导数应用举例

导数应用举例
导数应用举例

导数应用举例

伍银辉

安卓1412

【摘要】

导数是新教材的一个亮点,它是连接初等数学与高等数学的桥梁,用它可以解决许多数学问题,它是近年高考的热点。本文拟对导数知识的全面归纳,然后通过一些实例全面介绍导数在实际数学中的应用,让人们全面了解导数这一工具的利用。

【关键字】

导数、高等数学、求极限、求导。

1、导数的介绍

导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。

高考考查导数应用主要有以下三个方面:

①运用导数的有关知识研究函数的单调性和最值问题;

②利用导数的几何意义,研究曲线的切线斜率。函数y f(x) 在 x x0 处的导数,表示曲线在点P (x0,y0)处的切线斜率。

⑶导数在其它数学分支的应用,如在数列、不等式、排列组合等知识的综合等。

2、导数的举例

2.1 利用洛必达法则求极限在我们利用洛必达法则求极限时,应注意原极限)()(lim x F x f x a x ∞→→必须满足00型或∞

∞型未定式,接下来就是给整个分式的分子和分母分别进行求导,得)(')('lim x F x f x a x ∞→→且0)('≠x F ,当)(')('lim x F x f x a x ∞

→→存在(或无穷大)时,它的值就是)

(')('lim x F x f x a x ∞→→的值。

例:2

2)2(sin ln lim x x x -→ππ 8

12)(csc 412cot 4122

2lim lim -=---=--=→→x x x x x πππ

在解题当中,若遇到∞?0,∞-∞,∞1,00,0∞等五种类型时,是可以通过变型成00型或∞

∞型未定式,再进行洛必达法则求解。除此之外,我们在求极限时可以和等价无穷小和重要极限结合运用。

3.总结

导数的应用,为我们解决函数问题提供了有力的工具,同时

导数也在高等数学各章节间起到了非常重要的作用。根据高职高

专高等数学教学面临的实际问题,结合改革实践,在教务内容上

进行调整、压缩。使学生对导数的概念有一定了解,灵活运用并

掌握做题方法与技巧,能把导数和日常的实践知识相结合,达到

学以致用。而本文对导数的认识到应用做了一些介绍,希望对大

家有所帮助。

【参考文献】

[1]同济大学应用数学系编高等数学第五版北京:高等教育出版社

2004(7)7—152.

[2]牛莉.高等数学第二版[M].北京: 中国水利水电出版社

2008(9)30—53.

[3]华东师范大学数学系编.数学分析第三版[M].北京:高等教育出版社 2006(5)87—148.

[4]邓东皋,尹小玲.数学分析简明教程第一版[M].北京: 高等教育出版社 2002(6)87—152.

2015/05/26

导数应用举例word版

§2—6 导数应用举例 我们知道,函数()x f y =的导数()x f '的一般意义,就是表示函数对自变量的变化率,因此,很多非均匀变化的变化率问题都可以应用导数来研究。在()x f y =具有不同的实际意义时,作为变化率的导数就具有不同的实际意义。 一、 导数在物理上的应用举例 (一) 导数的力学意义 设物体作变速运动的方程为()t s s =,则物体运动的速度()t v 是位移()t s s =对时间t 的变化率,即位移s 对时间t 的一阶导数()()dt ds t s t v = '=;此时,若速度v 仍是时间t 的函数()t v ,我们可以求速度v 对时间t 的导数()t v ',用a 表示,就是()().22dt s d t s t v a =''='=在力 学中,a 称为物体的加速度,也就是说,物体运动的加速度a 是位移s 对时间t 的二阶导数。 例1 某物体的运动方程为() 22 3 102 12秒米取g gt t s - =,求2=t 秒时的速度和加速度。 解: 根据导数的力学意义,得 ()()()()()()()(). 141024242,420242242, 12,62秒米秒米=-=-==-=-=-=''=-='=g a g v g t t s t a gt t t s t v (二)导数的电学意义 设通过某导体截面的电量q 是()t q q =,则通过该导体的电流()t I 是电量()t q q =对时间t 的变化率(单位时间内通过的电量),即电量的一阶导数()().dt dq t q t I ='= 例2 设通过某导体截面的电量()?ω+=t A q sin (库仑),其中?ω,,A 为常数,时间t 的单位为秒,求通过该截面的电流().t I 解: 因为()?ω+=t A q sin ,所以 ()()()[]()?ωω?ω+=' +='=t A t A t q t I cos sin (安培)。 二、 导数在经济工作中的应用举例

