开,剩下的3/4的时间进气门是关闭的。这就造成进气管内的空气存在一定的进气频率。所以我们不妨把它假设成震动来进行分析。根据震动学的原理,当震动物体的震动周期和频率与他的固有周期和固有频率频率相同时,震动能量最大,震动波叠加,这就是人们常说的共振。对于震动的物体而言共振的能量是最大的。那么如果把进气看成是震动,那么当发动机的吸气频率与进气管中空气的固有频率相同时,进气能量最大。但发动机的吸气频率是随发动机转速的变化而变化的。当发动机转速高时,吸气频率也高;当发动机转速降低时,吸气频率就随之降低了。那怎么样才能让进气管内的空气的固有频率能与发动机的吸气频率保持一致呢?最可行的办法就是改变进气管的长度。当发动机处于低转速时使用长进气管,因为进气管越长,空气在管内的震动频率越低,只要长度与转速相匹配就能得到最大的进气能量;反过来说,当发动机处于高转速时,由于吸气频率高,所以就要换上较短的进气管来提高空气在进气管内的固有频率,得到最大的进气能量。所以就需要设计一套可以让进气管长度变化的系统来达到这一目的,那么可变进气管长度技术就诞生了。如下图就是可变进气管长度的控制机构:

当发动机在2000转左右时电脑控制进气管长度控制阀关闭,让空气先流经螺旋形状的长进气管后再进入汽缸,此时为长进气管状态。

当发动机转速上升到5000转时,进气管长度控制阀打开,让空气不经螺旋管道而直接进入到汽缸,此

时为短进气管状态。(如下图)

图为奔驰SLK发动机的进气管设计。该设计就是用的控制阀来控制进气管的长度,目前多数车厂喜欢采用这种机构控制。

但也有使用其他控制方式的(如下图):

图为宝马新7系的发动机进气管设计,从图中可以看出,他不是采用控制阀来切换进气管的长度,而是在进气管中间设计了一个可以旋转的转子,当这个转子旋转一定角度后进气管的长度就发生了改变,同样达到了优化进气的目的。有了这套系统,发动机就能在高低转速时都能保持良好的进气效率,进气效率提高了发动机的整个工作效率也就提高了。随之而来的就是节能,环保以及动力输出线性,扭力分布均匀等优点了。

可变配气技术详解(4)

前文已经介绍了可变气门行程,可变配气正时,可变进气管长度技术,这篇文章介绍配气和进气系统中最后一个需要可变参数的技术:可变进气歧管截面积技术。

别听这名字这么长这么绕口,其实道理很简单。就同上文介绍的可变气门行程的道理一样,发动机在低转速时为了能够增强汽缸内的负压,而使用短行程的进气门设置。可变进气歧管截面积技术也是为了发动机低转速时提高缸内负压而设计的可变机构。

根据流体力学的原理,在其他参数不变的情况下,管道的截面积越大流体压力越小;管道截面积越小流体压力越大。这就象高压水枪的管口一样。高压水枪的出水口直径要比高压水管的直径小很多倍,所以水流的压力也上升了很多倍,这样才能把水推到很远的距离。根据这一原理,再分析发动机各个工况的工作特性,就需要我们设计一套机构能在发动机高转速时使用较大的进气歧管截面积提高进气流量;在发动机低转速时使用较小的进气歧管截面积,提高汽缸的进气负压,也能在汽缸内充分形成涡流,让空气跟汽油更好的混合。下图是不同进气歧管截面积下发动机进气情况的模拟:

图中所视的是发动机在低转速时,使用不同进气歧管截面积情况下的进气情况模拟。图(1)表示的是进气歧管截面积较大时汽缸的吸气状况和气门关闭后缸内气体混合情况。图(2)表示的是进气歧管截面积较小时汽缸的吸气状况和气门关闭后缸内气体的混合情况。从图中很容易看出,图(2)的吸气效率更高,吸入缸内的混合气更多,而且缸内更容易形成涡流,气门关闭后空气与汽油的混合更加充分。有了这些可靠的实验数据,在配气机构中设计一套可以随发动机转速变化的可变进气歧管截面积的机构就显得由为必要了。

