三相逆变器文献综述教学教材

三相逆变器文献综述教学教材
三相逆变器文献综述教学教材

三相逆变器文献综述

1 逆变器技术发展历程

逆变器技术的发展始终与功率器件及其控制技术的发展紧密结合,从开始发展至今经历了五个阶段:

第一阶段:20世纪50-60年代,晶闸管SCR的诞生为正弦波逆变器的发展创造了条件;

第二阶段:20世纪70年代,可关断晶闸管GTO及双极型晶体管BJT的问世,使得逆变技术得到发展和应用;

第三阶段:20世纪80年代,功率场效应管、绝缘栅型晶体管、MOS控制晶闸管等功率器件的诞生为逆变器向大容量方向发展奠定了基础。

第四阶段:20世纪90年代,微电子技术的发展使新近的控制技术如矢量控制技术、多电平变换技术、重复控制、模糊控制等技术在逆变领域得到了较好的应用,极大的促进了逆变器技术的发展;

第五阶段:21世纪初,逆变技术的发展随着电力电子技术、微电子技术和现代控制理论的进步不断改进,逆变技术正朝着高频化、高效率、高功率密度、高可靠性、智能化的方向发展。

2 逆变器的发展趋势

更高的效率:目前,美国市场上的逆变器最高效率可达95%。在欧洲,由于采用了无变压器的设计和创新的拓扑结构,可实现更高的效率。例如,有一款产品(SMASunnyMinicentral8000TL)声称可到达98%的效率。

更低的成本:大约0.2-0.3美元/瓦的价格已经被设定为2020年逆变器的价格目标,这意味着比目前售价降低50-75%。这个目标最有可能通过增加产量及改善学习曲线来实现。

更高的可靠性:目前,逆变器的MTBF(平均无故障时间)为5~10年。但很多人怀疑,是否有可能以合理的成本实现这一目标。在中近期,通过改进质量控制、更好地散热并降低复杂性,MTBF大于10年的目标是可以实现的。

通信功能:今天,逆变器可以记录并借助制造商特定的协议传递信息。下一代单元应使用通用的通信标准传送更全面的系统信息,以实现先进的诊断功能,

并能与公用服务机构通信,以支持电网的稳定性。

3 目前研究成果

3.1 合肥工业大学电气与自动化工程学院的陈玲、张兴、杨淑英,谢振等人在2009年在本院学报中提出了“带不平衡负载的三相四桥臂逆变器的研究”。该研究对三相四桥臂逆变器的控制系统进行了设计,建立了基于对称分量法和双同步旋转d-q坐标系的双环控制结构,电压外环和电流内环均采用前馈解耦的控制策略,使三相四桥臂逆变器带有不平衡负载的能力。

3.2 空军雷达学院研究生管理大队的石磊、陈媛娣、朱忠尼于2006年在该院学报发表了“基于DSP的SVPWM控制三相逆变器设计”。该设计从电压矢量控制的基本原理出发,给出了SVPWM算法在TMS320LF2407上实现的软件流程。实际编程实现了SVPWM波形输出。系统具有控制精度高、实时性强、软件编制容易等优点。

3.3 哈尔滨工程大学自动化学院的赵晓青、罗耀华于2008年在应用科技期刊发表“基于DSP的三相SPWM逆变系统研究”。本文主要针对三相逆变系统,介绍了采用TMS320LF2407芯片,通过混合查表法产生三相SPWM正弦电压的方法,并给出了部分程序源代码,实验结果可以满足实际需要。

3.4 东北大学信息科学与工程学院的闫士杰、冷冰、杜蘅等人于2012年在电机与控制学报发表“基于H

重复控制的三相四桥臂逆变器研究”。本文在三相

重复控制策略,四桥臂逆变器解耦成三个单相逆变器的基础上,提出了一种H

解决了微型电网中,作为功率接口的三相四桥臂逆变器存在输出波形畸变率大,跟踪给定正弦波慢的问题。

3.5 湖北工业大学电气与电子工程学院的汤才刚、朱红涛、李莉、陈国桥等人于2008年在现代电子技术期刊发表“基于PWM的逆变电路分析”。本文为了对PWM型逆变器电路进行分析,从PWM控制的基本原理出发,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析。使用双踪示波器对电路的输出波形进行分析,给出了仿真波形。实践表明:运用PWM控制技术能够很好地实现逆变电路的运行要求。

3.6 东北大学信息科学与工程学院的刘秀翀、褚恩辉、张化光等人于2010

年在电机与控制学报发表“基于三相综合补偿的四桥臂逆变器控制”。本文针对四桥臂逆变器,提出了基于三相综合补偿的四桥臂控制方法。该补偿策略用地四桥臂补偿输出不平衡因素,形成第四桥臂和各相桥臂综合补偿相电压的模式,发挥出四桥臂结构的优势,在阻性(或感性)不平衡负载条件下,增强了控制能力。基于三相综合补偿策略,文中针对电感电流为正弦波的特征,采用积分算法逼近电感电压,构造闭环控制结构,并给出四个桥臂的控制方法。该控制方法避免了微分算法引入的高频干扰和通用滤波算法引入的相位偏移,确保了输出电压收敛于理想波形。

