钼酸铵的清洁生产工艺

钼酸铵的清洁生产工艺
钼酸铵的清洁生产工艺

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

柠檬酸及生产工艺

柠檬酸及生产工艺 一.柠檬酸的简介 1. 柠檬酸的理化性质 柠檬酸(Citric acid),又称枸椽酸,是一种三元羧酸,其学名为3-羟基-3-羧基戊二酸,分子式C6H8O7(无水物),在自然界中存在于柠檬、柑桔、梅、子、梨、桃、无花果等水果中。柠檬酸具有无毒,无色,无臭特性,一般为半透明结晶或白色粉末,易溶于水、乙醇、乙腈、乙醚等[1],不溶于苯,微溶于氯仿。相对密度1.542g/cm3,熔点153℃(失水)。柠檬酸结晶形态因结晶条件不同而不同,有无水柠檬酸,也有含结晶水的柠檬酸。在干燥空气中微有风化性,在潮湿空气中有潮解性,175℃以上分解放出水及二氧化碳。柠檬酸是一种较强的有机酸,有3个H+可以电离;水溶液呈酸性,加热可以分解成多种产物,与酸、碱、甘油等发生反应。 2. 柠檬酸的用途 柠檬酸具有令人愉悦的酸味,入口爽快,无后酸味,安全无毒,被广泛用作食品和饮料的酸味剂;能与二价或三价的阳离子形成络合物,被用作金属加工的鳌合剂和洗净剂(起软化水作用的洗净力补充剂);还能衍生形成许多衍生物,可用作有机化学工业的原料。因此被广泛用于食品饮料、医药化工、清洗与化装品、有机材料等领域,是目前世界需求量最大的一种有机酸[2],到目前还没有一种可以取代柠檬酸的酸味剂。 二.生产技术 柠檬酸的生产方法共可分为 3 种: 水果提取法,化学合成法, 生物发酵法三种[17],目前以发酵法生产柠檬酸为主[18]。发酵法又分为固体发酵法和液体深

层发酵法。固态发酵能耗小但劳动力大,占地面积大,不适合大规模的生产应用。深层通风发酵法采用不锈钢罐体,机械搅拌通风,微生物在液体相中分布均匀,发酵时不生成孢子,全部菌体细胞用于代柠檬酸,发酵速度高,实现了机械化或自动化操作,利于大规模生产。 三.生物发酵法制取柠檬酸 1.本工艺选择的原料及生产方法 本次生产工艺设计以薯干为原料,采用直接粉碎、调浆、液化,进行好气液体深层发酵,钙盐法提取,最后结晶、干燥得到柠檬酸 2.工艺流程 接收糖浆后,根据糖浆组成作适当的处理或配制,配成发酵原料,进行连续杀菌并冷却后,进入发酵罐,加入菌种和净化压缩空气后进行发酵;发酵液经升温、过滤处理后,进入中和罐,用中和处理;再经过过滤洗涤,得到柠檬酸钙固体,送入酸解罐,再添加酸解,并加入活性炭进行脱色;然后,通过带式过滤机过滤、酸解过滤,除去及废炭;酸解过滤液经离子交换处理后,进行蒸发、浓缩,再进行结晶;结晶后,用离心机进行固液分离,对得到的湿柠檬酸晶体进行干燥与筛选,最后得到成品柠檬酸。

总磷的测定——钼酸铵分光光度法

总磷的测定——钼酸铵分光光度法 (GB 11893—89) 一、目的和要求 1.1 掌握总磷的测定方法与原理。 1.2 了解水体中过量的磷对水环境的影响。 二、原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 本标准规定了用过硫酸钾(或硝酸—高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度法测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。 本标准适用于地面水、污水和工业废水。 取25mL水样,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。 在酸性条件下,砷、铬、硫干扰测定。 三、试剂 3.1 硫酸,密度为1.84g/mL。 3.2 硝酸,密度为1.4g/mL。 3.3 高氯酸,优级纯,密度为1.68g/mL。 3.4 硫酸(V/V),1+1。 3.5 硫酸,约0.5mol/L,将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠溶液,1mol/L,将40g氢氧化钠溶于水并稀释至1000mL。 3.7 氢氧化钠溶液,6mol/L,将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾溶液,50g/L,将5g过硫酸钾(K 2S 2 O 8 )溶于水,并稀释至100mL。 3.9 抗坏血酸溶液,100g/L,将10g抗坏血酸溶于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周,如不变色可长时间使用。 3.10 钼酸盐溶液:将13g钼酸铵[(NH 4) 6 MO 7 O 24 ·4H 2 O]溶于100mL水中,将0.35g酒石酸锑 钾[KSbC 4HO 7 ·0.5H 2 O]溶于100mL水中。在不断搅拌下分别把上述钼酸铵溶液、酒石酸梯钾 溶液徐徐加到300mL硫酸(3.4)中,混合均匀。此溶液贮存于棕色瓶中,在冷处可保存三个月。 3.11 浊度—色度补偿液,混合二体积硫酸(3.4)和一体积抗坏血酸(3.9)。使用当天配制。 3.12 磷标准贮备溶液,称取0.2197g于110℃干燥2h在干燥器中放冷的磷酸二氢钾 (KH 2PO 4 ),用水溶解后转移到1000mL容量瓶中,加入大约800mL水,加5mL硫酸(3.4), 然后用水稀释至标线,混匀。1.00mL此标准溶液含50.0g μ磷。本溶液在玻璃瓶中可贮存至少六个月。 3.13 磷标准使用溶液,将10.00mL磷标准贮备溶液(3.12)转移至250mL容量瓶中,用水稀释至标线并混匀。1.00mL此标准溶液含2.0g μ磷。使用当天配制。 3.14 酚酞溶液,10g/L,将0.5g酚酞溶于50mL95%的乙醇中。