导数及其应用概念及公式总结

导数与微积分重要概念及公式总结 1.平均变化率:=??x y 1212) ()(x x x f x f -- 称为函数f (x )从x 1到x 2的平均变化率 2.导数的概念 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 3.导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,(其中 00(,())x f x 为切点),即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 切线方程为:()()()000x x x f x f y -'=- 4.常用函数的导数: (1)y c = 则'0y = (2)y x =,则'1y = (3)2y x =,则'2y x = (4)1y x = ,则'21y x =- (5)*()()n y f x x n Q ==∈,则'1n y nx -= (6)sin y x =,则'cos y x = (7)cos y x =,则'sin y x =- (8)()x y f x a ==,则'ln (0)x y a a a =?> (9)()x y f x e ==,则'x y e = (10)()log a f x x =,则'1 ()(0,1)ln f x a a x a = >≠

导数在实际生活中的应用

§1.4导数在实际生活中的应用 目的要求:(1)巩固函数的极值与最值 (2)利用导数解决应用题中有关最值问题 例1.在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如 图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 例2.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料 最省? 例3.在如图所示的电路中,已知电源的内阻为r ,电动势为ε。外电阻R 为多大时,才能 使电功率最大?最大电功率是多少? 例4.强度分别为,a b 的两个光源,A B ,它们间的距离为d ,试问:在连接这两个光源的线 段AB 上,何处照度最小?试就8,1,3a b d ===时回答上述问题(照度与光的强度 例()C x ;出售x 单位产品的 ()()x C x -称为利润函数,记为( )P x 。 (+,生产多少单位产品时,边际成本'()C x 最低? (2)设()5010000C x x =+,产品的单价1000.1p x =-,怎样的定价可使利润最大? 作业 1.函数3|6|y x x =-,当x ?∈?时,y 的最大值为 ( ) A. 2.已知函数32()f x x bx c =-+,若/()f x ≥3-,且/0()3f x =-,则0x = ( ) .3A - B.3 C.1- D.±1 3.已知函数()(),n f x x m n N *=-∈,且对任意x R ∈,都有//(3)(3)f x f x -=+,则m = ,()f x 的单调性是 。 4.若函数32()1f x x x mx =+++是R 上的单调递增函数,则m 的取值范围是 5.若函数3232y x x m =++在[-2,1]上的最大值为92 ,则m = 6.将8分为两正数之和,使其立方和最小,则这两个数分别为 7.已知函数32()f x x px qx =--的图象与x 轴切于点(1,0)处,则()f x 的极大值为 8.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已 知总收益R 与年产量x 的关系是 21400(0400)280000(400) (){x x x x R R x -≤≤>==则总利润最大时,每年生产的产品是 9.若函数4()32f x x x c =-+有最小值38-,则c= 10.已知函数32()23121f x x x x =--++在[],1m 上的最小值为17-,则m = 11.已知函数'()y x f x =的图象如右图所示 (其中'()f x 是函数f(x)的导函数),下面四个 图象中y=f(x)的图象大 致是( ) 12.已知由长方体的一个顶点引出的三条棱长之和为1最小值和最大值。 13.已知圆柱的表面积为定值S ,求当圆柱的容积V

导数及其应用(2)