3.7 东南大学电气工程学院的杨云虎、周克亮、卢闻州等人于2011年在校学报发表了“三相PWM逆变器鲁棒重复控制策略”。为了提高三相CVCF PWM 逆变器波形的控制性能(同时具有动态响应快、稳定误差小和鲁棒性好等优点),提出了鲁棒重复控制策略。首先采用鲁棒控制理论对两类不确定建模;然后引进一个虚拟的复不确定代替重复控制中的长延迟环节,将重复控制器集成到鲁棒反馈控制器设计之中形成鲁棒重复控制方案。实验结果表面,采用鲁棒重复控制策略控制的三相逆变器,即使在非线性负载情况下也能保证输出电压的THD含量低、跟踪精度高、响应快;并且在参数变化和负载突变扰动的情况下,仍具有良好的鲁棒性。

3.8 中国矿业大学信息与电气工程学院的李文正于2008年在中国科技论文网发表“三相四臂逆变器的仿真设计”。本文首先用对称分量法在不平衡负载下对三相四臂逆变器进行稳态分析,验证了三相四臂逆变器可以带不平衡负载。本文在总结、分析其它控制方法的基础上,建立了三维空间矢量调制策略,提高了电压利用率,减少了谐波含量,介绍了三维空间矢量调制的原理及其算法实现。其次对三相四臂逆变器在两种坐标系下建立数学模型,提出本文所采用的一种基于正反向同步旋转坐标变换的正序、负序和零序分量单独控制的控制策略,实现了各个通道的解耦。

3.9 南京航空航天大学航空电源航空科技重点实验室的龚春英、熊宇、郦鸣、陈新、严仰光于2004年在电工技术学报上发表“四桥臂三相逆变电源的三维空间矢量控制技术研究”。本文介绍了四桥臂三相逆变器的三维空间矢量控制原理,给出了任意负载下空间矢量的运动轨迹表达式,还建立了三维空间矢量调制四桥

臂逆变器MATLAB模型,并利用MATLAB仿真软件对各种性质负载、对称和不对称负载及负载和输入电压突变情况进行了仿真研究。研究结果表明该法具有负载适应能力及带不对称负载能力强、系统稳定性好、结构简单等优点,并在DSP实验平台上进行了初步的实验验证,证明该法是可行的。

3.10 湖南大学电气与信息工程学院与广西电力科学研究院的吕志鹏、罗安、蒋文倩、周柯、谢三军等人于2012年在中国电机工程学报发表“四桥臂微网逆变器高性能并网H -∞控制研究”。本文提出了微网三相逆变器输出电压波形受电网畸变电压、负载谐波电流和直流侧电压中点平衡的共同作用,为使直流侧电压中点维持稳定,并使输出电压波形跟踪参考电压,针对一种四桥臂逆变器结构进行建模,采用H-∞控制策略构造高带宽鲁棒控制器对中线桥臂和三相桥臂进行统一控制。仿真和实验表明,在较大中线电流和电网电压畸变情况下,中线桥臂能够控制中点输入和输出电流近似相等,三相桥臂能够使输出电压维持较低的谐波畸变率,提升微网供电质量。

3.11 华中科技大学、南昌交通大学、武汉理工大学、浙江大学的胡文华、马伟明、刘春喜等人于2010年在电磁分析与应用期刊发表“三相逆变器不平衡负载的控制策略研究”。虽然传统的对称分量分解和叠加原理可以通过保持电压的平衡补偿逆变器的正、负和零序分量输出电压,但是,这种方法是很费时的,且不适合于控制。本文针对高功率中频逆变电源,提出了P +共振(比例和谐振)控制器,确保了三相不平衡负载下输出电压平衡。该稳压器被证明适用于三相三线系统和三相四线系统,并开发了两种方法实现。仿真结果证实,该方法能够有效地抑制不平衡负载所造成的输出电压变形,并获得高品质的电压波形。

3.12 马来亚大学电气工程系的Mohamad N. Abdul Kadiry, Saad Mekhilef, and Hew Wooi Ping与2010年在电力电子日志发表“三阶段混合级联多电平逆变器的双矢量控制策略”。本文提出了一种在混合多电平逆变器的基础上分阶段认知的电压控制算法的逆变器电压向量图。该算法被施加到控制一个三阶段18级别的混合动力的逆变器,它已经设计了最大数量的对称水平。该逆变器具有利用传统的六开关逆变器和使用级联的H桥细胞构成的中等和低电压的三电平阶段,采用构建的两个级别的主级。该算法的显著特点是它能够避免不良的高频率开关,尽管逆变器的直流电源电压的选择在中压阶段,以最大限度地提高水平状态

电气工程及其自动化专业光伏单相逆变器并网控制技术研究 开题报告 文献综述 外文翻译

摘要 随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。 本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。大功率并网逆变器的开关频率相对较低,相对于传统的L 型或LC 型滤波器,并网逆变器采用LCL 型输出滤波器具有输出电流谐波小,滤波器体积小的优点,在此基础上本系统设计了LCL滤波器。本文分析比较了单相逆变器并网采用单闭环和双闭环两种控制策略下的并网电流,并对突加扰动情况下系统动态变化进行了分析。 在完成并网控制系统理论分析的基础上,本文设计并制作了基于TMS320LF2407DSP的数字化控制硬件实验系统,包括DSP 外围电路、模拟量采样及调理电路、隔离驱动电路、保护电路和辅助电源等,最后通过MATLAB仿真软件进行验证理论的可行性,实现功率因数为1的并网要求。 关键词并网逆变器;LCL滤波器;双电流环控制;DSP