现在大多数发动机都采用了多气门设计,主流发动机使用的每缸4气门设计(两进两排),也有极少数厂家使用每缸5气门设计(三进两排)。我们就以主流的4气门为例。由于有两个进气门,那就意味着有两跟进气歧管。所以要改变进气歧管的截面积实现起来就比较容易了。我们只需要在其中一个进气歧管中装入一个可随电脑控制开闭的气阀,就能控制该歧管的使用状况了。当发动机处于高转速时,改气阀打开,这时两根进气歧管同时进气,获得大流量的混合气体;当发动机处于低转速时,该气阀关闭,理论上可以看成是使用一根进气歧管进气。这样进气歧管的截面积就减小了一倍。能获得更好的进气负压和混合气涡流,发动机的工作效率在高转速和低转速时都得到了提高。如下图就是进气歧管截面积的控制方法

宗上所述,现代发动机与传统发动机相比。主要技术区别就是在自动控制方面的大力提高。随着电子行业的飞速发展,嵌入式技术有了很大的提高。在可靠性,响应速度,数据处理方面,都能达到汽车各个工况的要求。在自动控制技术的帮助下,传统发动机的很多不可变参数,如今已经可以在计算机的控制下随行车状况的改变而改变。以往设计师们需要左右兼顾的设计矛盾,如今已经在计算机的帮助下实现各个工况的最佳配合。上世纪的汽车技术,是建立在大排量,多缸,多气门上的。可以遇见,未来的汽车发展方向应该是机构控制的自动化和操作的智能化。

可变气门(连续)正时系统的原理

连续可变气门正时系统的原理 现代引擎多采用DOHC的缸盖设计,两根凸轮轴被设置在引擎顶部,通过齿形带轮或链条从曲轴端取力,并以2:1的速度驱动凸轮轴,此时凸轮轴商凸轮的旋转推动气门进行上下往复运动,从而控制气门的开启和闭合。而我们今天要关注的,其实就是气门开合的问题。 什么是“可变气门行程”? 活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,我们关注的是气门开启程度对引擎进气的问题。气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。往往,工程师们既要兼顾引擎在低速区的扭矩特性,又想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺 扭矩... 所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们要说的“可变气门正时技术”。该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极 大的突破。 80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。一系列可变气门技术虽然商品名各异,但其 设计思想却极为相似。 可变气门正时技术之一:保时捷Variocam 保时捷911跑车引擎采用的可变气门正时技术Variocam. 当引擎在低转速工况时,气门座顶端的黄色的控制活塞落在气门座内。这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。反之当发动机在高转速工况时,控制活塞在液压的驱动下从气门座推入到气门顶中,把气门座和气门刚性的连接,高速凸轮驱动气门座时就能带动气 门向下行程获得较大的气门开度。 可变气门正时技术之二:本田VTEC 凸轮轴上依然布置有高速凸轮与低速凸轮,但由于本田引擎的气门由摇臂驱动,所以不能像保时捷一样紧凑。控制高低速凸轮切换的是一组结构复杂的摇臂,通过传感器测出引擎转速,传送到ECU进行控制,并由ECU发出指令控制摇臂。简单地说,就是这套摇臂能够根据转速不同自动选取1进1排的2气门工作或者2进2排的4气门工作,从而让发动机在 高低速工况下都能顺畅自如。 通常,转速低于3500rpm时,各有一支进气、排气凸轮工作,此时发动机近似为一台2气门发动机,这样的好处是,能够增加负压,利于进气;转速超过3500rpm时,液压系伺服系统接到发动机中央控制器ECU指令,对摇臂内机油加压,压力机油推动定时柱塞移动,

可变配气相位

VVTI-概况 VVTI VVT-i是Variable Valve Timing-intelligent的缩写,它代表的含义就是智能正时可变气门控制系统。这一装置提高了进气效率,实现了低、中转速范围内扭矩的充分输出,保证了各个工况下都能得到足够的动力表现。另一个先进之处在于全铝合金缸体带来的轻量化,不仅减小了质量,也降低了发动机的噪声。可变配气正时可变配气正时控制机构的主要目的是在维持发动机怠速性能情况下,改善全负荷性能。这种机构是保持进气门开启持续角不变,改变进气门开闭时刻来增加充气量。(1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。1)结构VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,凸轮轴正时控制阀处于最延迟的位置,如下图(b)所示。2)工作原理根据发动机ECU的指令,当凸轮轴正时控制阀位于图(a)所示时,机油压力施加在活塞的左侧,使得活塞向右移动。由于活塞上的旋转花键的作用,进气凸轮轴相对于凸轮轴正时带轮提前某一角度。当凸轮轴正时控制阀位于图(b)位置时,活塞向左移动,并向延迟的方向旋转。进而,凸轮轴正时控制阀关闭油道,保持活塞两侧的压力平衡,从而保持配气相位,由此得到理想的配气正时。提高充气效率是提高发动机动力性能的重要措施。除了增压以外,合理选择配气相位且能随发动机转速不同而变化,以及利用进气的惯性及谐振效应是提高充气效率的重要途径。进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,方能获得良好的进气惯性效应。并且,只有采用可变配气相位,可变进气系统才能适应不同发动机转速下的要求,才能较全面地提高发动机性能。可变进气系及配气相位改善发动机的性能,主要体现在以下几方面:①能兼顾高速及低速不同工况,提高发动机的