清洁生产标准

清洁生产标准 味精工业 (征求意见稿) 编制说明 《清洁生产标准 味精工业》编制课题组 二○○七年九月

目录 1 概述 (1) 1.1 味精行业的发展状况 (1) 1.2 味精生产工艺 (1) 1.3 味精企业污染物排放现状 (2) 1.4 污染治理技术 (3) 1.5 相关法律、法规、标准 (4) 2 编制过程 (5) 3 标准适用范围 (5) 3.1 清洁生产审核 (6) 3.2 企业清洁生产绩效公告 (6) 4 指导原则 (6) 5 标准制订的技术路线 (7) 6 制订标准的依据和主要参考资料 (7) 7 编制标准的基本方法 (8) 7.1 标准的使用目的 (8) 7.2 标准的指标分类 (8) 8 标准实施的技术可行性和经济分析 (13) 8.1 标准实施的技术可行性 (13) 8.2 标准的经济分析 (13) 8.3 标准的可操作性 (13) 9 标准的实施 (13)

1 概述 清洁生产是实现循环经济的主要方法,是21世纪工业生产的方向,也是我国工业实现可持续发展的重要保证。企业要实现清洁生产,必须有一个努力目标和判断标准。清洁生产标准就是企业努力的目标,也是企业是否实现清洁生产的判断标准。《清洁生产标准味精行业》(以下简称“本标准”)的制定可以促进国内味精行业走清洁生产的道路,为企业开展清洁生产提供技术导向,也可以为企业清洁生产绩效公告提供依据。 1.1 味精行业的发展状况 味精是我国发酵工业的主要行业之一,目前我国味精工业的产量位居世界第一位。从2002-2004年,我国味精产量占世界总产量的比例依次为36.7%、53.88%和73%。2005年我国味精的产量达到118万吨。生产企业现在约50家。据行业协会对24家生产企业的调查统计,平均规模在2.3万吨,其中年产量在两万吨以上的12家企业的生产量占据了其总产量的89%。 我国虽然是世界味精第一生产大国,但国内产业布局呈现出南重北轻,东多西少的现象。国内万吨以上的味精生产企业几乎全部分布在东南、西南、华南、东北地区,根据有关资料显示,截止2005年底,产量最大的五个省如表1所示: 表1 2005年部分地区味精产量 省份总产量(万吨)占全国产量比例 河南18.56 15.72% 山东18.53 15.70% 江苏16.21 13.73% 浙江13.60 11.52% 广东12.54 10.62%河南、山东、江苏、浙江、广东等厂家产量的合计占全国产量67.3%。 1.2 味精生产工艺 味精工业是以大米、淀粉、糖蜜为主要原料的加工工业。其生产工艺与其它发酵产品一样,见图1。 (1)淀粉水解糖的制备 到目前为止,所发现的谷氨酸产生菌都不能直接利用淀粉,因此,以淀粉为原料时,必须先将淀粉水解成葡萄糖,才能供发酵使用。 水解淀粉为葡萄糖的方法有酸解法和酶酸法等。

柠檬酸生产工艺简介

柠檬酸生产工艺简介第一节概述 一、柠檬酸的用途 (一)在食品工业的应用 1、饮料 据统计75%~80%的柠檬酸用于饮料工业。 2、果酱与果冻 3、糖果 4、冷冻食品 5、酿造酒 6、冰淇淋和酸奶 7、脂肪与油 8、腌制品 9、罐头食品和水果加工 10、豆制品和调味品 (二)柠檬酸在药物、美容品、化妆品上应用 1、药物 “999胃泰” 2、发蜡与化妆品 (三)柠檬酸在工业上应用 1、金属净化