导数及其应用(2) 一、基础训练: 1.设曲线a x y e =有点()0,1处的切线与直线210x y ++=垂直,则实数a = . 2.函数2sin y x x =-在()0,2π内的单调增区间为 . 3.若函数f (x )=3 x +ln x 在区间(m ,m +2)上单调递减,则实数m 的范围是 . 4.将长为72m 铁丝截成12段,搭成一个正四棱柱模型,以此为骨架做成一个容积最大的容器,则最大容积为 . 5.函数()f x (x ∈R )满足(2)3f =,且()f x 在R 上的导数满足01)(<-'x f ,则不等式 2 2 ()1f x x <+的解集为 . 6.已知2 (),()(1)x f x xe g x x a ==-++,若12,,x x R ?∈使得21()()f x g x ≤成立,则实 数a 的取值范围是 . 二、例题分析: 例1.设ax x x x f 22 131)(2 3 ++ - =. (1)若)(x f 在),3 2 (+∞上存在单调递增区间,求a 的取值范围; (2)当20<

例3.如图,在边长为2 (单位:m )的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m . (1)求正四棱锥的体积V (x ); (2)当x 为何值时,正四棱锥的体积V (x )取得最大值? 备用题:已知函数f (x )=ax 3+bx 2 -3x (a ,b ∈R )在点(1,f (1))处的切线方程为y +2=0. (1)求函数f (x )的解析式; (2)若对于区间[-2,2]上任意两个自变量的值x 1,x 2都有|f (x 1)-f (x 2)|≤c ,求实数c 的最小值; (3)若过点M (2,m )(m ≠2)可作曲线y =f (x )的三条切线,求实数m 的取值范围.

教师用导数及其应用1

第十二章 导数及其应用 【知识图解】 【方法点拨】 导数的应用极其广泛,是研究函数性质、证明不等式、研究曲线的切线和解决一些实际问题的有力工具,也是提出问题、分析问题和进行理性思维训练的良好素材。同时,导数是初等数学与高等数学紧密衔接的重要内容,体现了高等数学思想及方法。 1.重视导数的实际背景。导数概念本身有着丰富的实际意义,对导数概念的深刻理解应该从这些实际背景出发,如平均变化率、瞬时变化率和瞬时速度、加速度等。这为我们解决实际问题提供了新的工具,应深刻理解并灵活运用。 2.深刻理解导数概念。概念是根本,是所有性质的基础,有些问题可以直接用定义解决。在理解定义时,要注意“函数()f x 在点0x 处的导数0()f x '”与“函数()f x 在开区间(,)a b 内的导数()f x '”之间的区别与联系。 3.强化导数在函数问题中的应用意识。导数为我们研究函数的性质,如函数的单调性、极值与最值等,提供了一般性的方法。 4.重视“数形结合”的渗透,强调“几何直观”。在对导数和定积分的认识和理解中,在研究函数的导数与单调性、极值、最值的关系等问题时,应从数值、图象等多个方面,尤其是几何直观加以理解,增强数形结合的思维意识。 5.加强“导数”的实践应用。导数作为一个有力的工具,在解决科技、经济、生产和生活中的问题,尤其是最优化问题中得到广泛的应用。 6.(理科用)理解和体会“定积分”的实践应用。定积分也是解决实际问题(主要是几何和物理问题)

的有力工具,如可以用定积分求一些平面图形的面积、旋转体的体积、变速直线运动的路程和变力作的功等,逐步体验微积分基本定理。 第1课 导数的概念及运算 【考点导读】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等); 2.掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念; 3.熟记基本导数公式; 4.掌握两个函数和、差、积、商的求导法则; 5.了解复合函数的求导法则.会求某些简单函数的导数.(理科) 【基础练习】 1.设函数f (x )在x =x 0处可导,则0lim →h h x f h x f )()(00-+与x 0,h 的关系是 仅与x 0有关而与h 无关 。 2.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873 741234-+-= ,那么速度为零的时刻是 1,2,4秒末。 3.已知)1()('23f x x x f +=, 则=)2('f 0 。 4.已知),(,cos 1sin ππ-∈+=x x x y ,则当2'=y 时,=x 3 2π±。 5.(1)已知a x x a x f =)(,则=)1('f 2ln a a a +。 (2)(理科)设函数5()ln(23)f x x =-,则f ′1 ()3 =15-。 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 解:因为点P (1,2)在曲线ax x y +=3上,1=∴a 函数ax x y +=3和c bx x y ++=2的导数分别为a x y +='23和b x y +='2,且在点P 处有公切数 b a +?=+?∴12132,得b=2 又由c +?+=12122,得1-=c 【范例导析】 例1. 电流强度是单位时间内通过导体的电量的大小。从时刻0t =开始的t 秒内,通过导体的电量(单位:库仑)可由公式2 23q t t =+表示。 (1) 求第5秒内时的电流强度; (2) 什么时刻电流强度达到63安培(即库仑/秒)? 分析:为了求得各时刻的电流强度,类似求瞬时速度一样,先求平均电流强度,然后再用平均电流强度逼近瞬时电流强度。 解:(1)从时刻0t 到时刻0t t + 通过导体的这一横截面的电量为:

利用导数解决生活中的优化问题

利用导数解决生活中的优化问题 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 二.利用导数解决优化问题的基本思路: 三、应用举例 例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为 181234.53(m)042x h x x -??==-<< ?? ?.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ??=-=-<< ??? . 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当312 x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而最大体积233 (1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的围,再列出关系式,对关系式进行求导,最后求出最值来。 例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐

导数及其应用)

导数及其应用 导数的运算 1. 几种常见的函数导数: ①、c '= (c 为常数); ②、n (x )'= (R n ∈); ③、)(sin 'x = ;④、)(cos 'x = ; ⑤、x (a )'= ; ⑥、x (e )'= ; ⑦、a (log x )'= ; ⑧、(ln x )'= . 2. 求导数的四则运算法则: ()u v u v '''±=±;v u v u uv '+'=')(;2)(v v u v u v u '-'=' )0(2''' ≠-=??? ??v v u v vu v u 注:① v u ,必须是可导函数. 3. 复合函数的求导法则: )()())((x u f x f x ??'?'=' 或 ' ?'='x u x u y y 一、求曲线的切线(导数几何意义) 导数几何意义: 0()f x '表示函数()y f x =在点(0x ,0()f x )处切线L 的斜率; 函数()y f x =在点(0x ,0()f x )处切线L 方程为000()()()y f x f x x x '-=- 1.曲线21 x y x =-在点()1,1处的切线方程为 ( ) A . 20x y --= B . 20x y +-= C .450x y +-= D . 450x y --= 2.曲线y =x 3-x +3在点(1,3)处的切线方程为 . 变式一: 3.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ( ) A .4 B .14- C .2 D .12 - 4.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方 程是 ( ) A .21y x =- B .y x = C .32y x =- D .23y x =-+ 变式二: 5.在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 . 6.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则 1299a a a +++的值为 .

导数在实际生活中的应用

导数在实际生活中的应用 导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。 导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。 1.导数与函数的极值、最值解读 函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。 函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。 最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。 2.导数在实际生活中的应用解读 生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。 例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602 x h -=cm ,得箱子容积V 是箱底边长x 的函数:23 2 60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学选修1-1第三章《导数及其应用》知识点归纳及单元测试[1]

第三章《导数及其应用》单元测试题 一、 选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A)x x f π4)(=' (B)x x f 2 4)(π=' (C) x x f 28)(π=' (D)x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B)[]8,2 (C)[]2,1 (D)[]2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则( ) (A ) 10<b (D )2 1< b 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294 e B.22e C.2 e D.22e 7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 8.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1)'(0)f f 的最小值为( )A .3 B .52 C .2 D .3 2 9.设2 :()e ln 21x p f x x x mx =++++在(0)+∞, 内单调递增,:5q m -≥,则p 是q 的

导数及其应用.知识框架

要求层次重难点 导数及其应用导数概念及其 几何意义 导数的概念A了解导数概念的实际背景; 理解导数的几何意义. 导数的几何意义C 导数的运算 根据导数定义求函数y c =, y x =,2 y x =,3 y x =, 1 y x =, y x =的导数 C 能根据导数定义,求函数 23 y c y x y x y x ==== ,,,, 1 y y x x == ,(c为常数)的导数. 能利用给出的基本初等函数的导数公式 和导数的四则运算法则求简单函数的导 数,能求简单的复合函数(仅限于形如 () f ax b +的复合函数)的导数.导数的四则运算C 简单的复合函数(仅限于形如 () f ax b +)的导数)B 导数公式表C 导数在研究函 数中的应用 利用导数研究函数的单调性(其 中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导 数研究函数的单调性,会求函数的单调区 间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和 充分条件;会用导数求函数的极大值、极 小值(其中多项式函数一般不超过三次); 会求闭区间上函数的最大值、最小值(其 中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式 函数不超过三次) C 利用导数解决某些实际问题B 定积分与微积 分基本定理 定积分的概念A了解定积分的实际背景,了解定积分的基 本思想,了解定积分的概念. 微积分基本定理A 高考要求 模块框架 导数及其应用