发动机可变配气机构的研究进展

发动机可变配气机构的研究进展 0 引言 由于环境保护和人类可持续发展的要求,低能耗和低污染已成为汽车发动机的发展目标。要求发动机既要保证良好的动力性又要降低油耗满足排放法规的规定。在各种现代技术手段中,可变配气技术已成为新技术发展方向之-[1]。这一技术能通过改变发动机的供气来达到降低油耗和满足排放要 求。 1 可变配气机构的分类 1.1 按控制参数的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT)和可变气门升程(VVL)两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(vP)和可变气门相位与持续期(VET)两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT)和气门升程单独可变两类f2】。 1-2 按可变配气实现途径的分类 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配气机构两类。基于凸轮轴的可变配气机构主要可分为可变凸轮型线、可变凸轮轴相位角、可变凸轮从动件三类;无凸轮轴的可变配气机构根据气门驱动形式主要可分为电磁驱动气门、电液驱动气门、电气驱动气门、电机驱动气门以及其他气门驱动形式几大类圆。 2 发动机可变配气机构的国内外研究与发展现状 2.1 发动机可变配气机构在国外的研究与发展现状 配气控制技术早期的研究进展比较缓慢,主要成果是在1985年以后取得的,其发展先后顺序大致如下:优化凸轮型线一可变凸轮相位一可变凸轮型线一机械式全可变气门机构一无凸轮轴电磁(电 液、电气及其他)驱动配齐机构一无凸轮轴全可变配气机构。迄今为止,具有代表性的可变配气机构主要有Toyota公司的VVT—i、BMW 公司的Vanos、Honda公司的VTEC、Mitsubishi公司的MIVEC、Porsche 公司的Vario—Cam、BMW 的Valvotronics等。 下面将分类介绍国外可变配气机构的研究及发展现状。 2.1.1基于凸轮轴的可变配气机构 1)可变凸轮型线的可变配气机构 此类可变配气机构能同时改变气门正时、持续期及升程.改变方式目前主要有阶段式与连续式两种。 a)阶段式改变凸轮型线的可变配气机构 Honda公司的V rEC、Mitsubishi公司的MIVEC以及Porsche公司的Vario—Cam等均属于阶段式改变凸轮型线的可变配气机构。下面以Honda公司的VTEC为例,介绍阶段式改变凸轮型线的可变配气机构。VTEC在2个进气门上采用了3个凸轮及3个摇臂,如图1所示,其中3个摇臂可独立运动也可连成一体运动。转速较低时,通过液压机构使主、次摇臂分别由主凸轮和次凸轮驱动,中间摇臂随中间凸轮运动。但是对气门不起作用,这样主、次进气门的升程曲线不同,可以形成涡流。转速较高时,通过液压机构使3个摇臂连成一体,并受中间凸轮驱动.以满足发动机高速的要求。这类机构优点是可以提供两种以上凸轮型线,在不同转速和负荷下,采用不同的凸轮型线驱动气门『11;缺点是只能优化某些工况,不能实现全工况性能的优化[21。 b)连续式改变凸轮型线的可变配气机构 Fiat公司早期开发了凸轮型线在轴向可连续变化的3D凸轮机构。如图2所示,一个带有锥度外廓的凸轮和装有可倾斜式垫块的挺柱相接触,凸轮轴的轴向移动使得凸轮的不同部分和挺柱相接触,导致气门升程和配气相位发生变化。基圆半径沿凸轮轴的轴向是不变的,但凸轮升程沿轴向改变,故垫块必须随凸轮轴旋转变化它的倾斜角。凸轮轴端部安装一机械式调速器,当凸轮轴转速发生变化时,调速器拖动凸轮轴产生轴向移动,使得气门升程和配气相位同时发生改变。该机构优点是可以

常见可变配气系统.