2、去垢剂 3、无土栽培农艺 4、矿物 5、…… 二、乳酸的用途 L-乳酸聚合成聚乳酸(PLA) 三、L-苹果酸的用途 三、葡萄糖酸的用途 四、琥珀酸的用途 我国柠檬酸发展简史 1968年我国第一家以淀粉为原料深层发酵柠檬酸成功投产的厂是上海酵母厂。同期,天津工微所开展了以适合我国国情的薯干原料深层发酵柠檬酸的研究工作。之后,上海工微所用该所的“东酒2号”黑曲霉为出发菌株,用薯干粉做培养基,很快选出了我国第一代深层发酵柠檬酸生产菌种AL558,由原轻工业部立项,组织上海、天津两个工微所、上海复旦大学生物系、上海新型发酵厂(筹)、上海酵母厂、天津柠檬酸厂(筹)、南通油洒厂(南通发酵厂前身)等单位,在南通油酒厂展开了善于深层发酵、全离交提取工艺的中、大型试验工作,并取得了成功,因而推动了我国柠檬酸工业于20世纪70年代初形成了工业体系。70年代中期到80年代是我国柠檬酸菌种选育的高峰期,先后选育出5代薯干原料高产菌株和适应淀粉、木薯、葡萄糖母液、糖蜜等原料的优良菌株。上海、天津两工微所和上海复旦大学生物系为此做出了很大贡献。各生产厂的广大科技人员和生产工人通过不懈地努力,提高了柠檬酸行业的整体水平,特别在缩短发酵周期、提高单产方面成绩突出,使我国柠檬酸发酵技术处于世界领先地位。无锡轻工业学院和天津轻工业学院为柠檬酸行业培养了一大批科技力量,已成为行业发展的骨干。1995年金其荣与蚌埠柠檬酸厂共同开发了玉米去渣发酵新工艺。同年黑龙江甘南柠檬酸厂于脱胚玉米去渣发酵工艺也成功投产。玉米新工艺的成功,使我国的柠檬酸工业进入一个

七钼酸铵生产工艺

一、钼矿资料 世界上静态的钼储量估计约5500万吨。估计其中有65%的钼,即3600万吨钼是可用现代技术的。按1989年约消费75000吨的水平计算,足够消费近50年。钼储量的地区分布为:北美、南美的钼储量占钼的静态总储量的80%以上,占西方国家总储量的98%以上。美国、加拿大和智利的总储量430吨,占静态总储量78%以上。中国的钼精矿产量居世界第三位。钼资源集中在北美和南美,但是对可以预见的未来来说,最重要的斑岩矿化带地区的钼足以满足钼的提供。世界钼资源集中太平洋盆地东侧的边缘,即从阿拉斯加和不列颠哥伦比亚经过美国和墨西哥到智利的安地斯。 矿床 钼矿床可分为下面三种类型: 原生钼矿,主要提取辉钼矿精矿; 次生钼矿,从主产品铜中分离钼; 共生钼矿,这类钼矿床中钼和铜的工业开采价值均等。 我国钼资源的基本特点是分布广而又相对集中,集中的大矿区目前发现的有4个,即河南省的栾川矿区,钼金属储量206万吨;吉林省的大黑山矿区,钼金属储量109万吨;陕西省的金堆城矿区,钼金属储量97万吨;辽宁省的杨家杖子和兰家沟矿区,钼金属储量22万吨。这4大矿区钼金属储量占全国总储量的52%加上12个中型矿区,我国大、中型钼矿区钼金属储量占全国总储量的76%。 我国钼资源丰富,全国现有大、中、小矿区(点)222个,已探明的钼金属储量为840万吨,钼资源遍布全国各地。 钼是生产合金钢、不锈钢和合金铸铁的重要合金化元素,它在钢铁工业中的用量占钼

总消费的80%左右。此外,钼在军事(航天、航空、国防)、能源、化工(主要用作催化剂)、电子、电子计算机、生物医学、农业等领域还有广泛的应用。 2000年世界钼储量和基础储量/万吨钼 国家或地区储量基础储量 美国270 540 中国 172 343 智利110 250 加拿大45 91 俄罗斯24 36 秘鲁14 23 哈萨克斯坦 13 20 墨西哥9 23 乌兹别克斯坦 6 15 伊朗 5 14 蒙古 3 5 亚美尼亚 2 3 其他 59 世界总计673 1422 世界矿山钼产量/万吨 国别1998年1999年2000年1-9月 美国 5.33 4.37 2.56 中国 3.00 3.00 2.50 智利 2.55 2.73 2.47 加拿大0.80 0.62 0.51 墨西哥0.59 0.71 0.51 秘鲁0.44 0.55 0.52 俄罗斯 0.48 0.48 0.33 哈萨克斯坦0.30 0.30 0.23 蒙古 0.20 0.18 0.15 伊朗0.14 0.14 0.22 保加利亚0.04 0.04 0.03 日本0.01 0.03 0.02 世界合计13.88 13.15 10.05 钼外贸情况。我国每年生产的钼约1/3(1万吨左右)用于国内消费,占世界钼消费的8%-9%;2/3(2万吨左右)供出口,创汇最高达3.59亿美元,占西方世界钼供应量

