毕业设计-空调温湿度自动控制原理

毕业设计-空调温湿度自动控制原理
毕业设计-空调温湿度自动控制原理

空调温湿度自动控制原理

专业系

班级

学生姓名

指导老师

完成日期

空调温湿度控制原理

带信号选择器的室内温、湿度控制

带信号选择器的室内温、湿度控制原理如下图

图 1

OA SA

冷水热水

温度调节:利用室内温、湿度变送器TMT01检测室内的温度,并经温度调节器TC01控制冷水电动三通调节阀(分流三通)TV1和热水电动分流三通调节阀TV2以满足室内温度调节的需要。进入冬天运行时,将TC01温度调节器上的“冬-夏”季转换开关置于“冬”季档,如果室内温度高于设定值时,TC01温度调节器将控制热水电动调节阀改变分流比例,减少进入空气加热器的热水量,降低室内的温度;反之,则增大分流三通调节阀直流通路的热水量,提高室内温度。夏季运行时,则须将TC01温度调节器上的冬-夏季转换开关切换至“夏”档,此时如果室内检测到的温度高于设定值时,信号经TC01温度调节器和SS01信号选择器后,控制冷水阀TV1使之开大分流三通的直流通路;反之则关小TV1的直流通路。

湿度调节:利用室内温、温度传感变送器TMT01检测空调房间内的湿度信号,并通过调节器MC01控制电动双通调节阀MV或冷水分流三通TV1,以控制空调房间内的相对湿度。冬季运行时,将湿度调节器MC01上的“冬-夏”季转换开关转换为“冬”档,此时房间内湿度低于室内湿度设定值时,调节器则发出指令,驱动电动加湿调节阀开启(或开大),加大进入送风气流中的水蒸汽量以提高室内的相

对温度;反之,则关小加湿电动调节阀,减少进入送风气流中的水蒸汽量,降低室内的相对湿度。如果加湿电动阀MV外于全闭状态,室内的相对湿度仍高于室内温度设定时,温度调节器的控制信号将通过信号选择器SS01与TC01控制信号相比较,当除湿信号电压高于湿度控制信号的电压时,则将由湿度调节器MC01控制冷水电动三通调节阀,对空气进行除湿处理,以达到房间内湿度控制的目的。根据送风温度及露点温度实现送风温、湿度控制

温度调节:利用风道内的温度传感器TE1检测送风温度,并通过调节器TIC01再经电气转换器EAT01

后控制换热器冷(热)水入口的气动薄膜调节阀TV L,TV R改变进入换热器内的冷(热)水流量(或温度)以达到调节送风温度的目的。冬季,如果TE1检测的送风温度低于调节器TIC01的设定值时,TIC01的输出信号增大,并经电-气转换器将EAT01转换成气动信号,使热水气动调节阀TVR开大,反之,则关小。夏季,如果送风温度高于设定值时,TIC01的输出信号增大,再经电-气转换器EAT01及信号倒相器SIN01,使冷水气动调节阀TV L开大,反之,则关小。

湿度调节:当露点温度传感器TE2检测的送风露点温度低于湿度调节器MIC01的设定值时,MIC01的输出信号经电-气转换器EAT02输出压力变化,调节蒸汽加湿阀的开度。当MV关闭后,露点温度仍在升高时,则控制信号通过信号选择器SS01及信号倒相器S1N01,使气动冷水调节阀TV L开大,以控制露点温度恒定,以而保证温度在所要求的范围。

送、回风温度串级调节的新风温度控制

送、回风温度串级调节的新风温度控制如图,在系统运行中,根据冬夏季节,利用回风和送风管道温度传感器TE2,TE1检测送、回风温度,并通过调节器TC01分别控制冷/热水电动双通调节阀,以实现串级控制,并使回风温度稳定在一个给定值上T1S。

T2MIN——送风温度最低限值

△T2——副调节器给定值范围

按新风温度选择风阀开度的送、回风温度串级调节

温度调节:由风道温度传感器TE1和TE2分别测得送、回风温度,将信号送至温度调节器TC01,TC01以回风温度传感器为主调参数,送风温度为副调参数,以回风温度重调送风温度给定点。调节器TC01的输出按顺序控制热水(或蒸汽)电动调节阀TV R,新风阀WV1和冷水阀TV L,TE03检测新风温度,并将其信号和送风温度信号及TC01调节器输出信号同时送至TC02。TC02调节器将根据这些控制信号调节新风阀WV1的开度。冬季时,新风阀控制在最小开度;在过渡季节时,新风阀按一定比例开大或关小,夏季时,新风阀也控制在最小开度。

湿度调节:利用室内湿度传感器MT01检测室内相对温度值,并将温度信号送至调节器MC01。冬季MC01的输出控制蒸汽加湿调节阀MV,当室内湿度低于设定值时,MV开大加湿,反之则关小;夏季则通过转换开关使MC01处于夏季运行状态,控制冷水阀TV L来调节湿度。

温、湿度串级调节并执行机构的分程控制

温度调节:由TMT01,TMT02分别测行回风和送风温度,并通过温度调节器TC01控制冷(热)水调节阀TV L(TV R),调节器TC01以回风温度为主调参数,送风温度为副调参数,用回风温度重调送风温度的给定值。冬季,如果回风温度低于给定温度值时,热水调节阀TV R开大,提高送风温度,反之,TV R 关小,降低送风温度。夏季时,若回风温度高于给定值时,冷水阀TV L开大,使送风温度降低;反之,TV L关小,提高送风温度,使室内温度在要求范围内。

湿度调节:利用TMT01、TMT02温、湿度传感器、变送器分别测得回风和送风湿度。并将湿度信号转换成0~10V·DV信号送至湿度调节器MC01,MC01根据回风温度的变化控制蒸汽加湿调节阀TV S或冷水调节阀TV L以调节送风湿度。冬季运行时,当回风温度低于给定湿度时,蒸汽加湿阀TV S开大,提高送风湿度;反之,则关小TV S。当加湿调节阀TV S处于全关状态时,回风湿度仍高于设定值时,MC01输出信号,经信号选择器SS01后(若MC01的信号电压高于TC01的信号电压),控制冷水阀TV L开大进行去湿。

送、回风湿度串级调节和湿度的选择控制

温度调节:送风温度传感器TE1和回风温度传感器TE2分别检测空调系统中的送、回风温度,并将送至温度调节器TC01,TC01以回风温度为主参数,送风温度为副参数,用回风温度重调送风温度给定值。送风温度是在某一最高和最低温度之间由回风温度进行补偿,TC01温度调节器根据送回风温度按顺序控制热水调节阀TV R、新风阀WV1和冷水调节阀TV L。