常见可变配气系统介绍 董昊轩 (潍坊学院车辆工程2班 11011240205)摘要:在发动机中,进气系统对发动机性能影响很大。因此,汽车厂家为了提高在原有基础上大幅度的提升发动机性能,都选择了去修改进气系统,其中可变配气系统技术得到了广泛发展,在实现可变配气系统方面,各大厂家可谓是八仙过海,各显神通。轿车发动机上常见的VTEC、i-VTEC、VVT-i、VVTL-i、VVT、VVL等字母,表示了这些发动机都采用了可变气门正时技术。 关键词:可变配气正时(VVT);本田VTEC系统;丰田VVTL-i系统; 保时捷Variocam系统;宝马可变气门正时Valvetronic系统;大众VVT系统;日产VVEL系统 目前,大多数轿车发动机的配气相位可以随发动机转速、负荷变化而自动调整。常见调整方式主要有进气门升程、进气门相位、进排气门相位调整。进气门升程调整又可分为两级调整和连续调整; 应用于进气门相位调整的装置可分为叶片式、螺旋式和时规链式。配气相位调整装置装在凸轮轴正时齿轮(或正时链轮)与凸轮轴之间,接受发动机计算机的指令,对发动机配气相位进行自动调整。如本田汽车的i-VTEC,丰田汽车的VVT-i等。 1.进气门升程两级调整 (1)本田VTEC系统 VTEC意为可变气门正时和气门升程电子控制系统。采用VTEC技

术的发动机具有4个气门,能够提高进排气截面积。进排气截面积越大,高速气流的流量也就越大,提高了发动机的功率。发动机低转速时,气门升程很小,以减小进气道面积,增大汽缸内真空度和吸力,提高进气流的惯性,以提高进气效率;发动机高转速时,增大 气门升程,增大了进气道截面积,以减小进气阻力,增加进气流量。气门升程可变,保证了发动机在高、低转速时都能获得良好性能。VTEC 有两段或三段调节,当气门从一个升程转换到另一个升程时,由于进气流量突然增大,发动机的输出功率也突然增大,导致发动机在整个转速范围内的输出并不是线性的,也就是说工作不柔和。VTEC发动机在加速时有突如其来的推背感,这在很大程度上提高了驾驶乐趣。但舒适性和发动机运转的平顺性较差。当然,要想做到动力线性的输出,则需要在技术上下更大的功夫,做到气门升程无级调节。VTEC 是利用不同高度的凸轮来改变气门升程,所以低转速凸轮使气门开启升程和时间都短,高速凸轮的形状能让气门开启时间更长,改变了配气相位。可变气门升程的控制原理,如图1所示。PCM根据发动机的负荷、转速、水温和车速等信息,决定何时改变气门升程及正时。改 变气门升程 及正时条件 有:发动机 转速为 2300~3200r /min(依进

可变配气机构及其新技术

图1 发动机速度特性 可变配气机构及其新技术 摘要:本报告先介绍可变配气机构,主要从采用可变配气机构的原因、可变配气机构的分类等方面进行概述。然后就目前比较先进的可变配气正时新技术进行阐述。 关键词:可变配气;VVT ;VANOS 1可变配气机构概述 1.1采用可变配气机构的原因 不同的发动机,由于结构和转速的不同,其配气正时也不相同。即使是同一台发动机,其配气正时也应随转速的变化而变化。这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和 促进排气的效果将会不同。例如,当发动机在低速运转时, 若配气正时保持不变,则部分进气将被活塞推出气缸,使进 气量减少,气缸内残余废气将会增多。当发动机在高速运转 时,气流惯性大,若此时增大进气迟后角和气门重叠角,则 会增加进气量和减少残余废气量,使发动机的换气过程臻于 完善。总之,四冲程发动机的配气正时应该是进气角和气门 重叠角随发动机转速的升高而加大。如果气门升程也能随发 动机转速的升高而加大,则更有利于获得良好的发动机高速性能。采用可变配气正时机构对发动机性能的改善,可由图1一目了然。 此外,能源与环境问题是目前汽车工业所面临的两个重要问题。研发能耗低、污染低的“节能-高效-环保”发动机是目前发动机新技术的发展方向。可变配气相位技术已成为提高发动机动力性和经济性的新技术之一,显著改善了发动机的怠速稳定性和排放特性。 1.2可变配气机构的分类 按照控制参数的不同,可变配气技术可分为可变气门正时(VVT )和可变气门升程(VVL )两类。可变气门正时即气门开启与关闭时刻可变,根据气门开启持续期的变化又分为可变气门相位(VP )和可变气门相位与持续期(VET )两类;可变气门升程主要是改变了气门开启的最大升程,按照气门正时与持续期的变化情况又可分为可变气门升程与正时(VLT )和气门升程单独可变两类。 实现可变配气有多种途径,按照有无凸轮轴可分为基于凸轮轴的可变配气机构和无凸轮轴的可变配