Abstract With the concept of”Green and Environmental Protection”was proposed.All kinds of new energy exploitation program are in the rapid promotion,which is in order to solve the power shortage,pollution and other issues.It makes exploring renewable energy feedback the grid technology has a very important practical significance.How to deliver power into the grid reliably and quality is an important problem,the inverter mat Can transform the electrical energy in the system of the renewable resource to be fed into the grid is becoming one of the hot points in intemational research. Based on the bridge inverter the analysis of the working principle and the deduction of the control equation have been presented. The strategy integrates an outer loop grid current regulator with capacitor current regulation to stabilize the system. The current regulation is used for the outer grid current control loop. The frequency of switching is slower in the high power grid-connected inverter. Compared with tradition type L or type LC, output filter and output current’s THD of type LCL are all smaller.So on this basis, the system uses the LCL filter. This paper compares the net current of the single-phase inverter and net single loop and double loop under two control strategies, and the case of sudden disturbance of the dynamic change of the system. In complete control system on the basis of theoretical analysis, design and production of this article is based on TMS320LF2407DSP’s digital control hardware test system, including the DSP external circuit, analog sampling and conditioning circuit, isolation, driver circuit, protection circuit and auxiliary power, etc., via MATLAB software to validate the feasibility of the theory.Achieve power factor is 1 and network requirements. Keywords Grid-connected inverter;LCL filter; Double current loop control; DSP

三相交流电动机变频调速系统的设计与仿真文献综述

学校代码:11517 学号:201250712207 HENAN INSTITUTE OF ENGINEERING 文献综述 题目三相交流电动机变频调速系统的设计及仿真学生姓名 专业班级 学号 系(部) 指导教师(职称) 完成时间2014年3月25 日

三相交流电动机变频调速系统的设计与仿真 摘要电动机系统在工业生产活动中应用十分广泛。2013年我国电动机年产量约为45000万千瓦,平均效率比发到国家低2-3个百分点,其拖动系统效率比发达国家低10-30个百分点。我国采用电动机变频调速系统普遍较低,中小电动机基本是通用常规类型,还没有形成变频调速电动机系列,变频器电动机集成、智能电动机、机电一体化技术还不太成熟,与发达国家相比还有一定的差距。随着电力电子器件的发展,以及控制理论的进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善、响应速度快、节能显著等优点,已经广泛应用于电力、制造等经济领域,交流变频调速技术以其优越的性能得到迅速发展。 1.掌握51系列单片机在三相电机控制中的特点、实现方式。 2.电机控制系统核心是选用89C51单片机(专用芯片)。 3.预期目标要具备单片机主控电路、测量电路、IPM接口电路、人机对 话、显示电路等。 4.确定本设计的具体方案及步骤,完成硬件系统原理图及方框图、软件流程图、软件编程。 5.系统软件的设计,通过实验仿真,使整个系统能够基本实现电机的平滑调速。 关键词:单片机/Matlab/Simulink /SPWM /变频调速 1 绪论 交流变频调速技术自发展以来,以其优越的性能得到迅速发展,进入21世纪伴随着电力电子器件的发展,以及控制理论进步,变频调速以其调速精度高、调速控制范围广、回路保护功能完善,响应速度快、节能显著等优点,已经广泛

多电平逆变器主要控制策略综述

多电平逆变器主要控制策略综述 ( 本站提供应用行业:阅读次数:1082) 【字体:大中小】 1 引言 多电平逆变器具有谐波小、共模电压小、电压变化率小、电磁干扰小、开关频率低、系统效率高、适合中高压大容量变频器应用等特点,近十年得到广泛的研究[1]。研究主要集中在拓扑结构、控制策略两方面。图1是多电平逆变器的主要研究内容。 图1 多电平逆变器主要研究内容 由于多电平逆变器拓扑结构的多样性,且涉及到直流电压的均衡、开关频率的合理分配、冗余状态的利用等特殊要求,使得对多电平逆变器的控制具有一定的挑战性。 2 载波调制方法(Carrier-based Modulation) 载波调制是最常用的多电平控制方法之一,其特点是通过载波和调制波(或参考波)间的比较而获得器件的开关状态。载波调制按其采样方法可分为:自然采样和规则采样,自然采样一般用于模拟电路实现,规则采样用于数字实现。规则采样又分对称和不对称采样。在载波调制中,对于m电平逆变器,常定义幅度调制比ma和频率调制比mf分别为: 其中Ac为载波峰峰值,fc为载波频率,Am为调制波峰值,fm为调制波频率。多电平载波调制由于载