电压给定器EG01的功能是设立新风阀的最小开度,EG01和TC01的信号同时送至信号选择器SS01,当EG01的给定电压高于TC01的输出电压时,新风阀由EG01控制在最小开度。

湿度控制:由室内湿度变送器MT01检测室内湿度并转换成0~10·DV信号送至湿度调节器MC01。MC01根据室内湿度的变化控制蒸汽加湿调节阀MV和冷水阀TV L。当室内湿度低于定值时,MV开大加湿,反之则MV关小,当MV全关后,室内湿度仍然超过设定值时,MC01输出信号至选择器SS02。当MC01的输出信号电压高于TC01的输出电压时,则MC01控制冷水阀TV L开大除湿,使室内湿度保持在所要求范围内。

空调自控原理

从节能的观点出发,在空调系统在运行中,都要使用一部分回风,同时为了满足室内人员的卫生条件而又必须采用一定量的新风,因此空调机组常常是对系统中的新、回风混合后进行热、湿处理,然后送入空调房间,进入房间内的经过热、湿处理的空气吸收室内的热、湿负荷后达到室内所要求的空气参数。对于室内空气状态参数的测定,是由设置在室内或空调房间的回风管道内的传感器来完成。

按新、回风焓值比较控制新风量

利用焓差控制新风量

为了充分、合理地回收回风中的能量和利用新风中的热能,根据新、回风焓值比较来控制新风量和

回风量的比例,最大限度地利用大自然中的能量,以减少人工能量的消耗。在空调系统中,新风负荷一般占空调冷(热)负荷的相当部分,有时可达到30%~50%,从而在空调系统中的运行中,合理地利用新风中的能量,则是一种有效的节能方法。

图 2是根据新、回风焓差控制新风量的分区图。机回风的利用,可按室外空气的变化条件分为五个区。

A区为制冷工况区,此时室外空气焓值大于室内空气的焓值,即室内处空气的焓差△h>0。因此,在此区域内的空调系统运行中,应采用最小新风运行方式,以减少制冷系统的负荷,但必须使用满足卫生条件的最低新风量。

B区亦为制冷工况区,此时新风焓值小于室内空气的焓值,△h<0。因此,空调系统在运行中可考虑采用最大新风量,以减少制冷负荷。

B区与C区的交界线上,室外新风的焓值等于室内空气的焓值,即△h=0。因此,在此区域内空调系统运行时,可以直接使用室外空气经净化处理后直接送入室内,而室内的空气则可排至室处。这样,即可关闭制冷系统。

C区为制冷工况,由于室外空气焓值的进一步降低,因此,此时空调系统在运行中可利用一部分新风与一部分回风相混合,即可达到系统的送风状态点,所以此时制冷系统也可以停机,依靠一部分室外的天然冷源来维持系统的运行。

D区,即minOA线以下,此时由于受最小新风量的限制,空调系统进入冬季工况,在运行中需要提供一定量的人工热能,同时采用最小新风方式运行。

E区,该区纯属于冬季运行工况,但有室外新风焓值高于室外空气的焾值,这种情况是很少会出现的,但出现此情况时,则可以尽量地多利用室外的新风。

目前,在使用电加热器的空调系统中,为了避免火灾事故的发生,一般采用两种防护措施。一是将电加热器的电源串接在送风机的主电源上,与送风机实行联锁控制。同时在送风机的前后设置压差器,这样可以实现在系统送风机启动运行之前,电贺热器电源将不会接通;一旦系统送风机之前后差压计将会感受送风机之前后压差,当风机前后之压差低于某一设定值时,压差控制器也会发出指

令,使系统中的电加热电源自动断开,以起到保护作用。二是在靠近电加热器下风侧的送风管道内安装无风断电电装置(其实质为一温度控制器),风机在运行中,置于风管内的双金属温度计测头如果感受到电热器下风侧的送风温度高于某一设定时,将会通过电气系统使电热器电源断开。以防止火灾事故的发生。其控制原理如图所示,它是由ZK可硅电压调整器,TA-096温度调节器组成的电加热器保护控制系统。

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

温湿度控制控制说明

组合式空调机组温湿度控制方案说明 一、设计概述 本控制系统便于提高HVAC设备的性能和工作人员的工作效率。该系统控制器独立运行,保证自动控制过程的安全、可靠性;PID 控制方式提供了良好的控制精度和调节特性,特别适合于暖通空调系统控制。系统提供了消防信号联锁及报警、压差报警,风机启动连锁等多重保护措施,保证系统的安全运行。本系统使用和操作极为简便,控制灵活方便。用户可通过直观的显示监测和控制空调设备,方便的修改温湿度控制设定值,实时监测运行数据。 二、监视及控制内容 1.空调箱温湿度控制原理: 1)温湿度控制 DDC控制器采样回风温T和回风湿度H在DDC内部与设定点比较,其差值△T和△H经比例积分PI控制模块计算后输出调节值至调节压缩机、电加热、加湿器输出,保持室内温度湿度稳定。当回风温度高于设定点温度,控制器输出信号给压缩机启动,降低室内温度。当回风温度低于设定点温度,控制器输出信号给电加热,使其逐级打开,使室内温度升高。当湿度高于设定湿度时,控制器输出信号给压缩机,使其打开,降低温度除湿。 当湿度低于设定湿度时,控制器输出信号给加湿器,让其打开,增大加湿量,保持室内湿度稳定。 2)故障报警 空调机有任何不正常状态, 系统均视为故障讯号, 并立即报警, 报警包括:温度超限报警、湿度超限报警、风机状态异常报警、滤网阻塞报警等。 3)联锁控制 压缩机、电加热、加湿器与风机连锁控制:在冬季和夏季运行模式下,风机启动后,压缩机、电加热、加湿器即根据需要动作,然后根据回风温度、湿度要

求打开或者关闭,在正常关机情况下,自控系统在接到关机信号后,关闭电加热、加湿器、压缩机。 机组启停连锁控制: 空调自控系统在得到风机运行状态反馈信号的情况下,根据回风温湿度要求开启电加热、压缩机、电加湿等。 一旦空调系统故障报警,空调自控系统自动关闭电加热、电加湿、压缩机,关闭风机,当压缩机有任何故障,也将关闭压缩机,并显示报警原因,停止其工作。 4)控制参数显示和设定: 空调机各状态参数在就地DDC控制器上显示出来, 参数包括: 回风温 度、湿度,面板温度设定输入(也即面板输出到控制器的温度设定信号)、面板湿度设定输入(也即面板输出到控制器的湿度设定信号)。 另也可对所有DDC控制器的DO和AO点进行超驰控制, 实现对所有不同设备的手动控制。