可变气门正时系统

可变气门正时系统 VVT Variable Valve Timing 可变气门正时系统。当今都是N/A(自然吸气)引擎技术。该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而 使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。 发动机可变气门正时技术(VVT,Variable Valve Timing)原理是根据发动机的运行情况,调整进气(排气)的量,和气门开合时间,角度。是进入的空气量达到最佳,提高燃烧效率。优点是省油,公升比大。缺点是中段转速扭矩不足。 韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是 可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。 其实像德国大众的速腾1.6升2气门发动机也有可变气门相位技术,不过并不像日系车和韩系车宣传的那么多。但是就发动机技术而言,日系车的发动机并不比德系车的发动机先进。很多人以为日系车省油是因为日本车的发动机先进,其实这是一个误区。 BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃 木的VVT;现代的VVT;起亚的CVVT等也逐渐开始使用。总的说来其实就是一种技术,名字不同。 VVT--i VVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。这些就是“VVT-i”的字面含义了。VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴 驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。 VVT-i是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。 VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVT-i控制器的不同油道上。 VVT-i系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVT-i,丰田PREVIA(大霸王)安装此款。另一种是安装在进气凸轮轴上的,称为螺旋槽式VVT-i,丰田凌志400、430等高级轿车安装此款。两者构造有些不一样,但作用是相同的。 叶片式VVT-i控制器由驱动进气凸轮轴的管壳和与排气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传递到排气凸轮轴上,导致VVT-i控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。螺旋槽式VVT-i控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。当机油压力施加在活塞的 石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力 平衡,活塞停止移动。 现在,先进的发动机都有“发动机控制模块”(ECM),统管点火、燃油喷射、排放控制、故障检测等。丰田VVT-i发动机的ECM在各种行驶工况下自动搜寻一个对应发动机转速、进气量、节气门位置和冷却水温度的最佳气门正时,并控制凸轮轴正时液压控制阀,并通过各个传感器的信号来感知实际气门正时,然后再执行反馈控制,补偿系统误差,达到最佳气门正时的位置,从而能有效地提高汽车的功率与性能,尽量减少耗油量和废气排放。

发动机可变气门生成技术

呼吸有道解析汽车发动机可变气门升程技术 2010-07-23 01:15:36 来源: 网易汽车跟贴 0 条手机看新闻版权声明:本文版权为网易汽车所有,转载请注明出处。 网易汽车7月23日报道在上节技术大讲堂中,我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。

>>技术大讲堂:呼吸有道解析汽车发动机可变气门正式技术<<众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。 而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气

门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。 正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,而这样一来单位时间内流出的水量也将增多,发动机可变气门升程技术利用的就是这种原理,用增加单位时间内发动机进气量的方法来提高发动机的动力性能。