波个数的增加,而变得较复杂,但也给控制提供了更多的自由度。 2.1 子谐波脉宽调制SHPWM(SubHarmonic PWM) 由Carrara[2]提出的SHPWM的基本原理是:对m电平逆变器,将m-1个具有相同频率fc和峰峰值Ac的三角载波集连续分布。频率为fm、幅值为Am的正弦调制波置于载波集的中间。将调制波与各载波信号进行比较,得到逆变器的开关状态。在载波间的相位关系方面,Carrara考虑了三种典型配置方案: (1) PD—所有载波具有相同相位; (2) POD—正、负载波间相位相反; (3) APOD—相邻载波间相位相反。 图2是SHPWM采用PD配置的波形图。SHPWM的最大线性幅度调制比ma为1。对SHPWM的研究有如下一些重要结论[3]: ·对于三相系统,频率比mf应为取3的倍数; ·单相逆变器,APOD配置电压谐波最小; ·三相逆变器,PD配置线电压谐波最小。 图2 5电平SHPWM-PD波形(ma=0.9,mf=21) 2.2 开关频率最优脉宽调制SFOPWM(Switching Frequency Optimal PWM) 由Steinke[4]提出的SFOPWM与SHPWM基本原理相同,只是前者在三相正弦调制波中叠加了一定的零序电压(三次谐波电压)。设三相均衡参考电压分别为va,vb,vc,叠加零序电压vn,后三相参考电压分别为varef,vbrdf,vcref,具体叠加方法为:

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

三相逆变器的建模

三相逆变器的建模 1.1逆变器主电路拓扑与数学模型 三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。 图 1三相三线两电平全桥逆变拓扑 图 1中V dc为直流输入电压;C dc为直流侧输入电容;Q1-Q6为三个桥臂的开关管;L fj(j=a,b,c)为滤波电感;C fj(j=a,b,c)为滤波电容,三相滤波电容采用星形接法;N为滤波电容中点;L cj (j=a,b,c)是为确保逆变器输出呈感性阻抗而外接的连线电感;v oj(j=a,b,c)为逆变器的滤波电容端电压即输出电压;i Lj(j=a,b,c)为三相滤波电感电流,i oj(j=a,b,c)为逆变器的输出电流。 由分析可知,三相三线全桥逆变器在三相静止坐标系abc下,分析系统的任意状态量如输出电压v oj(j=a,b,c)都需要分别对abc三相的三个交流分量v oa、v ob、v oc进行分析。但在三相对称系统中,三个交流分量只有两个是相互独立的。为了减少变量的个数,引用电机控制中的Clark变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终是有静差的,但PI控制器对直流量的调节是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq坐标系下的两个直流分量。 定义αβ坐标系下的α轴与abc三相静止坐标系下的A轴重合,可以得到Clark变换矩阵为: 1 / 1

PWM逆变电源瞬时值反馈控制技术研究 硕士论文

分类号______ 密级_____ U D C ______ 硕士学位论文 PWM逆变电源瞬时值 反馈控制技术研究 学位申请人:周樑 学科专业:电力电子与电气传动 指导教师:彭力副教授 论文答辩日期学位授予日期 答辩委员会主席戴珂评阅人段善旭熊健

A Thesis Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering Research on the instantaneous feedback control technology of PWM inverters Candidate : Zhou Liang Major : Power Electronics and Electric Drive Supervisor : Associate Prof. Peng Li Huazhong University of Science & Technology Wuhan 430074, P.R.China April , 2006

独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名: 日期:年月日 学位论文版权使用授权书 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 保密□,在__ __年解密后适用本授权书。 本论文属于 不保密□。 (请在以上方框内打“√”) 学位论文作者签名:指导教师签名: 日期:年月日日期:年月日

基于DSP的三相逆变器控制程序设计

基于DSP的三相逆变器控制程序设计 摘要:三相逆变是光伏并网逆变器的主要组成部分。本文介绍了基于DSP的三相逆变器的控制程序的设计原理和参数计算,并给出了部分实验调试的结果。 关键字:光伏并网逆变器,嵌入式微处理器 1引言 TMS320F2812 DSP是在光伏并网逆变器中广泛应用的嵌入式微处理器控制芯片。限于篇幅,本文只对基于DSP的三相逆变控制程序的设计进行了讨论。第2节介绍了三相逆变控制程序的总体设计原理。第3节讨论了参数计算方法和程序设计原理。最后第4节给出了部分实验调试结果。 2基本原理 控制程序的总体设计示意图见图1。 使用异步调制的方法产生SPWM波形。将正弦调制波对应的正弦表的数值,按一定时间间隔t1依次读出并放入缓冲寄存器中。比较寄存器则由三角载波的周期t2同步装载,并不断地与等腰三角载波比较,以产生SPWM波形。 时间间隔t1决定了正弦波的周期,时间间隔t2决定了三角载波的采样周期,t1和t2不相关,亦即正弦调制波的产生和PWM波形发生器两部分相互独立。 使用TMS320F2812的EV模块产生PWM波形。EVA的通用定时器1按连续增/减模式计数,产生等腰三角载波。三个全比较单元中的值分别与通用定时器1计数器T1CNT比较,当两者相等时即产生比较匹配事件,对应的引脚(PWMx,x=1,2,3,4,5,6)电平就会跳变,从而输出一系列PWM波形。因为PWM波形的脉冲宽度与比较寄存器中的值一一对应,所以,只要使比较寄存器中的值按正弦规律变化,就可以得到SPWM波形。 考虑到DSP的资源有限,使用查表法产生正弦调制波。将一个正弦波的周期按照一定的精度依次存于表中;使用时按照一定的定时间隔依次读取,便得到正弦波。显然,精度要求越高,所需的表格越大,存储量也越大。

