导数及其应用概念及公式总结

导数及其应用概念及公式总结
导数及其应用概念及公式总结

导数与微积分重要概念及公式总结

1.平均变化率:=??x

y 1212)

()(x x x f x f -- 称为函数f (x )从x 1到x 2的平均变化率

2.导数的概念

从函数y =f (x )在x =x 0处的瞬时变化率是:

000

0()()lim

lim

x x f x x f x y

x x

?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000

()()

()lim x f x x f x f x x

?→+?-'=?

3.导数的几何意义:

函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,(其中

00(,())x f x 为切点),即 0000

()()

()lim

x f x x f x f x k x

?→+?-'==?

切线方程为:()()()000x x x f x f y -'=- 4.常用函数的导数: (1)y c = 则'0y = (2)y x =,则'1y = (3)2y x =,则'2y x = (4)1y x =

,则'21y x

=- (5)*()()n y f x x n Q ==∈,则'1n y nx -= (6)sin y x =,则'cos y x = (7)cos y x =,则'sin y x =-

(8)()x y f x a ==,则'ln (0)x y a a a =?> (9)()x y f x e ==,则'x y e = (10)()log a f x x =,则'1

()(0,1)ln f x a a x a

=

>≠

(11)()ln f x x =,则'1()f x x

= 5.导数的运算法则:

(1).[]'

''()()()()f x g x f x g x ±=± (2).[]'

''()()()()()()f x g x f x g x f x g x ?=±

(3).[]

'

''2

()()()()()

(()0)()()f x f x g x f x g x g x g x g x ??-=≠???? (4).()[]()x f c x cf '='

6.复合函数的导数: 一般地,对于两个函数()y f u =和()u g x =的导数间的关系为

x u x y y u '''=?,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

若()()y f g x =,则()()()()()y f g x f g x g x ''''==?????

7.函数的单调性与导数的关系

在某个区间(,)a b 内,如果'

()0f x >,那么函数()y f x =在这个区间内单调递增;

如果'()0f x <,那么函数()y f x =在这个区间内单调递减 8.求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;

(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 9.求函数()y f x =的极值的方法: 解方程()0='x f ,当()00='x f

(1)如果在0x 附近的左侧'()0f x >,右侧'()0f x <,那么()0x f 是极大值 (2)如果在0x 附近的左侧'()0f x <,右侧'()0f x >,那么()0x f 是极小值

10.利用导数求函数的最值步骤:

⑴求)(x f 在(,)a b 内的极值;

⑵将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值 11.定积分的一般研究方法:

)(lim )(1

i n

i n b

a

f n a

b dx x f ξ∑

?

=∞

→-= 采用“分割、近似代替、求和、取极值”求曲边梯形的面积 12.定积分的几何意义

梯形的面积

所围成的曲边

和曲线,,是直线定积分)(0)()(x f y y b a b x a x dx x f b

a ==≠==?13.定积分的性质:

(1)??=b

a

b a

dx x f k dx x kf )()(

(2)???±=±b

a

b a

b a

dx x f dx x f dx x f x f )()()]()([2121

(3))()()()(b c a dx x f dx x f dx x f b

c

c a

b a

<<+=???其中

14.函数的奇偶性与定积分的关系(()x f 是区间[]()0,,>-a a a 上的连续函数) (1)当()x f 是偶函数时,()()dx x f dx x f a

a

a ??=-02 (2)当()x f 是奇函数时,()0=?-dx x f a a 15.定积分与曲边梯形面积的关系:

(1)曲边梯形位于x 轴上方时,定积分取正值,且等于曲边梯形的面积 (2)曲边梯形位于x 轴下方时,定积分取负值,且等于曲边梯形的面积的相反数 16.微积分基本原理:

())

()()( ),()(,],[)(,a F b F x F dx x f x f x F b a x f b

a

b

a -===? 那么:'并且上的连续函数是区间如果 一般地

特别的b

a n b

a n

n x dx x 1

1+=+?

1

2

()()a

a

S f x dx f x dx

=-?

?

例1用数学归纳法证明:()12

1

321+=

++++n n n (规范书写步骤!) 证明:(1)当n=1时,左边=1,右边=()111121

=+??,等式成立。

(2)假设当n=k(k N )*∈时等式成立,即()12

1

321+=++++k k k 那么,

11123...(1)(1)(1)(1)[(1)1]

22

k k k k k k k ++++++=+++=+++

即当n=k+1时等式也成立。

根据(1)和(2),可知等式对任何n N *∈都成立 例2:求()443

13

+-=

x x x f 的单调区间、极值及在[]3,0上的最大值和最小值 解:因为函数()443

13

+-=

x x x f ,所以()()()2242+-=-='x x x x f 令()0='x f ,解得2,2-==x x 或

(1) 当()0>'x f 时,即当-2x 2<>或x 时,函数为单调递增函数 (2) 当()0<'x f 时,即当2x 2-<<时,函数为单调递减函数 当x 变化时,()()x f x f ',的变化情况如下表