企业清洁生产审核评估程序和内容

重点企业清洁生产审核评估 一、申请清洁生产审核评估的企业必须具备以下条件: 1.完成清洁生产审核过程,编制了《清洁生产审核报告》。 2.基本完成清洁生产无/低费方案。 3.技术装备符合国家产业结构调整和行业政策要求。 4.清洁生产审核期间,未发生重大及特别重大污染事故。 二、申请清洁生产审核评估的企业需提交的材料: 1.企业申请清洁生产审核评估的报告。 2.《清洁生产审核报告》。 3.有相应资质的环境监测站出具的清洁生产审核后的环境监测报告。 4.协助企业开展清洁生产审核工作的咨询服务机构资质证明及参加审核人员的技术资质证明材料复印件。 三、重点企业清洁生产审核评估过程 1.阅审企业清洁生产审核报告等有关文字资料。 2.召开评估会议,企业主管领导介绍企业基本情况、清洁生产审核初步成果、无/低费方案实施情况、中/高费方案实施情况及计划等;企业清洁生产审核主要人员介绍清洁生产审核过程、清洁生产审核报告书主要内容等。 3.资料查询及现场考察,主要内容为无/低费和已实施中/高费方案实施情况,现场问询,查看工艺流程、企业资源能源消耗、污染物排放记录、环境监测报告、清洁生产培训记录等。

4.专家质询,针对清洁生产审核报告及现场考察过程中发现的问题进行质询。 5.根据现场考察结果以及报告书质量,对企业清洁生产审核工作进行评定,并形成评估意见。 四、企业清洁生产审核评估标准和内容: 1.领导重视、机构健全、全员参与,进行了系统的清洁生产培训。 2.根据源头削减、全过程控制原则进行了规范、完整的清洁生产审核,审核过程规范、真实、有效,方法合理。 3.审核重点的选择反映了企业的主要问题,不存在审核重点设置错误,清洁生产目标的制定科学、合理,具有时限性、前瞻性。 4.提交了完整、详实、质量合格的清洁生产审核报告,审核报告如实反映了企业的基本情况,对企业能源资源消耗,产排污现状,各主要产品生产工艺和设备运行状况,以及末端治理和环境管理现状进行了全面的分析,不存在物料平衡、水平衡、能源平衡、污染因子平衡和数据等方面的错误。 5.企业在清洁生产审核过程中按照边审核、边实施、边见效的要求,及时落实了清洁生产无/低费方案。 6.清洁生产中/高费方案科学、合理、有效,通过实施清洁生产中/高费方案,预期效果能使企业在规定的期限内达到国家或地方的污染物排放标准、核定的主要污染物总量控制指标、污染物

柠檬酸液态发酵及提取工艺

柠檬酸液态发酵及提取工艺 0802班生物科学饶慧 (指导教师:胡远亮) 0前言 柠檬酸(citric acid)又名枸橼酸,学名2-羟基丙烷三羧酸(2-hydroxytricarboxylic acid)或2-羟基丙烷-l,2,3-三羧酸(2-hydroxy propane-1,2,3-triearboxylic acid)是生物体主要代谢产物之一,在自然界中分布很广,主要存在于柠檬、柑橘、菠萝、梅、李、梨、桃、无花果等果实中,尤以未成熟者含量居多。分子式:C6H8O7(相对分子质量:192.13),无色透明或半透明晶体,或粒状、微粒状粉末,虽有强烈酸味,但令人愉快,稍有涩味。极易溶于水,溶解度随温度的升高而增大;从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质,加热至175°C时它会分解产生二氧化碳和水,剩余一些白色晶体。柠檬酸是一种较强的有机酸,有3个H+可以电离;加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸被称为第一食用酸味剂,极广泛地用作酸味剂、增溶剂、缓冲剂、抗氧化剂等,用于饮料、糖果、酿造酒、冰淇淋、酸奶、罐头食品、豆制品与调味品等的生产中。另外,在药物、美容品、化妆品工业上也有着重要的应用。它是香料和饮料的酸化剂,在食品和医学上用作多价螯合剂,同时是化学中间体,用于制造药物,也可用于金属清洁剂、媒染剂等。柠檬酸的盐类、酯类和衍生物也各具特点,用途极为广泛而有良好的发展前景。 柠檬酸循环(citric acid cycle)又称三羧酸循环(tricarboxylic acid cycle),克雷布斯循环(Krebs cycle)。体内物质糖、脂肪或氨基酸有氧氧化的主要过程。通过生成的乙酰辅酶A与草酰乙酸缩合生成三羧酸(柠檬酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。 实验发酵机理: 1)以薯干粉、玉米粉或淀粉等糖类为原料经黑曲霉柠檬酸产生菌(我们采用黑曲霉M288)糖化后产生高浓度的葡萄糖。 2)黑曲霉利用糖类发酵产生柠檬酸:葡萄糖以EMP(糖酵解途径或者)、HMP

清洁生产标准--味精工业(word版)