试验室环境温湿度控制要求

附件四: 试验室环境温湿度控制要求 一、水泥试验 1、水泥比表面积测定:试验室相对湿度不大于50%。 2、水泥胶砂强度检验: (1)试体成型试验室的温度应保持在20℃±2℃,相对湿度应不低于50%。 (2)试体带模养护的养护箱或雾室温度保持在20℃±1℃,相对湿度应不低于50%。 (3)试体养护池水温度应在20℃±1℃范围内。 3、泥标准稠度用水量、凝结时间、安定性检验: (1)试验室温度为20℃±2℃,相对湿度应不低于50%;水泥试样、拌和水、仪器和用具的温度应与试验室一致。 (2)湿气养护箱的温度为20℃±1℃,相对湿度不低于90%。 二、水泥混凝土试验 1、水泥混凝土试件制作与硬化水泥混凝土现场取样养护: (1)试件成型后,用湿布覆盖表面(或其它保持湿度方法),在室温20℃±5℃,相对湿度大于50%的环境下静放一个到二个昼夜,然后拆模并作第一次外观检查、编号,对有缺陷的试件应除去,或人工补平。 (2)将完好的试件放入养护室进行养护,标准养护温度20℃±2℃,相对湿度95%以上,试件宜放在铁架或木架上,间距至少10—20cm,试件表面应保持一层水膜,并避免用水直接冲淋。当无标准养护室时,将试件放入温度20℃±2℃不流动的Ca(OH)2饱和溶液中养护。 2、无机结合料稳定土的无侧限抗压强度试验:试件从试模内脱出并称重后,应立即放到密封湿气箱和恒温室进行保温保湿养生。但中试件和大试件应先用塑料薄膜包覆。有条件时,可采用蜡封保湿养生。养生时间视需要而定,作为工地控制,通常都只取7天。整个养生期间的温度,应保持20℃±2℃。湿度95%以上 三、钢筋试验 1、焊接接头弯曲试验:除非另外有规定,试验环境温度应为23℃±5℃。 2、焊接接头拉伸试验:除非另外有规定,试验环境温度应为23℃±5℃。 3、金属材料室温拉伸试验: 除非另有规定,试验一般在10℃—35℃范围内进行。对温度要求严格的试验,试验温度应为23℃±5℃。 四、沥青试验 大部分沥青原材试验均有试验温度要求,为使沥青试验尽可能在恒温条件下进行,保证试验结果的准确性,必须要对试验环境进行有效控制,在沥青室中应装冷热空调。

上海电力学院考研复试大纲:F006自动控制原理.doc

上海电力学院2019年考研复试大纲:F006 自动控制原 考研大纲频道为大家提供上海电力学院2019年考研复试大纲:F006自动控制原理,准备考上海电力大学的同学请仔细阅读哦!更多考研资讯请关注我们网站的更新! 上海电力学院2019年考研复试大纲:F006自动控制原理 课程名称:自动控制原理 参考书目: [1] 杨平 等.自动控制原理-理论篇(第3版),中国电力出版社,2016 [2] 杨平 等.自动控制原理-练习与测试篇,中国电力出版社,2012 复习的总体要求 自动控制原理课程的本质是自动控制系统的特性分析方法和控制器的初步设计理念。学会本课程的学生应当表现出的基本能力是:首先,会用方框图变换或信号流图法将该系统分解

成环节或综合成大的系统;其次,会用机理建模或实验建模法建立系统的数学模型---传递函数或状态方程形式;第三,会用系统分析方法分析出系统的基本特性,比如,稳定性、快速性或稳态误差;第四,会用控制器的设计方法设计控制器或利用系统分析方法改进系统特性。 控制系统分析和设计方法主要可分为时域法、根轨迹法、频域法和状态空间法四种。前三种方法都是基于传递函数模型,第四种方法基于状态方程模型。四种方法构成了控制理论的基础。 复习内容 知识点 一)自动控制系统的基本概念:系统组成、分类、性能、要求。 二)自动控制系统的数学模型:微分方程、传递函数、典型环节动态特性、系统方框图的等效转换和信号流图、机理建模法和实验建模、PID控制器基本控制规律和动态特性。 三)控制系统的时域分析: 时域性能指标、一阶和二阶系统的时域分析、高阶系统的时域分析和闭环主导极点、稳定性与代数判据、稳态误差分析和误差系数。 四)控制系统设计:结构设计、规律选择、参数整定、串级控制、前馈控制等系统。

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

空调温湿度控制原理

目录 带信号选择器的室内温、湿度控制 (2) 根据送风温度及露点温度实现送风温、湿度控制 (3) 送、回风温度串级调节的新风温度控制 (3) 按新风温度选择风阀开度的送、回风温度串级调节 (3) 温、湿度串级调节并执行机构的分程控制 (4) 送、回风湿度串级调节和湿度的选择控制 (4) 按新、回风焓值比较控制新风量 (5) 空调系统中的防火安全控制 (7)

带信号选择器的室内温、湿度控制 带信号选择器的室内温、湿度控制原理如下图 图 1 M M M OA TV1TV2MV MC 01 01 SS TC 01 01 TC MI 01 01 TMT RA SA 冷水热水 蒸汽 温度调节:利用室内温、湿度变送器TMT01检测室内的温度,并经温度调节器TC01控制冷水电动三通调节阀(分流三通)TV1和热水电动分流三通调节阀TV2以满足室内温度调节的需要。进入冬天运行时,将TC01温度调节器上的“冬-夏”季转换开关置于“冬”季档,如果室内温度高于设定值时,TC01温度调节器将控制热水电动调节阀改变分流比例,减少进入空气加热器的热水量,降低室内的温度;反之,则增大分流三通调节阀直流通路的热水量,提高室内温度。夏季运行时,则须将TC01温度调节器上的冬-夏季转换开关切换至“夏”档,此时如果室内检测到的温度高于设定值时,信号经TC01温度调节器和SS01信号选择器后,控制冷水阀TV1使之开大分流三通的直流通路;反之则关小TV1的直流通路。 湿度调节:利用室内温、温度传感变送器TMT01检测空调房间内的湿度信号,并通过调节器MC01控制电动双通调节阀MV或冷水分流三通TV1,以控制空调房间内的相对湿度。冬季运行时,将湿度调节器MC01上的“冬-夏”季转换开关转换为“冬”档,此时房间内湿度低于室内湿度设定值时,调节器则发出指令,驱动电动加湿调节阀开启(或开大),加大进入送风气流中的水蒸汽量以提高室内的相对温度;反之,则关小加湿电动调节阀,减少进入送风气流中的水蒸汽量,降低室内的相对湿度。如果加湿电动阀MV外于全闭状态,室内的相对湿度仍高于室内温度设定时,温度调节器的控制信号将通过信号选择器SS01与TC01控制信号相比较,当除湿信号电压高于湿度控制信号的电压时,则将由湿度调节器MC01控制冷水电动三通调节阀,对空气进行除湿处理,以达到房间内湿度控制的目的。