因此,当x=-2时,函数有极大值,极大值为()3

28

2=-f

当x=2时,函数有极小值,极小值为()3

42-

=f 在

[]3,0上,当x=2时,函数有极小值,极小值为()3

42-=f

又由于

()()13,40==f f ,因此,函数在[]3,0上的最大值为4,最小值为3

4-

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

高二数学导数知识点总结及习题练习

高三专题复习——导数在解题中常用的有关结论(需要熟记): (1)曲线yf(x)在x x处的切线的斜率等于f(x0),切线方程为 0 y f(x)(xx)f(x) 000 (2)若可导函数yf(x)在xx0处取得极值,则f x。反之,不成立。 ()0 (3)对于可导函数f(x),不等式f(x)0(0)的解集决定函数f(x)的递增(减)区间。 (4)函数f(x)在区间I上递增(减)的充要条件是:xIf(x)0(0)恒成立 (5)函数f(x)在区间I上不单调等价于f(x)在区间I上有极值,则可等价转化为方程 fx在区间I上有实根且为非二重根。(若f(x)为二次函数且I=R,则有0)。 ()0 (6)f(x)在区间I上无极值等价于f(x)在区间在上是单调函数,进而得到f(x)0或 fx0在I上恒成立 () (7)若xI,f(x)0恒成立,则f x0;若xI,f(x)0恒成立,则 () min f(x)0 max (8)若x0I,使得f(x)0,则f(x)max0;若x0I,使得 0 f x0,则f(x)min0. () (9)设f(x)与g(x)的定义域的交集为D若xDf(x)g(x)恒成立则有f(x)g(x)0 min (10)若对x1I1、x I, 22 f(x)g(x)恒成立,则 12 f xgx. ()() minmax 若对x1I1,x2I2,使得f xgx,则 ()() 12 f xgx. ()() minmin 若对xI,x 2I2,使得 11 f xgx,则f(x)max g(x)max. ()() 12 (11)已知f(x)在区间I上的值域为A,,g(x)在区间 1 I上值域为B,2 若对x I, 11 x I,使得f(x1)= 22 g(x)成立,则AB。 2 (12)若三次函数f(x)有三个零点,则方程f(x)0有两个不等实根x1、x2,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: x ①lnxx1(x0)②ln(x+1)x(x1)③e1x x ④e1x⑤ln1(1) xx x x12 ⑥l nx11 22 x22x (x0) 考点一:导数几何意义:角度一求切线方程 1.(2014·洛阳统考)已知函数f(x)=3x+cos2x+sin2x,a=f′3 过曲线y=x 上一点P(a,b)的切线方程为() π ,f′(x)是f(x)的导函数,则4

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项式函

导数及其应用概念及公式总结

导数与微积分重要概念及公式总结 1.平均变化率:=??x y 1212) ()(x x x f x f -- 称为函数f (x )从x 1到x 2的平均变化率 2.导数的概念 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 3.导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,(其中 00(,())x f x 为切点),即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 切线方程为:()()()000x x x f x f y -'=- 4.常用函数的导数: (1)y c = 则'0y = (2)y x =,则'1y = (3)2y x =,则'2y x = (4)1y x = ,则'21y x =- (5)*()()n y f x x n Q ==∈,则'1n y nx -= (6)sin y x =,则'cos y x = (7)cos y x =,则'sin y x =- (8)()x y f x a ==,则'ln (0)x y a a a =?> (9)()x y f x e ==,则'x y e = (10)()log a f x x =,则'1 ()(0,1)ln f x a a x a = >≠

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

泰勒公式与导数的应用

泰勒公式与导数的应用

巩固练习 ★1.按)1(-x 的幂展开多项式43)(24++=x x x f 。 知识点:泰勒公式。 思路:直接展开法。求)(x f 按)(0x x -的幂展开的n 阶泰勒公式,则依次求)(x f 直到1+n 阶的导 数在0x x =处的值,然后带代入公式即可。 解:3()46f x x x '=+,(1)10f '=;2 ()126f x x ''=+,f (1)18''=; ()24f x x '''=,(1)24f '''=;24)()4(=x f ;24)1()4(=f ;0)()5(=x f ; 将以上结果代入泰勒公式,得 (4)23 4 (1)(1)(1)(1)()(1)(1)(1)(1)(1)1!2!3!4!f f f f f x f x x x x ''''''=+-+-+-+-432)1()1(4)1(9)1(108-+-+-+-+=x x x x 。 ★★2.求函数 x x f =)(按)4(-x 的幂展开的带有拉格朗日型余项的三阶泰勒公式。 知识点:泰勒公式。 思路:同1。 解 :()f x '= , 1(4)4f '=;321()4f x x -''=-,1 (4)32 f ''=-; 52 3()8f x x -'''=,3(4)256 f '''=;27 41615)(--=x x f )(;将以上结果代入泰勒公式,得 (4)23 4(4)(4)(4)()()(4)(4)(4)(4)(4)1!2!3!4!f f f f ξf x f x x x x ''''''=+-+-+-+- 42 7 32)4(1285)4(512 1 )4(641)4(412-- -+---+=x ξ x x x ,(ξ介于x 与4之间)。 ★★★3.把 2 2 11)(x x x x x f +-++= 在0=x 点展开到含4x 项,并求)0() 3(f 。 知识点:麦克劳林公式。 思路:间接展开法。)(x f 为有理分式时通常利用已知的结论 )(111 2n n x o x x x x +++++=-Λ。