中频逆变器控制策略综述

中频逆变器控制策略综述 【摘要】文章详细研究了中频逆变器控制策略的发展现状,对中频逆变器几种主要的控制策略进行了系统的分析和综述。 【关键词】中频逆变器;控制策略研究;综述 1.引言 随着飞机性能的不断提高和用电设备装置的不断增加,对航空电源设备的要求也在提高,例如要求输出的电压精度高,正弦波畸变率低,动态响应速度快、效率高。但由于功率器件开关频率的限制,相比于常规的工频50Hz/60Hz逆变器,使得400Hz中频逆变器的输出交流电压谐波含量更大,动态响应速度更慢。为获得性能更为优异的中频逆变器,必须使用合理、高效的控制策略,研究中频逆变器的控制策略具有重要的实用意义。 2.中频逆变器的控制策略 在过去的二十多年里,有很多文献研究了逆变器的控制策略,目标是以获得较好的动态响应输出,同时又能够在一个输出周期内实现输出的零稳态误差。这些控制策略大体上可以分为两类:1、对闭环控制的研究,例如单电压环控制与多环控制;2、对控制算法的研究,例如比例积分控制、重复控制、无差拍控制及滑模控制、智能控制等,本文将重点介绍其中几种常用主要控制策略。 2.1单电压环控制 ①电压有效值控制 电压有效值的控制框图如图1所示。 该方法的控制思想是将输出电压vo的有效值反馈与给定信号vref进行比较,产生的误差信号ve通过控制器Gv得到幅值信号,此信号与正弦函数sinθ相乘以获得系统的调制信号,通过与三角载波信号相比较获得PWM开关驱动信号。虽然该控制方式可以有效实现对输出电压的有效值控制,但是对于系统的瞬时负载扰动抑制效果几乎为零,输出波形畸变也较严重[1]。 ②电压瞬时值控制 电压瞬时值的控制框图如图2所示。 此控制方法方法采用单个闭环控制逆变器的输出电压,与参考正弦电压比较产生误差信号,经过控制补偿器产生的调制信号与载波信号比较生成所需的开关驱动信号。尽管该控制器的设计及实现较容易,但是它并不能够提供较好的电压

三相逆变器电路原理和工作过程图文说明

三相逆变器电路原理和工作过程图文说明 单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。 1.三相电压型逆变器。 电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。三相电压型逆变器的基本电路如图6-15所示。该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。图中负载L和R表示三相负载的各路相电感和相电阻。 图6-15 三相电压型逆变器电路原理图 图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。 控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。

(完整版)三相逆变器文献综述

三相逆变器文献综述 1 逆变器技术发展历程 逆变器技术的发展始终与功率器件及其控制技术的发展紧密结合,从开始发展至今经历了五个阶段: 第一阶段:20世纪50-60年代,晶闸管SCR的诞生为正弦波逆变器的发展创造了条件; 第二阶段:20世纪70年代,可关断晶闸管GTO及双极型晶体管BJT的问世,使得逆变技术得到发展和应用; 第三阶段:20世纪80年代,功率场效应管、绝缘栅型晶体管、MOS控制晶闸管等功率器件的诞生为逆变器向大容量方向发展奠定了基础。 第四阶段:20世纪90年代,微电子技术的发展使新近的控制技术如矢量控制技术、多电平变换技术、重复控制、模糊控制等技术在逆变领域得到了较好的应用,极大的促进了逆变器技术的发展; 第五阶段:21世纪初,逆变技术的发展随着电力电子技术、微电子技术和现代控制理论的进步不断改进,逆变技术正朝着高频化、高效率、高功率密度、高可靠性、智能化的方向发展。 2 逆变器的发展趋势 更高的效率:目前,美国市场上的逆变器最高效率可达95%。在欧洲,由于采用了无变压器的设计和创新的拓扑结构,可实现更高的效率。例如,有一款产品(SMASunnyMinicentral8000TL)声称可到达98%的效率。 更低的成本:大约0.2-0.3美元/瓦的价格已经被设定为2020年逆变器的价格目标,这意味着比目前售价降低50-75%。这个目标最有可能通过增加产量及改善学习曲线来实现。 更高的可靠性:目前,逆变器的MTBF(平均无故障时间)为5~10年。但很多人怀疑,是否有可能以合理的成本实现这一目标。在中近期,通过改进质量控制、更好地散热并降低复杂性,MTBF大于10年的目标是可以实现的。 通信功能:今天,逆变器可以记录并借助制造商特定的协议传递信息。下一代单元应使用通用的通信标准传送更全面的系统信息,以实现先进的诊断功能,

三相pwm逆变器设计

湖南文理学院课程设计报告 课程名称:专业设计 系部:电气与信息工程学院 专业班级:自动化07103班 学生姓名:姚金兵 学好:200716010324 指导教师:敖章鸿 完成时间:2010.12.30 评阅意见: 评阅教师日期