自动化专业综合课考试大纲

自动化专业综合课考试大纲 考试分成两部分,总分为300分。第一部分为理论测试部分(200分),第二部分为职业技能测试部分(100分)。 第一部分理论测试部分 本综合课理论考试总分200分。考试内容包括:《电路》、《数字电子技术》、《自动控制原理》三部分。其中《电路》60分;《数字电子技术》60分;《自动控制原理》80分。 考试方式为闭卷。书面笔答。 考试时间为150分钟。 《电路》(总分60分) 为适应应届高职毕业生升入本科院校继续学习招生考试的需要,结合目前各校高职各专业电路课的教学实际,制定本考试大纲,供考生备考时参考。 考试为笔试,主要测试考生的电路的基本概念、基本定律和基本分析方法。考试成绩满分60分,客观题25%-35%,主观题75%-65%。考试题型:填空、判断和计算。 一、基本要求 1、电路基本概念与基本定律 重点掌握:电路基本物理量、电路元件及基尔霍夫定律。 了解:受控源元件、非线性电阻的概念。 2、电阻电路分析方法 重点掌握:电阻及电源模型的等效概念;电路分析一般方法;电路定理。 掌握:含受控源电路的分析和计算 了解:Y-△联接电阻的等效变换、支路电流法、诺顿定理。 3、正弦电流电路的分析 重点掌握:正弦量及相量表示;基尔霍夫定律及电路元件电压电流关系的的相量形式;复阻抗;正弦电流电路的功率。 掌握:复导纳;耦合互感;串联谐振和并联谐振。 了解:复导纳;并联谐振;功率因数。 4、线性电路过渡过程的时域分析 重点掌握:换路定律;一阶电路的三要素法。 了解:阶跃函数及一阶电路的阶跃响应。 二、考试内容 1、电路的基本概念与基本定律 电路的基本物理量(电流、电压、电动势、功率),欧姆定律,电阻元件,电压源,电流源,基尔霍夫定律,电位的概念及计算。 2、电阻电路的分析方法 电阻的串、并及其混联,电阻的星形与三角形联接的等效变换,电源模型的等效变换和串、

重庆大学 自动控制原理课程设计

目录 1 实验背景 (2) 2 实验介绍 (3) 3 微分方程和传递函数 (6)

1 实验背景 在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制原理是相对于人工控制概念而言的,自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。 在自动控制原理【1】中提出,20世纪50年代末60年代初,由于空间技术发展的需要,对自动控制的精密性和经济指标,提出了极其严格的要求;同时,由于数字计算机,特别是微型机的迅速发展,为控制理论的发展提供了有力的工具。在他们的推动下,控制理论有了重大发展,如庞特里亚金的极大值原理,贝尔曼的动态规划理论。卡尔曼的能控性能观测性和最优滤波理论等,这些都标志着控制理论已从经典控制理论发展到现代控制理论的阶段。现代控制理论的特点。是采用状态空间法(时域方法),研究“多输入-多输出”控制系统、时变和非线性控制系统的分析和设计。现在,随着技术革命和大规模复杂系统的发展,已促使控制理论开始向第三个发展阶段即第三代控制理论——大系统理论和智能控制理论发展。 在其他文献中也有所述及(如下): 至今自动控制已经经历了五代的发展: 第一代过程控制体系是150年前基于5-13psi的气动信号标准(气动控制系统PCS,Pneumatic Control System)。简单的就地操作模式,控制理论初步形成,尚未有控制室的概念。 第二代过程控制体系(模拟式或ACS,Analog Control System)是基于0-10mA或4-20mA 的电流模拟信号,这一明显的进步,在整整25年内牢牢地统治了整个自动控制领域。它标志了电气自动控制时代的到来。控制理论有了重大发展,三大控制论的确立奠定了现代控制的基础;控制室的设立,控制功能分离的模式一直沿用至今。 第三代过程控制体系(CCS,Computer Control System).70年代开始了数字计算机的应用,产生了巨大的技术优势,人们在测量,模拟和逻辑控制领域率先使用,从而产生了第三代过程控制体系(CCS,Computer Control System)。这个被称为第三代过程控制体系是自动控制领域的一次革命,它充分发挥了计算机的特长,于是人们普遍认为计算机能做好一切事情,自然而然地产生了被称为“集中控制”的中央控制计算机系统,需要指出的是系统的信号传输系统依然是大部分沿用4-20mA的模拟信号,但是时隔不久人们发现,随着控制的集中和可靠性方面的问题,失控的危险也集中了,稍有不慎就会使整个系统瘫痪。所以它很快被发展成分布式控制系统(DCS)。 第四代过程控制体系(DCS,Distributed Control System分布式控制系统):随着半导体制造技术的飞速发展,微处理器的普遍使用,计算机技术可靠性的大幅度增加,目前普遍使用的是第四代过程控制体系(DCS,或分布式数字控制系统),它主要特点是整个控制系统不再是仅仅具有一台计算机,而是由几台计算机和一些智能仪表和智能部件构成一个了控制

温湿度控制器

MT-TH-A2温湿度控制器 1、适用范围 温湿度控制器广泛适用于0.1-35KV户内开关柜,如:中置柜、手车柜、固定柜、环网柜等多种开关柜,适用于进线柜、出线柜、电容器柜、母联柜、变压器柜、互感器柜、计量柜、电机控制柜等多种形式的主回路控制柜。 2、基本功能 采用进口传感器,带2路控制输出接点,温湿度采用数码管实时显示,用户一目了然。多路显示时,每隔30秒自动切换到1~2路温湿度循环显示,用户对温度、湿度任意进行上下限设置,且掉电不会丢掉该参数。但温度达到一定程度或温度剧增,有可能发生凝露时,控制器驱动加热器工作;当凝露状况消失后,加热器停止加热,控制器恢复到监测状态。当加热器断线时。控制器发出断线报警信号。 3、主要技术指标 3.1、工作环境:温度:-20℃~70℃湿度:0~99%RH 3.2、温度:≤5℃±0.5℃时继电器闭合加热启动;≥15℃±0.5℃时继电器 复位加热退出;≥40℃±0.5℃时继电器闭合排风启动;≤30℃±0.5℃ 时继电器复位加热退出。 3.3、湿度:≥90%RH±1%RH时继电器闭合加热启动;≤70%RH±1%RH时继电 器复位加热退出 3.4、输入电压:AC220V