HJ444-2008 清洁生产标准味精工业 1 适用范围 本标准规定了味精工业清洁生产的一般要求。本标准将清洁生产标准指标分成五类,即生产技术特征指标、资源能源利用指标、污染物产生指标(末端处理前)、废物回收利用指标和环境管理要求。 本标准适用味精(以玉米为原料)工业的企业的清洁生产审核、清洁生产潜力与机会的判断,以及清洁生产绩效评定和清洁生产绩效公告制度,也适用于环境影响评价、排污许可证管理等环境管理制度。 2 规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB2589 综合能耗计算通则 GB11914-89 水质化学需氧量的测定重铬酸盐法 GB7478-87 水质铵的测定蒸馏和滴定法 3 术语和定义 下列术语和定义适用于本标准。 3.1 清洁生产 指不断采取改进设计、使用清洁的能源和原料、采用先进的工艺技术与设备、改善管理、综合利用等措施,从源头削减污染,提高资源利用效率,减少或者避免生产、服务和产品使用过程中污染物的产生和排放,以减轻或者消除对人类健康和环境的危害。 3.2 取水量 从各种水源取得的水量,用于供给企业用水的源水水量。 各种水源包括取自地表水、地下水、城镇供水工程以及从市场购得的蒸汽等水的产品,但不包括企业自取的海水和苦咸水。 3.3 循环用水量 指在确定的系统内,生产过程中已用过的水,无需处理或经过处理再用于系统代替取水量利用。 4 规范性技术要求 4.1 指标分级 味精生产过程清洁生产水平分三级技术指标: 一级:国际清洁生产先进水平; 二级:国内清洁生产先进水平;

三级:国内清洁生产基本水平。 4.2 指标要求 味精工业的清洁生产指标要求见表1。 表1 味精工业的清洁生产指标要求

(完整版)谷氨酸发酵

1)生物素营养缺陷型 ?作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与 了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏. ?控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵 初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换. 2)油酸营养缺陷型 ?作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少 到正常量的1/2左右. ?控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换. (3)添加表面活性剂 ?添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨 酸. ?机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细 胞膜. ?关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在 下进行分裂,形成产酸型细胞. (4)添加青霉素 ?机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作 用下受损,向外泄露谷氨酸. ?控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不 能合成完整的细胞壁,完成细胞功能的转换. 谷氨酸发酵强制控制工艺 ?为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取 “强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法. ?控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料 中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。谷氨酸发酵 ? 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h. 措施:接种量和发酵条件控制使适应期缩短. ? 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧 下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h. 措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃ ? 3.菌体生长停止期:谷氨酸合成. 措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃. ? 4.发酵后期:菌体衰老,糖耗慢,残糖低. 措施:营养物耗尽酸浓度不增加时,及时放罐. 发酵周期一般为30h. 二、谷氨酸发酵的生化过程

清洁生产

清洁生产 清洁生产是指将综合预防的环境保护策略持续应用于生产过程和产品中,以期减少对人类和环境的风险。内涵清洁生产从本质上来说,就是对生产过程与产品采取整体预防的环境策略,减少或者消除它们对人类及环境的可能危害,同时充分满足人类需要,使社会经济效益最大化的一种生产模式。 清洁生产(cleaner production)在不同的发展阶段或者不同的国家有不同的叫法,例如“废物减量化”、“无废工艺”、“污染预防”等。但其基本内涵是一致的,即对产品和产品的生产过程、产品及服务采取预防污染的策略来减少 污染物的产生。 联合国环境规划署工业与环境规划中心(UNEPIE/PAC)综合各种说法,采用了“清洁生产”这一术语,来表征从原料、生产工艺到产品使用全过程的广义的污染防治途径,给出了以下定义: 清洁生产是一种新的创造性的思想,该思想将整体预防的环境战略持续应用于生产过程、产品和服务中,以增加生态效率和减少人类及环境的风险。 对生产过程,要求节约原材料与能源,淘汰有毒原材料,减降所有废弃物的数量与毒性;对产品,要求减少从原材料提炼到产品最终处置的全生命周期的不利影响;对服务,要求将环境因素纳入设计与所提供的服务中。 美国环保局的定义: 在美国,清洁生产又称为“污染预防”或“废物最小量化”。废物最小量化是美国清洁生产的初期表述,后用污染预防一词所代替。美国对污染预防的定义为:“污染预防是在可能的最大限度内减少生产厂地所产生的废物量力它包括通过源削减(源削减指:在进行再生利用、处理和处置以前,减少流入或释放到环境中的任何有害物质、污染物或污染成分的数量;减少与这些有害物质、污染物或组分相关的对公共健康与环境的危害)、提高能源效率、在生产中重复使用投入的原料以及降低水消耗量来合理利用资源人常用的两种源削减方法是改变产品和改进工艺(包括设备与技术更新、工艺与流程更新、产品的重组与设计更新、