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

导数及其应用.知识框架

要求层次重难点 导数及其应用导数概念及其 几何意义 导数的概念A了解导数概念的实际背景; 理解导数的几何意义. 导数的几何意义C 导数的运算 根据导数定义求函数y c =, y x =,2 y x =,3 y x =, 1 y x =, y x =的导数 C 能根据导数定义,求函数 23 y c y x y x y x ==== ,,,, 1 y y x x == ,(c为常数)的导数. 能利用给出的基本初等函数的导数公式 和导数的四则运算法则求简单函数的导 数,能求简单的复合函数(仅限于形如 () f ax b +的复合函数)的导数.导数的四则运算C 简单的复合函数(仅限于形如 () f ax b +)的导数)B 导数公式表C 导数在研究函 数中的应用 利用导数研究函数的单调性(其 中多项式函数不超过三次) C 了解函数单调性和导数的关系;能利用导 数研究函数的单调性,会求函数的单调区 间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和 充分条件;会用导数求函数的极大值、极 小值(其中多项式函数一般不超过三次); 会求闭区间上函数的最大值、最小值(其 中多项式函数一般不超过三次). 会利用导数解决某些实际问题.函数的极值、最值(其中多项式 函数不超过三次) C 利用导数解决某些实际问题B 定积分与微积 分基本定理 定积分的概念A了解定积分的实际背景,了解定积分的基 本思想,了解定积分的概念. 微积分基本定理A 高考要求 模块框架 导数及其应用

了解微积分基本定理的含义. 一、导数的概念与几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作 “趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与 00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即 000()()lim x f x x f x x ?→+?-=?切线AD 的斜率. 由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '. 知识内容 x 0x y x O D C B A

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念及其应用

导数的概念与计算 一、基础知识 1、几何意义:函数)(x f y =在点x=0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数 (1) 0='C (C 为常数). (2) 1 )'(-=n n nx x . (3) x x cos )(sin =' (4) x x sin )(cos -='. (5) x x 1)(ln = ';e a x x a log 1)(log ='. (6) x x e e =')(; a a a x x ln )(='. 4、导数的运算法则 (1))(')('))'()((x g x f x g x f ±=± (2))(')()()('))'()((x g x f x g x f x g x f += (3)) () (')()()(')')()(( 2 x g x g x f x g x f x g x f -=. 备注:准确理解曲线的切线,需注意的两个方面: (1)直线与曲线公共点的个数不是切线的本质特征,若直线与曲线只有一个公共点,则直线不一定是曲线的切线,同样,若直线是曲线的切线,则直线也可能与曲线有两个或两个以上的公共点. (2)曲线未必在其切线的“同侧”,如曲线y =x 3 在其过(0,0)点的切线y =0的两侧. 二、典型例题 1、求曲线132 3 +-=x x y 在点(1,-1)处的切线方程 2、若直线y=x 是曲线ax x x y +-=233的切线,则a= 3、若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是 . 导数几何意义的应用,需注意以下两点: (1) 当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0; (2) 注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解. 4、已知函数f(x)的导函数为f′(x),且满足f(x)=2xf ′(e )+ln x ,则f(e )=________ 三、随堂练习 1、(2016年全国II 卷) 已知函数()(1)ln (1)f x x x a x =+--.当 4a =时,求曲线()y f x =在()1,(1)f 处的切线方程 2、(2016年全国III 卷)已知为偶函数,当 时, ,则曲线在点处的切线方程式 _____________________________. 3、[2015·全国卷Ⅰ] 已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则 a =________. 4、[2015·全国卷Ⅱ] 已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 5、[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0.求b ; 6、[2014·新课标全国卷Ⅱ] 已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.求a ; 7、[2012·课程标准卷] 曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. 8、[2011·课标全国卷] 已知函数f (x )=a ln x x +1+b x ,曲线y =f (x )在点 (1,f (1))处的切线方程为x +2y -3=0.求a ,b 的值; 导数的综合应用 ()f x 0x ≤1()x f x e x --=-()y f x =(1,2)

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

相关文档
最新文档