3.5、继电器触点功率:AC220V/7A(常开,有源) 4、温湿度数显及控制 4.1、可带1-2路温湿度传感器及输出接点,可显示现场的温湿度数值,并且用户可根据需要自行设置加热、排风、除湿的上下限值; 4.2、出厂默认:温度上限+15℃,下限+5℃;湿度上限90%RH,下限75%RH; 排风上限+40℃,排风下限+30℃ 4.3、加热启动:当传感器测得的环境温度低于设定的温度下限值,或者测得的湿度值大于设定的湿度上限值时,启动加热; 4.4、加热停止:a)当传感器测得的环境温度高于设定的温度上限值或测得的湿度低于设定的湿度下限值时,停止加热;b)温度高于+40℃无条件停止加热,防止过热损伤。 4.5、排风启动:当传感器测得的环境温度高于设定的排风上限值时启动排风;当传感器测得的环境温度低于设定的排风下限值时停止排风; 4.6、高温报警:当传感器测得的环境温度高于50℃时,高温报警灯亮; 4.7、加热断线报警:当传感器温湿度测量输出均正常,但装置背部加热端子 没有正常接待负载(加热器)或者有接待负载但外接线路本身有断线 时,加热断线指示灯亮; 5、温湿度参数设置 5.1、当前测量显示 开机上电,进入当前状态显示,循环显示A路温度及其相对湿 度、B路温度及其相对湿度、每6秒之后数

自动控制理论在火电厂热工自动化中的应用

自动控制理论在火电厂热工自动化中的应用 摘要:随着计算机技术的不断发展,自动控制理论日趋成熟,自动化机械设备已广泛应用于人们日常生活的方方面面,尤其是在火电厂中的运用,对我国电力事业的现代化发展,做出了巨大的贡献。本文介绍了我国火电厂现阶段热工自动化应用现状,以及自动化控制理论在火电厂应用技术的最新进展,提出了今后自动控制理论在该领域的发展趋势,以期与同行交流。 关键词:自动控制火电厂热工自动化应用 近年来,我国在自动控制技术领域的研究取得了长足的进展,其研究成果不断被应用在生活生产的各个方面。火电厂热工自动化作为一种自动控制技术,其融合了热能工程技术、计算机信息技术以及智能仪表仪器等相关技术,可实现对火电厂生产过程的各类参数进行实时监控。这一技术的运用,将有助于提高该行业的生产效率,提高企业利润,有效降低人力物力成本,实现火电企业的现代化革新与可持续发展。 一、火电厂热工自动化发展现状 自动控制通常是指在企业生产过程中,采用自动化仪器设备代替部分甚至是全部人工操作,并依靠这些仪器设备进行自动生产,达到甚至超过人工操作的目的。自动控制理论早在上世纪前期就已经被提出,经过几十年的发展,其主要分为经典控制理论、现代控制理论和智能控制理论三个不同阶段。其中经典控制理论主要以传递函数理论为基础,通过建立系统的数学模型,研究系统运行的状态和规律,从而实现自动控制。而现代控制理论中,线性控制和优化估值是其理论基础,从而使得火电厂在发电过程中实现对过程的自控。智能控制综合了前两者的优势,主要以数值计算。逻辑运算为理论基础,实现对复杂系统的精确控制。 在我国火电企业中,自动化控制理论主要运用于热工自动化中,如图1所示。

自动控制原理课程设计

扬州大学水利与能源动力工程学院 课程实习报告 课程名称:自动控制原理及专业软件课程实习 题目名称:三阶系统分析与校正 年级专业及班级:建电1402 姓名:王杰 学号: 141504230 指导教师:许慧 评定成绩: 教师评语: 指导老师签名: 2016 年 12月 27日

一、课程实习的目的 (1)培养理论联系实际的设计思想,训练综合运用经典控制理论和相关课程知识的能力; (2)掌握自动控制原理的时域分析法、根轨迹法、频域分析法,以及各种校正装置的作用及用法,能够利用不同的分析法对给定系统进行性能分析,能根据不同的系统性能指标要求进行合理的系统设计,并调试满足系统的指标; (3)学会使用MATLAB语言及Simulink动态仿真工具进行系统仿真与调试; (4)学会使用硬件搭建控制系统; (5)锻炼独立思考和动手解决控制系统实际问题的能力,为今后从事控制相关工作打下较好的基础。 二、课程实习任务 某系统开环传递函数 G(s)=K/s(0.1s+1)(0.2s+1) 分析系统是否满足性能指标: (1)系统响应斜坡信号r(t)=t,稳态误差小于等于0.01; (2)相角裕度y>=40度; 如不满足,试为其设计一个pid校正装置。 三、课程实习内容 (1)未校正系统的分析: 1)利用MATLAB绘画未校正系统的开环和闭环零极点图 2)绘画根轨迹,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。 3)作出单位阶跃输入下的系统响应,分析系统单位阶跃响应的性能指标。 4)绘出系统开环传函的bode图,利用频域分析方法分析系统的频域性能指标(相角裕度和幅值裕度,开环振幅)。 (2)利用频域分析方法,根据题目要求选择校正方案,要求有理论分析和计算。并与Matlab计算值比较。 (3)选定合适的校正方案(串联滞后/串联超前/串联滞后-超前),理论分析并计算校正环节的参数,并确定何种装置实现。

温湿度独立控制空调系统作业

温湿度独立控制空调系统特点分析 1.温湿度独立控制空调系统原理及相关设备组成 1.1温湿度独立控制空调系统的原理 温湿度独立控制空调系统是指在一个空调系统中,采用两种不同蒸发温度的冷源,用高温冷冻水取代传统空调系统中大部分由低温冷冻水承担的热湿负荷,这样可以提高综合制冷效率,进而达到节省能耗的目的。在温湿度独立控制空调中,高温冷源作为主冷源,它承担室内全部的显热负荷和部分的新风负荷,占空调系统总负荷的50%以上;低温冷源作为辅助冷源,它承担室内全部的湿负荷和部分的新风负荷,占空调系统总负荷的50%以下。 1.2相关设备组成 温湿度独立控制系统由4个核心组成部件组成,分别为高温冷水机组、新风处理机组、去除显热的室内末端装置、去除潜热的室内送风末端装置。