气动技术发展及趋势

一、气动系统的简介 1.气动技术:气动技术是以压缩空气作为介质,以空气压缩机作为动力源,来实现能量传递或信号传递与控制的工程技术,是流体传动与控制的重要重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。 2.气动系统的典型构成:气压发生装置—执行元件—控制元件—辅助元件 3.气动系统的优点:气动技术与传统的液压技术相比,有以下优点:(1)结构简单轻便、方便安装维护;(2)输出速度一般在50~500mm/s,速度快于液压和电气方式;(3)对冲击负载和负载过载的适应能力较强;(4)可靠性高、使用寿命长、安全无污染且成本较低。由于气动技术具有以上的使用优点,气动技术在世界工业企业得到了广泛的应用。一个完善的机电一体化系统包括机械、动力、信息检测传感、执行、控制及信号处理等部分。作为机电一体化系统的执行部分的气动元件及其系统不仅仅具有机械、气动执行机构,同时也集成了信息检测传感等元件,甚至还集成了其他一些微型机电系统。 4.气动系统的缺点:动作稳定性差、输出功率小、噪声大、信号传递较电信号慢 二、气动系统应用概述 气动技术应用面的扩大是气动工业发展的标志。气动元件的应用主要为两个方面:维修和配套。国产气动元件的应用,从价值数千万元的冶金设备到只有几百元的椅子。铁道扳岔、列车的煞车、街道清扫、特种车间内的起吊设备、军事指挥车等都用上了专门开发的国产气动元件。这说明气动技术已渗透到各行各业,并且正在日益扩大。气动技术的应用主要在: (1)汽车、轮船等制造业:包括焊装生产线、夹具、机器人、输送设备、组装线、等方面。 (2)生产自动化:机械加工生产线上零件的加工和组装,如工件的搬运、转位、定位、检测等工序。 (3)某些机械设备:冶金机械、印刷机械、建筑机械、农业机械、制鞋机械、塑料制品生产线、等许多场合 (4)电子半导体、家电制造业:硅片的搬运、元器件的插入与锡焊, 彩电、冰箱的装配生产线等。 (5)包装过程自动化:化肥、粮食、食品、药品等实现粉末、粒状、块状物料的自动计量包装。用于烟草工业的自动化卷烟和自动化包装等许多工气动系统发展及趋势序。用于对粘稠液体(如化妆品、牙膏等)和有毒气体(如煤气等)的自动计量灌装。 三、气动技术的发展及趋势 近年来随着微电子和计算机技术的引入,新材料、新技术、新工艺的开发和应用,气动元器件和气动控制技术迎来了新的发展空间,正向微型化、多功能化、集成化、网络化和智能化的方向发展。从当前市场上的各类气动产品来看,气动元器件的发展主要体现在以下几个方面。 1.向小型化和高性能化发展 经过多年来的努力,内资企业产品水平多数达到上世纪90 年代国外企业产品水平,少数主导产品已达到当代国外企业产品水平。气动元件的性能也在飞速地提高,质量、精度、体积、可靠性等方面均在向用户需求的目标靠拢,主要体现了其小型化、低功耗、高速化、高精度、高输出力、高可靠性和高寿命的发展趋势。 如市场上已经普及的CJ1 型针笔型气缸,其缸径可小至2.5~15 mm,如图1 所示;如SMC公司研 制的三通直动式V100 系列电磁阀(如图2 所示),耗电量仅0.1 W、响应时间低于10 ms,寿命超过1 亿次、抗污能力极强,其全新的设计有划时代的意义[1,2]。

可变气门配气相位和气门升程电子控制系统VTEC技术解析

可变气门配气相位和气门升程电子控制系统VTEC技术解析 the camshaft and rocker arms, but unlike ordinary engine is the number and control method of cam and rocker arm. Medium and low speed with a small angle of the cam, two valve timing and lift different at low speed, this time a valve lift is very small, almost do not participate in the intake process, the air intake channel basically the equivalent of two valve engine, but due to the flow direction of an intake air barrier gas cylinder center, so it can produce intake eddy current, strong for low speed, especially in the cold car conditions conducive to improving the mixture uniformity, increases the burning rate and decrease the effect of wall surface chilling effect and clearance, making the combustion more fully, thereby improving the economy, and significantly reduce HC and CO emissions; and at high speeds. Through to VTEC solenoid valve to control the hydraulic oil, so that the two intake rocker arms are connected as a whole and the intake cam from the opening of the longest and largest lift to drive the valve, this time two inlet valve according to the cam profile synchronization. Compared with the low speed operation, greatly increasing the inlet flow area and opening duration, so as to improve the power of the engine at high speed. This two kinds of entirely different performance curve of output, Honda engineers so that they are implemented in the same engine, and vividly described as "the usual soft driving" and "wartime intense driving".

液压式可变配气系统设计

摘要 液压驱动可变配气系统是无凸轮轴可变配气技术的一种。通过对国内外各种电控液压驱动可变配气系统的分析和比较,本文提出了一款电控液压驱动可变配气系统设计方案,通过对该方案的主要结构参数,如柱塞半径、气门弹簧刚度、电磁阀流通面积等参数的研究,得到这种可变配气系统运动特性规律,为系统的开发和研制提供帮助。 本文在设计的基础上,开发出一套可变配气系统,系统主要包括液压系统、执行机构以及控制系统等。将该系统安装在4102BG发动机上,代替原来的配气机构,并对该系统的性能进行了试验研究。试验结果表明:本套结构能够控制气门的气门正时,缓解气门落座冲击。同时研究了运行参数如发动机转速、液压系统的压力和驱动电压对可变配气机构控制特性的影响,这些参数不同程度地影响着可变配气的动态特性。 关键词:可变配气系统;液压系统;无凸轮轴可变配气技术;气门弹簧刚度;气门正时。

ABSTRACT This variable valve timing and lift system powered by electronic hydraulic system is one kind of variable valve timing and lift system without cam.By analyzing and comparing several kinds of domestic and intemational advanced electronically controlled variable valve timing and lift system,a new kind of variable valve timing and lift system is developed in this paper.The system simulation model is established for the variable valve timing and lift system.Then the studies on the main structure parameters of the system,such as piston diameter,spring rigidity of the valve and flow area of electro—magnetic valve,obtained the characteristics of the variable intake valve system,Both the model and this studies speed up the development processes,thus minimizing the number of hardware variations.Based on the design and the simulation,a test is conducted on the cylinder heads of 41 02BG diesel with the variable valve timing and lift system,which can provide experimental documents for validation.Test bench includes the hydraulic driving system、variable valve actuator system,and electronic control units system etc.According to the experiment,the control strategy was amended detailedly.As a result,a fast,precise and steady dynamic result as well as a reliable static state Was achieved. Key word:Variable valve timing and lift system;The hydraulic;Without the camshaft variable valve timing technology;Valve spring stiffness;valve timing.