柠檬酸生产工艺

柠檬酸及生产工艺 摘要:柠檬酸广泛应用于食品工业、医药工业和化学工业等方面。它可利用糖质原料如土豆、地瓜中的淀粉等,在多种霉菌及黑曲菌的作用下,控制较低的温度和pH值、较高的通气量和糖浓度,用发酵法制得。 关键词:柠檬酸化工产品发酵法 1 产品说明 柠檬酸又名枸橼酸,学名3-羟基-3-羧基戊二酸,分子式C6H8O7为无色、无臭、半透明结晶或白色粉未,易溶于水及酒精。加热可以分解成多种产物,与酸、碱、甘油等发生反应。 柠檬酸主要应用于食品工业,因为柠檬酸有温和爽快的酸味,普遍用于各种饮料、汽水、葡萄酒、糖果、点心、饼干、罐头果汁、乳制品等食品的制造。柠檬酸在化学工业上可作化学分析用试剂,用作实验试剂、色谱分析试剂及生化试剂,用作络合剂,掩蔽剂,配制缓冲溶液。采用柠檬酸或柠檬酸盐类作助洗剂,可改善洗涤产品的性能,可以迅速和沉淀金属离子,防止污染物重新附着在织物上,保持洗涤必要的碱性,使污垢和灰分散和悬浮,提高表面活性剂的性能,是一种优良的鳌合剂。 2 生产原理 2.1 生产方法简介 中国现有柠檬酸生产厂近百家,总年产能力约80万吨,是全球最大的柠檬酸生产国和出口国。目前,柠檬酸生产方法有水果提取法,

化学合成法和生物发酵法三种。水果提取法是指柠檬酸从柠檬、橘子、苹果等柠檬酸含量较高的水果中提取,此法提取的成本较高,不利于工业化生产。化学合成法的原料是丙酮,二氯丙酮或乙烯酮,此法工艺复杂,成本高,安全性低。而发酵法发酵周期短,产率高,节省劳动力,占地面积小,便于实现仪表控制和连续化,现已成为柠檬酸生产的主要方法。 2.2 反应方程式 C12H22011 +H20+302→2C6H8O7+4H2O (蔗糖) (柠檬酸) 3 工艺过程及流程图 3.1工艺过程 3.1.1菌种培养 在4~6波美度的麦芽汁内加入25%至30%的琼脂,然后接入黑曲霉菌种(无茵操作),在30~32℃条件下培养4天左右。这种培养方法称为“斜面培养”。将麸皮和水以1:1的比例掺拌,再加入10%的碳酸钙、0.5%的硫酸铵,拌匀后装入容量为250毫升的三角瓶中,用1.5公斤压力灭菌60分钟。接人斜面培养法培养出的菌种,培养96~120小时后即可使用。 3.1.2原料处理 湿粉渣必须经过压榨脱水,使含水量在60%左右;干粉渣含水量低,应按60%的比例补足水分;结块的粉渣需粉碎成二至四毫米颗粒。然后加入2%碳酸钙、10%至11%的米糠,掺匀后,堆放2小时,

钼酸铵分光光度法总磷的测定

钼酸铵分光光度法总磷的测定 1 适用范围: 本标准规定了用过硫酸钾(或硝酸-高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。本标准适用于地面水、污水和工业废水。取25mL试料,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。 在酸性条件下,砷、铬、硫干扰测定。 2 原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 3 试剂 本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。 3.1 硫酸(H2SO4),密度为1.84g/mL。3.2 硝酸(HNO3),密度为1.4g/mL。 3.3 高氯酸(HClO4),优级纯,密度为1.68g/mL。5.4 硫酸(H2SO4),1+1。 3.5 硫酸,约c(1/2H2SO4)=1mo1/L:将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠(NaOH),1mo1/L溶液:将40g氢氧化钠溶于水并稀释至 1000mL。 3.7 氢氧化钠(NaOH),6mo1/L溶液;将240g氢氧化钠溶于水并稀释至 1000mL。 3.8 过硫酸钾,50g/L溶液:将5g过硫酸钾(K2S2O8)溶解干水,并稀释至100mL。 3.9 抗坏血酸,100g/L溶液:溶解10g抗坏血酸(C6H8O6)于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周。如不变色可长时间使用。 3.10 钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24·4H2O]于100mL水中。溶解0.35g酒石酸锑钾KSbC4H4O7· 1 H2O]于100mL水中。在不断搅拌下把钼