除湿系统主要由再生器、储液罐、新风机、输配系统和管路组成。除湿系统中,主要采用分散除湿和集中再生的方式,再生浓缩后的浓溶液被输送到新风机中。储液罐具有存储溶液的作用和蓄存高能力的能量,可以缓解再生器对持续热源的需求,可以降低整个除湿系统的容量。 2. 温湿度独立控制空调系统与传统空调系统(热湿耦合)的比较分析 2.1可以避免过多的能源消耗 从处理空气的过程我们可以知道,为了满足送风温差,一次回风系统需对空气进行再热,然后送入室内。这样的话,这部分加热的量需要用冷量来补偿。而温湿度独立控制空调系统就避免了送风再热,就节省了能耗。传统的空调系统中,显热负荷约占总负荷的比例为50%~70%,潜热负荷约占总负荷的3比例为0%~50%。原本可以采用高温冷源来承担,却与除湿共用7℃冷冻水,造成了利用能源品位上的浪

费,这种现象在湿热的地区表现的尤为突出;经过处理的空气,湿度可以满足要求,但会引起温度过低的情况发生,需要对空气再热处理,进而造成了能耗的进一步增加。 2.2温湿度参数很容易实现 传统的空调系统不能对相对湿度进行有效的控制。夏季,传统的空调系统用同一设备对空气热湿处理,当室内热、湿负荷变化时,通常情况下,我们只能根据需要,调整设备的能力来维持室内温度不变,这时,室内的相对湿度是变化的,因此,湿度得不到有效的控制,这种

自动控制原理实验用Matlab软件编制劳斯判据程序并解题(《学习辅导》例4.3.5)

上海电力学院 实验报告 自动控制原理实验课程 题目:用Matlab软件编制劳斯判据程序并解题(《学习辅导》例4.3.5)

班级: 姓名: 学号: 时间: 2012年11月4日 自动化工程学院自动化(电站自动化)专业实验报告目录 一、问题描述 (3) 二、理论方法分析 (3) 三、实验设计与实现 (3) 四、实验结果与分析 (5) 五、结论与讨论 (6) 六、实验心得体会 (6) 七、参考文献 (7)

八附录 (7) 一、问题描述 用MATLAB编制劳斯判据列出其劳斯矩阵并判断相对应系统的稳定性 二、理论方法分析 采用M文件实现Matlab编程。 1) M文件的建立与调用 从Matlab操作桌面的“File”菜单中选择“New”菜单项,再选择“M-file”命令,屏幕将出现Matlab文本编辑器的窗口。 在Matlab命令窗口的“File”菜单中选择“Open”命令,则屏幕出现“Open”对话框,在文件名对话框中选中所需打开的M文件名。 2) M文件的调试 在文件编辑器窗口菜单栏和工具栏的下面有三个区域,右侧的大区域是程序窗口,用于编写程序;最左面区域显示的是行号,每行都有数字,包括空行,行号是自动出现的,随着命令行的增加而增加;在行号和程序窗口之间的区域上有一些小横线,这些横线只有在可执行行上才有,而空行、注释行、函数定义行等非执行行的前面都没有。在进行程序调试时,可以直接在这些程序上点击鼠标以设置或去掉断点。 三、实验设计与实现 (1)程序

%RouthMatrix**劳斯矩阵(带参数的特征多项式)并判断对应系统稳定性** clear; syms k z q %定义变量k z q p=input('请输入特征多项式的参数 ='); %提示输入参数 n=length(p); %得到p的长度 for i=0:ceil(n/2)-1 %将多项式进行劳斯矩阵排序 a(1,i+1)=p(2*i+1); if 2*(i+1)>n a(2,i+1)=0; break end a(2,i+1)=p(2*(i+1)); end for k=3:n %计算从第三行开始劳斯矩阵内容 for j=1:ceil((n-k+1)/2) if a(k-1,1)==0 %判断是否有共轭虚根 disp('系统有共轭虚根') breaksign=1; break end a(k,j)=(a(k-1,1)*a(k-2,j+1)-a(k-1,j+1)*a(k-2,1))/a(k-1,1); end end disp('劳斯矩阵') %输出对应的劳斯矩阵 disp(double(a)) for i=3:k %用劳斯判据判断系统的稳定性 if a(i-1,1)<=0 %判断第一列元素是否不大于0 q=1;

金陵科技学院自动控制原理课程设计

绪论 (1) 一课程设计的目的及题目 (2) 1.1课程设计的目的 (2) 1.2课程设计的题目 (2) 二课程设计的任务及要求 (3) 2.1课程设计的任务 (3) 2.2课程设计的要求 (3) 三校正函数的设计 (4) 3.1理论知识 (4) 3.2设计部分 (5) 四传递函数特征根的计算 (8) 4.1校正前系统的传递函数的特征根 (8) 4.2校正后系统的传递函数的特征根 (10) 五系统动态性能的分析 (11) 5.1校正前系统的动态性能分析 (11) 5.2校正后系统的动态性能分析 (15) 六系统的根轨迹分析 (19) 6.1校正前系统的根轨迹分析 (19) 6.2校正后系统的根轨迹分析 (21) 七系统的奈奎斯特曲线图 (23) 7.1校正前系统的奈奎斯特曲线图 (23) 7.2校正后系统的奈奎斯特曲线图......... 错误!未定义书签。4 八系统的对数幅频特性及对数相频特性...... 错误!未定义书签。 8.1校正前系统的对数幅频特性及对数相频特性 (25) 8.2校正后系统的对数幅频特性及对数相频特性 (27) 总结................................... 错误!未定义书签。8 参考文献................................ 错误!未定义书签。

在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。校正装置可以补偿系统不可变动部分(由控制对象、执行机构和量测部件组成的部分)在特性上的缺陷,使校正后的控制系统能满足事先要求的性能指标。常用的性能指标形式可以是时间域的指标,如上升时间、超调量、过渡过程时间等(见过渡过程),也可以是频率域的指标,如相角裕量、增益裕量(见相对稳定性)、谐振峰值、带宽(见频率响应)等。 常用的串联校正装置有超前校正、滞后校正、滞后-超前校正三种类型。在许多情况下,它们都是由电阻、电容按不同方式连接成的一些四端网络。各类校正装置的特性可用它们的传递函数来表示,此外也常采用频率响应的波德图来表示。不同类型的校正装置对信号产生不同的校正作用,以满足不同要求的控制系统在改善特性上的需要。在工业控制系统如温度控制系统、流量控制系统中,串联校正装置采用有源网络的形式,并且制成通用性的调节器,称为PID(比例-积分-微分)调节器,它的校正作用与滞后-超前校正装置类同。