有关汽车发动机可变技术的综述

论文题目:有关汽车发动机可变技术的综述 一、摘要 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发,例如可变气门技术、可变气缸技术、可变进气歧管技术。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 二、关键词:可变气门技术、可变气缸技术、可变进气歧管技术 三、引言 可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作 实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,这种结构比用凸轮、摇臂控制简单。 2.可变进气道系统 可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。 惯性可变进气系统,是通过改变进气歧管的形状的长度,低转速用长进气管,保证空气密度,维持低转的动力输出效率;高转用短进气歧管,加速空气进入汽缸的速度,增强进气气流的流动惯性,保证高转下的进气量,以此来兼顾各段转速发动机的表现。加装VIS后,发动机进气气流的流动惯性和进气效率都有所加强,从而提高了扭矩,并降低了油耗。 四、可变气门技术 可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。提升动力的同时,也降低了油耗水平。 (一)配气相位机构的原理和作用

可变气门正时技术

发动机可变气门正时技术 发动机可变气门正时:简称VVT(Variable Valve Timing);随着发动机转速的提高,短促的进排气时间往往会引起发动机进气不足,排气不净等现象,因此可变气门正时系统出现,它就是根据轿车的运行状况,随时改变配气相位,改变气门升程和气门开启的持续时间(气门升程就像门开启的角度,气门正时就像门开启的时间,进气歧管就像各个闸道的栏杆)。 发动机上的气门可变驱动机构可以通过两种形式实现,一种是通过凸轮轴或者凸轮的变换来改变配气相位和气门升程;另一种就是工作时凸轮轴和凸轮不变动,而气门挺杆(摇臂或拉杆)依靠机械力或者液压力的作用而改变,从而改变配气相位和气门升程。 发动机进排气过程中,会出现一个进气门和排气门同时开启的时刻,在配气相位上称为“重叠阶段或气门重叠角”。在高转速下,为了达到更好的进气量,提高发动机的功率,就要求气门重叠角更大(进气门提前打开、或者排气门晚关);但在低转速或者怠工时,过大的重叠角则会导致废气过多的进入进气歧管,使缸内气流混乱,从而导致低速扭矩较低,因此低速时需要减小重叠角(进气门延时打开),此时燃烧会更充分更稳定。因此孕育出可变气门正时技术。 从原理上可以看出,可变气门正时只是增加或减少了气门的开启时间,并没有改变单位时间的进气量,因此对于发动机的动力性的帮助并不显著,但是气门开启角度大小(气门升程)可以随时间改变的话,就可以显著提升发动机在各个转速的动力性能。 可变气门升程:可以使发动机在不同的转速提供不同的气门升程,低转速时使用较小的气门升程,有利于缸内气流的合理混合,增加发动机的低速输出扭矩;在

高速时使用较大的升程,可以提高发动机的进气量,从而提高功率输出。本田公司的i-VTEC是目前使用最广泛的可变气门升程系统(i-VTEC拥有连续可变气门正时、分段可调气门升程技术)。 本田 VTEC:分级可变气门升程+分级可变气门正时 i-VTEC:分级可变气门升程+连续可变气门正时(进、排气) 丰田 VVT-i:连续可变气门正时(进气门) Dual VVT-i:智能连续可变气门正时(进、排气门分别独立控制,有2个气门开启时刻)VVTL-i:分级可变气门升程+连续可变气门正时(进、排气门) 宝马 Valvetronic连续可变气门升程(省去“节气门”部件) Double V ANOS:连续可变气门正时(进、排气门分别独立控制) 现代 CVVT:连续可变气门正时(进气门) 日产 C-VTC:连续可变气门正时(日产的“VQ”发动机上使用,技术类似丰田) 标致 VTCS:可变涡流控制阀 1、VVT-i原理:当发动机由低速向高速转换时,电子计算机(ECU)通过分析就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。VVT-i系统是通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。VVT-i系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。