了解微积分基本定理的含义. 一、导数的概念与几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作 “趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与 00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即 000()()lim x f x x f x x ?→+?-=?切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '. 知识内容 x 0x y x O D C B A

新人教B版学高中数学选修导数及其应用导数的实际应用讲义

学习 目 标核心素养 1.了解导数在解决利润最大、效率最高、用料最省等实际问题中的作用.(重点) 2.能利用导数求出某些实际问题的最大值(最小值).(难点、易混点)1.通过导数的实际应用的学习,培养学生的数学建模素养. 2.借助于解决利润最大、效率最高、用料最省等实际问题,提升学生的逻辑推理、数学运算素养. 导数在实际生活中的应用 1.最优化问题 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为最优化问题. 2.用导数解决最优化问题的基本思路 1.做一个容积为256 m3的方底无盖水箱,所用材料最省时,它的高为() A.6 m B.8 m C.4m D.2m [解析] 设底面边长为x m,高为h m,则有x2h=256,所以h=错误!.所用材料的面积设为S m 2,则有S=4x·h+x2=4x·错误!+x2=错误!+x2.S′=2x—错误!,令S′=0,得x=8,因此h=错误!=4(m). [答案] C 2.某一件商品的成本为30元,在某段时间内,若以每件x元出售,可卖出(200—x)件,当每件商品的定价为______元时,利润最大. [解析] 利润为S(x)=(x—30)(200—x)

=—x2+230x—6 000, S′(x)=—2x+230, 由S′(x)=0,得x=115,这时利润达到最大. [答案] 115 面积、体积的最值问题 示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设A E=FB=x(cm). (1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值? (2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值. [思路探究] 弄清题意,根据“侧面积=4×底面边长×高”和“体积=底面边长的平方×高”这两个等量关系,用x将等量关系中的相关量表示出来,建立函数关系式,然后求最值. [解] 设包装盒的高为h cm,底面边长为a cm. 由已知得a=错误!x,h=错误!=错误!(30—x),0<x<30. (1)S=4ah=8x(30—x)=—8(x—15)2+1800, 所以当x=15时,S取得最大值. (2)V=a2h=2错误!(—x3+30x2),V′=6错误!x(20—x). 由V′=0,得x=0(舍去)或x=20. 当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0. 所以当x=20时,V取得极大值,也是最大值.

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

导数的实际应用_知识讲解

导数的实际应用 【要点梳理】 要点一:最优化问题 现实生产生活中,人们经常遇到经营利润最大、生产效率最高、用力最省、用料最少、消耗原材料或能源最省、面积或体积最大、用时最短等问题,需要寻求相应的最佳方案或最佳策略,这些问题通常称为最优化问题. 要点二:利用导数解决最优化问题的一般步骤 解决最优化问题的方法很多,如:判别式法,平均不等式法,线性规划方法及利用二次函数的性质等. 不少最优化问题可以化为求函数最值问题,导数方法是解这类问题的有效工具.此时,要把问题中所涉及的几个变量转化为函数关系式,这需要通过分析、联想、抽象和转化,函数的最值由极值和区间端点的函数值比较确定,当定义域是开区间且函数只有一个极值时,这个极值也就是它的最值. 一般步骤为: (1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系()y f x =; (2)求函数的导数()f x ',解方程()0f x '=; (3)比较函数在区间端点和使()0f x '=的点的数值的大小,最大(小)者为最大(小)值. 要点诠释: 利用导数解决实际问题中的最值问题应注意:①在求实际问题中的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际问题的值应舍去.②在实际问题中,有时会遇到函数在区间内只有一个点使()0f x '=的情形,那么不与端点值比较,也可知道这就是最大(小)值. 要点三:利用导数解决最优化问题的基本思路 要点四:最优化问题的常见类型 (1)利润最大问题; (2)用料最省、费用最低问题; (3)面积、体积最大或最小问题. 【典型例题】 类型一:用料最省、费用最低问题 例1. 某单位用木料制作如图所示的框架,框架的下部是边长分别为x 、y (单位:m )的矩形,上部是等腰直角