车间温湿度控制制度

车间温湿度控制制度 公司厂房使用的是中央空调,根据实际情况,为规范车间温湿度控制,满足产品生产、物料存储和人员办公等要求,控制在需求范围之内: 一、温湿度要求: 1、一般环境(指由中央空调控制的生产车间、库房、办公室)的温度要求: A,夏季温度控制在22℃——26℃,库房由于设备和人员少,可-2℃; B,冬季温度控制在18℃——24℃,库房由于设备和人员少,可-2℃; C,过渡季节温度在22℃+/-4℃; D,湿度:车间全年控制在30%-----80%RH; E,控制的过程中以满足要求为主,节约能源为辅的原则 2、湿度敏感区域的要求:温度10℃——30℃,湿度40%-----70%RH, 3、机房、实验室等有独立空调的地方本着够用节约的原则自行设定要求 二、监控与记录 1、一般环境和湿敏区域以干湿球温度计记录值为准。

2、监测环境温湿度的干湿球温度计的计量和维护由设备管理部暖通组负责,计量周期是 3个月,参考标准以外部计量合格的电子温湿度计为准。 3、暖通组控制的范围:A、B栋办公室,生产线、材料库、成品库、湿敏区。 4、暖通组监控点数量:B栋车间生产线6个,材料库10个,成品库4个,湿度敏感区1个,A、B栋办公室各1个,共计23个 5、暖通组记录点数量:A、B栋办公室各1个,生产线4个,成品库1个、材料库2个、湿敏区1个,共计10个。 6、库房人员对库房(含湿敏区)的所有环境温湿度计(15个)也作记录,湿敏区湿度偏低时库房人员自行采取人工加湿的办法以便满足要求,湿度偏高时暖通人员启动除湿机除湿。 7、暖通组监控频次:每两小时一次。 8、机房、试验室环境由IT&SAP、实验室各自监控,设备出现问题由使用部门报修。

自动控制原理课程设计

物理科学与工程技术学院 课程设计说明书 课题名称:自动控制原理 设计题目:自动控制与检测原理 专业班级:11级自动化 学生姓名:袁 学号:1134307138

自动控制系统 为了实现各种复杂的控制任务,首先要将被控制对象和控制装置按照一定的方式连接起来,组成一个有机的总体,这就是自动控制系统。在自动控制系统中,被控对象的输出量即被控量是要求严格加以控制的物理量,它可以要求保持为某一恒定值,例如温度,压力或飞行航迹等;而控制装置则是对被控对象施加控制作用的机构的总体,它可以采用不同的原理和方式对被控对象进行控制,但最基本的一种是基于反馈控制原理的反馈控制系统。 自动检测 检测是指为确定产品、零件、组件、部件或原材料是否满足设计规定的 质量标准和技术要求目标值而进行的测试、测量等质量检测活动。检测有3个目标:①实际测定产品(含零、部件)的规定质量特性及其指标的量值。② 根据测得值的偏离状况,判定产品的质量水平(等级),确定废次品。③认定测量方法的正确性和对测量活动简化是否会影响对规定特征的控制 自动检测是指在计算机控制的基础上,对系统、设备进行性能检测和故障诊断。他是性能检测、连续监测、故障检测和故障定位的总称。现代自动检测技术是计算机技术、微电子技术、测量技术、传感技术等学科共同发展的产物。凡是需要进行性能测试和故障诊断的系统、设备,均可以采用自动检测技术

课程内容——设计一个雷达天线伺服控制系统 1 雷达天线伺服控制系统简介 1.1 概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1 所示。

温湿度控制器设计实验报告 计算机控制技术

课程:院(部):专业:班级: 学生姓名:学号:指导老师:完成时间:

温湿度控制器设计报告 本设计研究单片机数字温湿度控制器,通过全数字型温湿度传感器测量宽范围的温湿度数据,用来满足恒温湿车间控制、大棚温湿度控制等工农业生产领域需要,要求温湿度测量响应时间快、长期稳定性好,抗干扰能力强,具有较高的应用价值。 一、性能特点 ●配用全数字型温湿度传感器DHT11,温度测量范围0℃--100℃,湿度测 量范围0%RH—90%RH,可以满足一般需要。若要求更宽测量范围,只需 更换温湿度传感器型号,硬件电路及软件程序全兼容。 ●温湿度测量响应时间快、长期稳定性好。 ●采用先进的专用微处理器芯片STC89C52,可靠性高,抗干扰能力强。 ●配用EEPROM芯片AT24C04,使存储的温度上下限和湿度上下限可以 掉电永久保存。 ●可以通过四个按键方便地实现温湿度上下限的调整。 ●当温度或湿度超限后,报警信号点亮相应报警灯。 ●配用三极管和继电器,可以通过驱动继电器打开或切断风机、加热器等 外部设备。 二、功能说明 1、实时测量当前温度值和湿度值,在液晶屏动态显示。 2、可以显示当前允许温度范围,在液晶屏显示,如“20-45”表示允许温度范围为20摄氏度至45摄氏度。 3、可以显示当前允许湿度范围,在液晶屏显示,如“15-60”表示允许湿度范围为15%至60%。 4、当温度低于温度下限时,低温报警灯亮,控制继电器动作。 5、当温度高于温度上限时,高温报警灯亮,控制继电器动作。

6、当湿度低于湿度下限时,低湿报警灯亮,控制继电器动作。 7、当湿度高于湿度上限时,高湿报警灯亮,控制继电器动作。 8、可以通过键盘调整温度上下限和湿度上下限,具体方法是连续按设置键直至温度下限、温度上限、湿度下限、湿度上限相应的位置闪烁,再通过Up键和Down键调整数值,调整完毕继续按设置键进入正常状态。 9、可以保存设置参数至EEPROM中,具体方法是按保存键,此时当前设置参数存盘,重新上电显示新的设置值。如果不按保存键,所调整的设置参数只在此次运行有效,关电后恢复原先设定值。 三、硬件设计 1、设计框图 本研究设计的温湿度控制器框图如图1所示。