目录 一、设计要求 ------------------------------------------------------------------------------------------ - 3 - 二、设计的目的 ---------------------------------------------------------------------------------------- - 3 - 三、设计的具体 ---------------------------------------------------------------------------------------- - 3 - (1)、系统概述 -------------------------------------------------------------------------------------- - 3 - 1、三相pwm逆变器工作原理----------------------------------------------------------------- - 3 - 2、单元电路设计---------------------------------------------------------------------------------- - 4 - (2)、控制电路设计 ------------------------------------------------------------------------------- - 6 - 1、触发电路 ---------------------------------------------------------------------------------------- - 6 - (3)、双闭环控制电路的工作原理---------------------------------------------------------- - 8 - 1、电流调节器------------------------------------------------------------------------------------- - 8 - (4)、检测电路 ------------------------------------------------------------------------------------ - 10 - 1、电流互感器----------------------------------------------------------------------------------- - 10 - 2、电压互感器----------------------------------------------------------------------------------- - 11 - 3、给定电压 -------------------------------------------------------------------------------------- - 11 - 4、仿真与分析----------------------------------------------------------------------------------- - 12 - 四.心得体会及建议 ------------------------------------------------------------------------------ - 12 - 五、参考文献 ------------------------------------------------------------------------------------------------------ - 14 - 六、附录--------------------------------------------------------------------------------------------------- - 15 -

逆变器的并网运行控制策略综述

逆变器的并网运行控制综述 葛玲 摘要:本文在阅读已有资料的基础上,对光伏逆变器并网运行的控制策略进行了总结。主要包括逆变器电压和电流模式两种控制,和先进的数字控制方法。 Abstract: In this paper, based on reading the existing data on the PV inverter for grid-run control strategy is summarized. Mainly include inverter voltage and current-mode two kinds of control,and advanced digital control methods. 0 引言 太阳能光伏发电[1]系统的运行方式主要分为离网运行和并网运行两大类。离网运行系统:未与公共电网相联接,又称为独立光伏发电系统。主要应用于远离公共电网的无电地区和一些特殊场所,如为公共电网难以覆盖的边远农村、海岛、通信中继站、边防哨所等场合提供电源。并网运行系统:与公共电网相连接,共同承担供电任务。 当前世界范围内,大部分并网逆变器的直流侧一般采用电压源,逆变器与市电并联运行的输出控制可分为电压控制和电流控制。市电系统可视为容量无穷大的交流电压源,如果并网输出采用电压控制,则实际上就是一个电压源与电压源并联运行的系统,这种情况下要保证系统稳定运行,就必须采用锁相控制技术使输出与市电同步,在稳定运行的基础上通过调整逆变器输出电压的大小及相位来调节功率。如果逆变器的输出采用电流控制,则只需要控制逆变器的输出电流以

跟踪市电电压,同时设定输出电流的大小,即可达到并联运行的目的。 1 采用经典控制理论的控制策略[2] 1)电压均值反馈控制 它是给定一个电压均值,反馈采用输出电压的均值,两者相减得到一个误差,对误差进行PI调节,去控制输出,它是一个恒值调节系统,优点是输出可以达到无净差,缺点是快速性不好。 2)电压单闭坏瞬时值反馈控制 电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输出电压瞬时值反馈,对误差进行PI调节,去控制输出,它是一个随动调节系统,由于积分环节存在相位滞后,系统不可能达到无净差,所以这种控制方法的稳态误差比较大,但快速性比较好。 3)电压单闭环瞬时值和电压均值相结合的控制 图 1电压型并网的输出电流控制原理图 采样并网电流Ig作为反馈,与设定值比较后作为电压基准Vref 的调节参考;同时电流的过零用于改变Vref的相位来调节输出电压的相位,使输出电流和市电相位180°反相,以此来调节输出功率。 2 电流型并网的输出电流控制 1)电流瞬时值滞环比较方式[3]

三相逆变器的建模

2 (1) 3 0 2 2 三相逆变器的建模 1.1逆变器主电路拓扑与数学模型 三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥 逆变器作为主电路拓扑,如图 1所示。 图1三相三线两电平全桥逆变拓扑 图1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j=a,b,c) 为滤波电感;C fj (j=a,b,c)为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j=a,b,c) 是为确保逆变器输出呈感性阻抗而外接的连线电感; v oj (j=a,b,c)为逆变器的滤波电容端电压即输 出电压;i Lj (j=a,b,c)为三相滤波电感电流,i oj (j = a,b,c)为逆变器的输出电流。 由分析可知,三相三线全桥逆变器在三相静止坐标系 abc 下,分析系统的任意状态量如输 出电压v oj (j=a,b,c)都需要分别对abc 三相的三个交流分量 v °a 、晦、v °c 进行分析。但在三相对称 系统中,三个交流分量只有两个是相互独立的。 为了减少变量的个数, 引用电机控制中的 Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将 abc 坐标 系下的三个交流分量转变成 aB 坐标系下的两个交流分量。由自动控制原理可以知道,当采用 PI 控制器时,对交流量的控制始终是有静差的,但 PI 控制器对直流量的调节是没有静差的。 为了使逆变器获得无静差调节, 引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋 转坐标系,即将 a 坐标系下的两个交流分量转变成 dq 坐标系下的两个直流分量。 定义a 坐标系下的a 轴与abc 三相静止坐标系下的 A 轴重合,可以得到Clark 变换矩阵为: T clark V dc C dc v ao —> ----- V b i ob — v c i oc —hi V C fa C fb C fc Q 4 25 v bo jLb .i L c Q ^Q rl i La Lfa L fb L fc N