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

导数及其应用(1)

江苏省2010届高三数学专题过关测试 导数及其应用(1)  班级姓名学号成绩 一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 题号12345678 答案 1. 函数y=x2cos x的导数为 A.y′=x2cos x-2x sin x B.y′=2x cos x+x2sin x C.y′=2x cos x-x2sin x D.y ′=x cos x-x2sin x 2. 若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x-y-1=0,则 A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 3. 函数 在区间 上的最大值是( ) A. B. C. D. 4.函数y=x3-3x的极大值为m,极小值为n,则m+n为 A.0 B.1 C.2 D.4  5.已知函数 在 时取得极值,则实数 的值是( )

A. B. C. D. 6.在函数 的图象上,其切线的倾斜角小于 的点中,坐标为整数的点的个数是() A. B. C. D. 7.三次函数y=f(x)=ax3+x在x∈(-∞,+∞)内是增函数,则 A.a>0 B.a<0 C.a=1 D.a= 8.函数 的定义域为开区间 ,导函数 在 内的图象如图所示,则函数

在开区间 内有极小值点( ) A.1个 B.2个 C.3个 D. 4个 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 9.曲线 在点 处的切线方程是 . 10.与直线2x-6y+1=0垂直,且与曲线y=x3+3x2-1相切的直线方程是 ___________. 11.将正数a分成两部分,使其平方和为最小,这两部分应分成 __________和_________. 12.已知函数 在 处可导,且 ,则 . 三、解答题:(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.) 13.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3

(完整版)导数及其应用课标解读

导数及其应用课标解读 1、整体定位 《标准》中对导数及其应用的整体定位如下: “微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性、极值等性质中的作用,初步了解定积分的概念,为以后进一步学习微积分打下基础。通过该模块的学习,学生将体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。” 为了更好地理解整体定位,需要明确以下几个方面的问题: (1)要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。 由于在中学阶段,学生没有学习极限,而导数又作为一种特殊的极限,我们如何处理这部分内容呢?导数及其应用在编排上更侧重于思想和概念的本质,不能把导数作为一种特殊的极限(增量比的极限)来处理,而是通过实际的背景和具体应用事例—膨胀率、加速度、增长率等实例,引导学生经历由平均变化率到瞬时变化率的过程,认识和理解导数的概念,同时加强学生对导数几何意义的认识和理解。 (2)导数的运算不宜要求过高 由于没有学习极限,因此,我们不能过多地要求学生利用极限去求过于复杂的函数导数。这里,只要求学生能根据导数定义求函数y=c,y=x,y=x 2,y=x 3,y=x 1,y= x 的导数;能利 用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(a+b))的导数。 (3)注重导数在研究函数和生活实践中的应用 导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。它是研究函数增减、变化快慢、最大(小)值等问题最一般,最有效的工具。这里,我们要求学生能借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值。以及利用导数解诸如运动速度、物种繁殖、绿化面积增长率等实际问题,以及利润最大、用料最省、效率最高等优化问题。 (4)关注数学文化 重视和学生一起收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。 2、课程标准的要求 (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵。 ②通过函数图象直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数y=c,y=x,y=x 2,y=x 3,y=x 1,y=x 的导数。 ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(a+b))的导数。 ③会使用导数公式表。 (3)导数在研究函数中的应用 ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。 函数的单调性是函数的重要性质,函数的单调性问题是高考的热点问题,若利用函数定义求解,一般较为复杂,学生失分率高,新教材引入导数以后,有效地解决了这一难题。利用导