实验室温湿度控制

实验室温湿度控制很重要 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。 精品文档,你值得期待 实验室要求适宜的温度和湿度。室内的小气候,包括气温、湿度和气流速度等,对在实验室工作的人员和仪器设备有影响。夏季的适宜温度应是18-28℃,冬季为16-20℃,湿度最好在30%(冬季)-70%(夏季)之间。除了特殊实验室外,温湿度对大多数理化实验影响不大,但是天平室和精密仪器室应根据需要对温湿度进行控制。 环境条件温湿度的控制方面考虑的要素就是保证实验操作的环境温湿度是能够满足实验程序各个过程的需要。我们主要从以下几个方面来制定实验室环境温湿度控制范围。 首先,识别各项工作对环境温湿度的要求。 主要识别仪器的需要、试剂的需要、实验程序的需要,以及实验室员工的人性化考虑(人体在温度18-25℃ 相对湿度在35-80%范围内总体感觉舒适,并且从医学角度来看环境干燥和喉咙的炎症存在一定的因果关系)四个方面要素综合考虑,列出对温湿度控制范围要求的清单。 第二,选择并制定有效的环境温湿度控制范围。从以上各要素所有要求清单中摘取最窄范围作为该实验室环境控制的允许范围,制定环境条件控制方面的管理程序,并依据该科室实际情况制定合理有效的SOP。 第三,保持和监控。通过各项措施保证环境的温湿度在控制的范围内,并对环境温湿度进行监控和做好监控的记录,超过允许范围及时采取措施,开空调调节温度,开除湿机控制湿度。 试剂室温度10-30℃,湿度35-80% 样品存放室温度10-30℃,湿度35-80% 天平室温度10-30℃,湿度35-80% 水分室温度10-30℃,湿度35-65% 红外室温度10-30℃,湿度35-60% 中心实验室温度10-30℃,湿度35-80% 留样室温度10-25℃,湿度35-70% 各个领域实验室的温湿度最佳范围 1

沈阳理工大学 自动控制原理大纲(2010版)-new

《自动控制原理》课程教学大纲 课程代码:030332008 课程英文名称:Automatic Control Principle 课程总学时:48 讲课:40 实验:8 上机:0 适用专业:电子信息工程 大纲编写(修订)时间:2010.7 一、大纲使用说明 (一)课程的地位及教学目标 本课程是电子信息工程专业的基础选修课,是该专业在自动控制方面的基础理论和实验课程。课程的教学目标是使学生系统地掌握古典控制理论和系统,即以微分方程和传递函数为基础对控制系统进行建模、分析和设计的方法,并通过实验加深学生对理论的认识和增强动手能力,为电子信息工程专业了解相关专业和进行交叉研究,打下必要的理论基础。 (二)知识、能力及技能方面的基本要求 1、熟练掌握控制系统的基本概念; 2、深刻理解控制系统稳定性问题; 3、具有分析和解决控制系统问题的基本能力。 (三)实施说明 提高学生的基本素质,鼓励学生从被动吸收知识的状态下转化到主动索取中来,在教授具体内容时,也要求分清每一部分内容在课程整体中所处的地位,只有这样才能在大纲的具体实施中得心应手。不应平均使用力量或对不同内容采用相同的处理方法。教师本人的观念转变及其对课程各环节统一调配的能力,决定了教学效果的好坏。 (四)对先修课的要求 在学习本课程之前,要求学生课前预习积分变换等有关知识。 (五)对习题课、实验环节的要求 1 、每部分内容均安排习题及思考题。通过作业使学生能够对学习的内容真正做到消化理解,也可以提高学生分析和解决问题的能力。 2、开设实验课。通过实验使学生亲自动手了解系统的模拟、性能测试方法及系统性能与参数的关系,增加学生的感性认识。 (六)课程考核方式 1、考核方式:考查。 2、考核目标:重点考核学生基本知识、基本原理和方法的基础上,还应考核学生分析问题和解决问题的综合能力。 3、成绩构成:最终理论考试、平时考核(包括出勤、作业、小测验、提问等)、实验环节考核成绩的总和。 (七)参考书目: 《自动控制原理》,孙亮,杨鹏主编,北京工业大学出版社,2008 《自动控制原理》,王建辉,顾树生主编,清华大学出版社,2007 《自动控制原理》,程鹏主编,高等教育出版社,2009 《自动控制原理》,滕青芳,范多旺,董海鹰,路小娟编,人民邮电出版社,2009 《自动控制原理学习指导》,杨平,翁思义,王志萍编,中国电力出版社,2009

自动控制原理课程设计 频率法设计串联滞后——超前校正装置

目录 设计任务 (3) 设计要求 (3) 设计步骤 (3) 未校正前系统的性能分析 (3) 1.1开环增益 K (3) 1.2校正前系统的各种波形图 (4) 1.3由图可知校正前系统的频域性能指标 (7) 1.4特征根 (7) 1.5判断系统稳定性 (7) 1.6分析三种曲线的关系 (7) 1.7求出系统校正前动态性能指标及稳态误差 (7) 1.8绘制系统校正前的根轨迹图 (7) 1.9绘制系统校正前的Nyquist图 (9) 校正后的系统的性能分析 (10) 2.1滞后超前校正 (10) 2.2校正前系统的各种波形图 (11) 2.3由图可知校正前系统的频域性能指标 (15) 2.4特征根 (15) 2.5判断系统稳定性 (15) 2.6分析三种曲线的关系 (15) 2.7求出系统校正前动态性能指标及稳态误差 (15) 2.8绘制系统校正前的根轨迹图和Nyquist图 (16) 心得体会 (18) 主要参考文献 (18)

一、设计任务 已知单位负反馈系统的开环传递函数0 ()(0.11)(0.011) K G S S S S =++,试用频率 法设计串联滞后——超前校正装置。 (1)使系统的相位裕度045γ> (2)静态速度误差系数250/v K rad s ≥ (3)幅值穿越频率30/C rad s ω≥ 二、设计要求 (1)首先,根据给定的性能指标选择合适的校正方式对原系统进行校正,使其满足工作要求。要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T ,α等的值。 (2)利用MATLAB 函数求出校正前与校正后系统的特征根,并判断其系统是否稳定,为什么? (3)利用MATLAB 作出系统校正前与校正后的单位脉冲响应曲线,单位阶跃响应曲线,单位斜坡响应曲线,分析这三种曲线的关系?求出系统校正前与校正后的 动态性能指标σ%、tr 、tp 、ts 以及稳态误差的值,并分析其有何变化? (4)绘制系统校正前与校正后的根轨迹图,并求其分离点、汇合点及与虚轴交 点的坐标和相应点的增益K *值,得出系统稳定时增益K * 的变化范围。绘制系统校正前与校正后的Nyquist 图,判断系统的稳定性,并说明理由? (5)绘制系统校正前与校正后的Bode 图,计算系统的幅值裕量,相位裕量,幅值穿越频率和相位穿越频率。判断系统的稳定性,并说明理由? 三、设计步骤 开环传递函数0 ()(0.11)(0.011) K G S S S S = ++ 1、未校正前系统的性能分析 1.1开环增益0K 已知系统中只有一个积分环节,所以属于I 型系统 由静态速度误差系数 250/v K rad s ≥ 可选取 v K =600rad/s s rad K S S S K S S H S SG K s s V /600) 101.0)(11.0(lim )()(lim 00 ==++==→→

相关文档
最新文档