三相逆变器的建模

三相逆变器的建模 1.1 逆变器主电路拓扑与数学模型 三相全桥逆变器结构简单,采用器件少,并且容易实现控制,故选择三相三线两电平全桥逆变器作为主电路拓扑,如图 1所示。 图 1三相三线两电平全桥逆变拓扑 图 1中V dc 为直流输入电压;C dc 为直流侧输入电容;Q 1-Q 6为三个桥臂的开关管;L fj (j =a ,b ,c )为滤波电感;C fj (j =a ,b ,c )为滤波电容,三相滤波电容采用星形接法;N 为滤波电容中点;L cj (j =a ,b ,c )就是为确保逆变器输出呈感性阻抗而外接的连线电感 ;v oj (j =a ,b ,c )为逆变器的滤波电容端电压即输出电压;i Lj (j =a ,b ,c )为三相滤波电感电流,i oj (j =a ,b ,c )为逆变器的输出电流。 由分析可知,三相三线全桥逆变器在三相静止坐标系abc 下,分析系统的任意状态量如输出电压v oj (j =a ,b ,c )都需要分别对abc 三相的三个交流分量v oa 、v ob 、v oc 进行分析。但在三相对称系统中,三个交流分量只有两个就是相互独立的。为了减少变量的个数,引用电机控制中的Clark 变换到三相逆变器系统中,可以实现三相静止坐标系到两相静止坐标系的变换,即将abc 坐标系下的三个交流分量转变成αβ坐标系下的两个交流分量。由自动控制原理可以知道,当采用PI 控制器时,对交流量的控制始终就是有静差的,但PI 控制器对直流量的调节就是没有静差的。为了使逆变器获得无静差调节,引入电机控制中的Park 变换,将两相静止坐标系转换成两相旋转坐标系,即将αβ坐标系下的两个交流分量转变成dq 坐标系下的两个直流分量。 定义αβ坐标系下的α轴与abc 三相静止坐标系下的A 轴重合,可以得到Clark 变换矩阵为: 11122230Clark T ? ?--?? ? =??? (1) 两相静止坐标系αβ到两相旋转坐标系dq 的变换为Park 变换,矩阵为:

逆变器(文献综述)

一、前言 利用晶闸管电路把直流转变成交流电,这种对应于整流的逆向过程,定义为逆变[1]。如:应用逆变的电力机车,当再生制动时牵引电机作为发动机运行,把产生的电能反送到交流电网中。当牵引制动时逆变器则为其提供交流电,驱动电机。把直流电逆变为某一频率的交流电供给负载称为无源逆变;把直流电逆变为交流电反送到电网称为有源逆变[2]。随着科技的不断发展,各种仪器对逆变器的要求越来越高,各种行业对电气设备的控制要求也越来越高。高性能的逆变电路是工业发展的基本保证。逆变器横跨电力、电子、微处理器等领域。目前IGBT模块组成功率逆变器具有工作电压底的缺点,采用三电平NPC主电路,可将IGBT电压降低至两电平电路的一半左右[3].为了适应于大容量,高电压,电流谐波含量少的要求,本文通过查阅大量相关研究学者的论文,以及专家的文献综述,发现逆变器的各方面研究方法及其最前沿的研究成果和趋势。本文主要分析逆变器各种不一样的控制策略之间的联系、缺点、优点;最后提出一些个人看法和认识。相信逆变器技术在未来会有很大的突破和进步。 二、主题 逆变器毋庸置疑成为现代工业在中高压调速领域,交流柔性供电系统的无功率补偿中关键的技术支点。对逆变器的拓扑结构和调制策略也进行深入的研究,本文首先论述中高压三电平逆变器的发展现状,然后重点分析三电平逆变器的控制策略。 1.逆变器的发展现状及研究趋势。 于1931年有人研究逆变器的工作原理,直到1948年美国西屋电气公司研制出第一台3KHz感应加热逆变器。随着晶闸管SCR的诞生,为正弦波逆变器的发展创造了条件。20世纪70年代,可关断晶闸管(GTO)、电力晶体管(BJT)的诞生使逆变技术得到发展应用。到了20世纪80年代,功率场效管(MOSFET)、绝缘栅极晶体管(IGBT)、MOS控制晶闸管(MCT)以及静电感应功率器件的诞生为逆变器向大容量方向奠定了基础,因此电力电子器件的发展为逆变技术高频化,大容量创造了条件。80年代后,逆变技术从应用低速器件、低开关频率逐渐向高速器件,高开关频率方向发展。1977年德国学者Holtz首次提出三电平变换拓扑,其主电路采用常规的两电平电路,仅在每相桥臂带一对开关管作为辅助中点进行箝位。1980年,日本长冈科技大学A.Nabae等人将辅助开关管换成一对箝位二极管,分别和上下桥臂串联的开关管相连以辅助中点箝位,称为二极管中点箝位式三电平变换器[8],这种变换器控制容易,主开关管关断时仅承受直流侧一半的电压,因此更适合大功率场合使用。对三电平逆变器的研究,不仅仅停留在理论上,控制技术方面,而且在系统设计和工程应用等方面都会深入研究。