可变气缸技术简述及发展现状

可变气缸技术简述及发展现状 王佳炜1 (1. 江苏大学汽车与交通工程学院江苏210003) 摘要:在汽车使用越来越普及的今天,可变气缸技术VCM 通过气门与凸轮之间的摇臂进行对气门的控制,让气门停止工作来切断发动机动力输出,使得汽车发动机在日常使用的低负载情况下,控制关闭一部分气缸,以减少燃油消耗,在需要强劲动力的时候又能毫无阻碍的释放,达到动力输出与节能减排的双重标准。这种技术是应时而生的,是未来汽车行业的发展趋势。 关键词:可变气缸技术;发展;动力;节能减排 The sketch and development of Variable Cylinder Management Wang Jiawei1 (1.Collage of Automotive & T raffic Engineering,Jiangsu University, Zhenjiang,Jiangsu 212013,China) Abstract:The variable cylinder management controls the valve through the arm between valve and cam, so that the valve can stop working and cut off the engine power ,to make the car engine close part of the cylinders when at low load conditions . This can reduce fuel consumption. And when the car needs strong power, there is no barrier to get that . Through this way we can both get energy saving and emission reduction. This technique is born at the right time, it is the future development trend of the automotive industry. Key words: VCM; development; engine power; conserve energy 气缸数是衡量汽车发动机排量的重要参考数据,在汽车进行越野、爬坡等需要高动力的时候,多气缸大排量发动机,如V6、V8乃至V12发动机都是汽车制造的优先选择。为了更好的实现不同路况下气缸工作模式切换即动力调整的平稳性,可变气缸技术应运而生。然而,日常行驶中,大多数情况下并不需要大功率的输出,而小排量的车型又无法满足人们对于驾驶乐趣的需求。因此,如今更多的普通车型开始应用可变气缸技术,在日常使用的低负载情况下,控制关闭一部分气缸,以减少燃油消耗,在需要强劲动力的时候又能毫无阻碍的释放。在这种背景下,学习了解发动机可变气缸技术及其发展就显得十分必要了。 文中以简要介绍可变气缸技术为基础,分析近年来该技术应用的发展,最后对可变气缸技术的意义做出简单阐述。 1.可变气缸技术介绍 可变气缸技术VCM,全称为Variable Cylinder Management,是本田公司研发的一种可变汽缸管理技术,它可通过关闭个别气缸的方法,使到3.5L V6引擎可在3、4、6缸之间变化,使得引擎排量也能在1.75-3.5L之间变化,从而大大节省燃油。 车辆起步、加速或爬坡等任何需要大功率输出的情况下,该发动机将会把全部6个气缸投入工作。在中速巡航和低发动机负荷工况下,系统仅将运转一个气缸组,即三个气缸。在中等加速、高

可变配气正时

哈尔滨应用职业技术学院毕业论文 教务处制

毕业论文项目表

摘要 本文介绍了国内外可变气门技术的发展状况。并根据气门控制参数的变化情况,对可变气门技术进行了详细的分类。结合目前典型的可变气门机构,对实现可变气门技术的途径进行了系统的阐述与评价。通过实例介绍了可变气门技术改善发动机性能及在实现汽油机均质充量压缩着火(HCCI)方面的应用。通过分析指出,叶片式可变凸轮轴相位机构是目前可行性较强的技术途径。 众所周知发动机是靠燃料在汽缸内燃烧做功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧做功能力。因此在目前的技术条件下,涡轮增压器是惟一能使发动机在工作效率不变的情况下增加输出功率的机械装置。 关键词:可变配气正时;涡轮增压;汽油机

Abstract This paper introduces the development of variable valve technologies. Control parameters according to changes in valve, variable valve timing technology for a detailed classification. Combined with the current typical variable valve body, the variable valve technology to achieve a systematic approach described and evaluated. Introduced through examples variable valve technology to improve engine performance and in the realization of gasoline homogeneous charge compression ignition (HCCI) in the application. Through analysis that vane variable camshaft phase is the feasibility of a strong body of technical means. As we all know the engine is fuel combustion in the cylinder by acting to produce power, as the amount of fuel input by the inhalation of limits on the amount of air inside the cylinder, so the power generated by the engine will be limited, if the engine's operating performance has been at its best further increase in output power can only be compressed more air into the cylinders to increase fuel consumption, thereby enhancing the combustion of acting ability. Therefore, the current technical conditions, the turbocharger is the only way the efficiency of the engine without changing the mechanical device to increase power output. Key words: variable valve timing; turbocharged; gasoline

相关文档
最新文档