DC_AC逆变器技术及其应用综述

文章编号:1004—289X(2004)06-0018-05 DC/AC逆变器技术及其应用综述 张友军 (苏州大学,江苏 苏州 215021) 摘 要:系统地论述了DC/AC逆变器技术的发展、现状与应用,并指明了它们的优缺点。高频环节逆变技术取代低频环节逆变技术是发展的必然趋势。 关键词:逆变器;拓扑;低频环节;高频环节 中图分类号:TM464 文献标识码:B Summarization of DC/AC Inverter Technology and Applicat ion ZH AN G You-j un (Suzhou Universit y,Suzhou Jiangsu215021,China) Abstract:T he development of DC/AC inverter technology and application is summarized in this paper and its character is showed in detail.It is inevitable for inverter to apply high frequency link technology instead of low fr equency link technology. Key words:inverter;topology;low frequency link;high frequency link 1 引言 DC/AC逆变器是应用功率半导体器件,将直流电能转换成恒压恒频交流电能的一种静止变流装置,供交流负载用电或与交流电网并网发电。 随着石油、煤和天然气等主要能源的大量使用,新能源的开发和利用越来越得到人们的重视。利用新能源的关键技术-逆变技术能将蓄电池、太阳能电池和燃料电池等其它新能源转化的电能变换成交流电能与电网并网发电。因此,逆变技术在新能源的开发和利用领域有着至关重要的地位。 2 低频环节逆变技术 传统的DC/AC逆变器采用低频环节逆变技术,主要有方波逆变器、阶梯波合成逆变器、正弦脉宽调制SPWM逆变器。 2.1 方波逆变器 方波逆变器主要有推挽式、全桥式电路结构。 推挽式方波逆变器由推挽逆变器、交流调压开关和输出滤波器构成,如图1(a)所示。推挽式方波逆变器主要是通过调节逆变器输出电压脉宽来实现调压功能的。一种调压方法是调节功率开关S1、S2驱动信号占空比,从而改变输出电压u AB即u CD的脉宽,如图1 (b)所示。但这种调压方法存在明显缺点,即感性负载储能回馈到电网时,变压器T副边绕组感应有阴影部分电压,这部分电压随感性负载电感分量加大而加宽,纯电感负载时有效脉宽调节范围为0~T s/4,而纯电阻负载时有效脉宽调节范围为0~T s/2。另一种调压方法是在变压器副边与输出交流滤波器之间加交流调压开关S3,调节功率开关S3驱动信号占空比,即可调节输出矩形波脉宽,交流开关将方波电压变成脉宽可调的矩形波电压。 桥式方波逆变器电路拓扑及其原理波形如图2所示。改变功率开关驱动信号相位,即可得到矩形波输出电压,调节A角可实现输出电压的稳定。 方波逆变器电路的特点为: 1)工频变压器体积、重量大,推挽式原边绕组利用率低,桥式绕组利用率高; 2)输出四阶交流滤波器体积、重量大,位于功率通道的L f1、C f1有较大的损耗; 3)对于电网电压和负载的波动,系统动态响应特性差;

新型逆变电源电路的设计与实现文献综述

学校代码:11517 学号:200807111142 HENAN INSTITUTE OF ENGINEERING 文献综述 题目

完成时间 2012 年 2 月 22日 关于新型逆变电源电路的设计与实现的文献综述 摘要:随着工业和科学技术的发展,用户对交流电能质量的要求将越来越高,包括市电电源在内的所有原始电能的质量可能满足不了用户的要求,必须经过加工才能使用,而现代正弦化逆变技术在这种加工中将起到重要作用。21世纪是能源与环保的世纪。能源的开发,资源的利用与环境保护相互协调的发展,是21世纪世界经济发展的基础。在这个世纪里,节省能源与开发新能源,提高燃料的利用率和减少燃料燃烧产生的污染,已成为必须解决的重要课题。燃料电池是一种不经过燃烧过程的低污染,高效,可以使用多种燃料的发电装置,是本世纪改变人类生活的十大实用技术之一,是本世纪未来的第四代主要发电技术。燃料电池发出的是直流电,必须用逆变器把它变换成工频交流电才能大量应用。所以燃料电池发电站的推广应用,为逆变器的大量应用又开辟了一条广阔的道路。 关键词:能源/逆变器/发电技术/直流电/燃料电池 1. 引言 现代逆变技术是电力电子技术中的一个重要组成部分,它的作用在于把从市电电网上得到的已遭受污染的定压定频交流“粗电能”,或从蓄电池,太阳能电池,燃料电池等得到的电能质量较差的直流原始电能,变换成电能质量较高,能满足用户负载对电压和频率要求的交流电能。逆变技术主要应用于交流电动机的传动,不间断电源,变频电源,有源滤波器,市电电源的无功补偿器等,所有需要将直流电能变换成交流电能的地方。 今后,随着工业和科学技术的发展,用户对交流电能质量的要求将越来越高,包括市电电源在内的所有原始电能的质量可能满足不了用户的要求,必须经过加工后才

相关文档
最新文档