钼酸铵的生产研究进展_张亨

第37卷第2期2013年4月 中国钼业 CHINA MOLYBDENUM INDUSTRY Vol.37No.2April 2013 收稿日期:2012-10-22;修改稿返回日期:2012-11-01作者简介:张亨(1967—),男,理学硕士,高级工程师。现从事精 细化工产品开发和信息调研工作。 钼酸铵的生产研究进展 张 亨 (锦西化工研究院,辽宁葫芦岛125000) 摘要:介绍了钼酸铵的物理化学性质、毒性防护、生产工艺和用途。对钼酸铵的生产研究进行了综述。 关键词:钼酸铵;性质;工艺;用途;进展中图分类号:TF841.2 文献标识码:A 文章编号:1006-2602(2013)02-0049-06 RESEARCH PROGRESS IN PRODUCTION OF AMMONIUM PARAMOLYBDATE ZHANG Heng (Jinxi Research Institute of Chemical Industry ,Huludao 125000,Liaoning ,China ) Abstract :The physicochemical properties ,toxicity protection ,production process and uses of ammonium paramo-lybdate has been introduced.Production research of ammonium paramolybdate has been summarized.Key words :ammonium paramolybdate ;property ;process ;use ;progress 钼酸铵在冶金工业方面是生产高纯钼粉、钼条、钼丝、钼片等的原料,在石油工业中用于制作高分子化合物催化剂,它也用于陶瓷色料、颜料(钼红、助染剂)、微量元素肥料、阻燃抑烟剂及其他钼化合物等的原料,还用于磷、砷酸、铅定量分析及生物碱分析的试剂和临床医药等。 1 物理化学性质及毒性防护 1.1 物理化学性质 钼酸铵的名称比较复杂,在文献上的称谓比较 混乱,如表1所示的都是钼酸铵。如果在文献上不做特别说明,一般即为同多酸盐四水仲钼酸铵。 表1 各种钼酸铵的CAS 登录号及组成 名 称 CAS 登录号分子式备注正钼酸铵[13106-76-8](NH4)2MoO 4正盐 重钼酸铵[27546-07-2](NH 4)2Mo 2O 7偏钼酸铵[12411-64-2](NH 4)4Mo 8O 26仲钼酸铵 [12027-67-7] (NH 4)6Mo 7O 24 四水仲钼酸铵[ 12054-85-2](NH 4)6Mo 7O 24·4H 2O 同多酸铵盐四水仲钼酸铵[1] 为无色或浅黄色棱形结晶,分 子量为1235.86,相对密度2.498,溶于水(4g /100mL 水)、强碱及强酸中,不溶于醇、丙酮。水溶 液呈弱酸性(pH =5)。在空气中易风化失去结晶水和部分氨,加热到90?时失去一个结晶水。在190?时即分解为氨、水和三氧化钼。 燕山大学张永强等 [2] 研究了难溶复盐钼酸铵氧化钼的标准溶度积常数和不同温度下的溶解度,测定了同离子效应对溶解度的影响,并用红外光谱分析了其解离形式。实验结果表明:25?的Ksp = c 4(NH +4)·c 2(MoO 2-4)·c 3(MoO 3)=2.13?10 -13 ,溶解度随温度的升高显著增加,在有氯化铵存在下 溶解度明显减小。所得结果对生产具有指导作用。南方冶金学院万林生等[3] 研究了钼酸铵中和结晶过程成核速率(N )与晶体线生长速率(L )与溶液中同多酸根离子组成的变化关系。结果表明: AQM 的N 和L 随溶液中[Mo 8O 4- 26]的升高以及 [Mo 7O 6-24]和pH 的降低而增大。在加入酸量相同的情况下,酸化速度快的溶液由于偏离缩合平衡较大,其[Mo 8O 4-26]始终较高,[Mo 7O 6-24]和[MoO 2- 4]较低。AQM 的L 高峰值出现在[Mo 8O 4- 26]较低而[Mo 7O 6- 24] 较高的结晶初期,其主要原因是此阶段首先接触到无机酸的局部溶液中成核数量较少,过饱 和持续的时间长。 南方冶金学院万林生等[4] 同样研究了四钼酸铵(AQM )晶体生长速率、反应历程和控制性步骤。结果表明:AQM 晶体线生长速率(L )在0.3 1.75μm /min 范围内。过饱和生成速度大于消除速度的结晶初期,结晶过程处于相变反应控制的动力学区

谷氨酸发酵生产工艺

目录1.谷氨酸发酵生产工艺简介 1.1工艺流程 1.2工艺参数 1.3工艺要求 2串级控制系统特点与分析 2.1串级系统特点 2.2串级控制结构框图及分析 3控制方案 3.1总体方案 3.2系统放图 3.3待检测点的控制系统流程图 4仪表的选型 4.1热交换器 4.2仪表清单 5控制算法选择 5.1控制规律 5.2调节器正反作用的选择 6总结 7参考文献 附图

串级控制系统-----两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。 例:加热炉出口温度与炉膛温度串级控制系统 1. 基本概念即组成结构

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 在该反应中,主要控制的指标是釜温。但由于测量元件的测量滞后,以及由于测量套管插入其内,在套管的外表面有反应发生,很容易造成釜温的假象。因此在升温-恒温控制的过程中需要热水和冷水的交换切换,以便使谷氨酸发酵充分反应,提高产品质量。 主、副变量,主、副控制器(调节器),主、副对象,主、副检测变送器,主、副回路。 作用在主、副对象上的干扰分别为一、二次干扰 系统特点及分析 * 改善了过程的动态特性,提高了系统控制质量。 * 能迅速克服进入副回路的二次扰动。 * 提高了系统的工作频率。 * 对负荷变化的适应性较强 串级控制系统的特点:

钼酸铵制取

钼酸铵制取 创建时间:2008-08-02 钼酸铵制取(preparation of ammonium molybdate) 从纯钼酸铵溶液生产各种具有不同分子结构的钼酸铵盐的钼化合物制取方法。仲钼酸铵、二钼酸铵、四钼酸铵或八钼酸铵等钼酸铵盐是制取金属钼粉的主要原料。在生产中,常用蒸发结晶法制取仲钼酸铵或二钼酸铵,用中和结晶法制取四钼酸铵或八钼酸铵,生产工艺流程如图。 四钼酸铵或八钼酸铵制取用盐酸或硝酸将净化后的钼酸铵溶液中和至pH6~2.5,此时钼酸铵溶液中的MoO 42-便聚合成MoO 13 2-或Mo 8 O 26 4-离子,并以四钼酸铵或八钼酸 铵晶体析出:

加酸中和前溶液的钼酸铵浓度高,溶液pH低,中和反应温度低,加酸速度快,最终酸度高以及溶液达到预定酸度后液固不及时分离,长时间搅拌,都会使结晶的晶粒细化,吸附的杂质增多。溶液的钼酸铵浓度小,溶液中的硅、磷、砷含量高,中和反应温度高,最终酸度高或低于工艺要求,均会使钼的结晶率降低。为了提高钼酸铵溶液中和结晶的结晶率和产品质量,一般采用的工艺制度是:控制溶液含钼酸铵160~194g/L,或密度1200~1240kg/m3;溶液pH7左右;溶液中的硅、磷、砷量小于0.001g /L;中和反应温度331~335K;在溶液出现浑浊现象前加酸速度可快,在出现浑浊现象后要慢;溶液的最终pH2~2.5;溶液达到最终pH后,立即进行液固分离。 中和沉淀的酸母液中,一般含钼3~5g/L,需进行回收钼的处理。处理的方法可用钼离子交换法、钼溶剂革取法,以及最简单的二次酸沉淀法(pH=1左右)。二次酸沉淀母液可用氨水中和至pH7,经蒸发浓缩、冷却结晶制取氯化铵化肥。 中和结晶一般采用盐酸或硝酸作中和沉淀剂。盐酸来源广,价格低,腐蚀性小,操作和贮运比较安全,但除杂质能力较弱,所得多钼酸铵含Cl约0.2%~0.4%。为除去Cl-,需用氨水溶解钼酸铵,然后再进行蒸发结晶,或蒸发浓缩、冷却结晶制取仲钼酸铵后,方能作为制取钼粉的原料。硝酸来源少,价格高,腐蚀性大,使用、贮运不安全,而且还会产生危及操作人员健康的亚硝酸基离子。另外,经干燥脱水后的多钼酸铵粒度很细,不宜用作生产中粗钼粉。与盐酸相比,硝酸却有去杂质能力强,多钼酸盐干燥、还原时不腐蚀设备以及不需重结晶即可直接用作取钼粉原料等优点。 仲钼酸铵制取将中和结晶析出的多钼酸铵,在343~353K温度下溶于4%~5%浓度的氨溶液中,溶液密度控制在1400~1450kg/m3。多钼酸铵溶液经过滤除杂质(金属氢氧化物、机械杂质)后,将所得滤液放入蒸发结晶器中加热蒸发,除去部分氨和水,使溶液达到饱和而析出仲钼酸铵结晶: 也可从pH6~6.5的纯钼酸铵饱和溶液的饱和温度328K冷却到293K以下析出仲钼酸铵。 仲钼酸铵的粒度主要受钼酸铵溶液的游离氨含量,其次受溶液的初始钼浓度的影响。溶液中的游离氨含量高,初始钼浓度低,晶核难以形成,析出粗粒晶体,粗粒晶体吸附的杂质少。在蒸发结晶过程中,一般使溶液的游离氨含量保持在4~6g/L。另外,蒸发结晶的时间也是影响晶粒粗细的因素,结晶时间适当长些,有利于晶体的不断长大和晶形完整。 蒸发结晶法制取仲钼酸铵的最大特点是产品纯度高,颗粒松散均匀,但也存在生产周期长、设备生产能力小、金属收率低和生产成本高等问题。 二钼酸铵制取将NH 3/MoO 3 =0.86~1或1.25~1(摩尔比),即相当于pH6.3~7.0的纯钼酸铵溶液,在蒸发结晶器中加热至363~371K温度,随着氨气的逸出和 水分的蒸发,钼酸铵溶液达到饱和,这时便有二钼酸铵晶体析出: 相关词条: 钼酸铵制取稀有金属

谷氨酸发酵

第一章文献综述 1.1谷氨酸简介 谷氨酸在生物体内的蛋白质代谢过程中占有重要地位,参与动物、植物和微生物中的许多重要化学反应。目前,我国许多工厂采用多种方法来提高谷氨酸产率,如选育高产菌种、改进发酵工艺、搞好发酵控制、引进微机控制、增加控制参数等。这些方法对于提高谷氨酸产率非常有效。 谷氨酸是生产味精的主要原料,随着发酵法生产谷氨酸技术的发展,我国味精生产始于1923年,至今已有80多年历史,随着科学技术的不断进步,味精生产技术也在不断变革,由创建之初的以面筋、豆粕为原料水解法生产工艺,改变为现在以淀粉为原料发酵法生产工艺,发酵法生产工艺从1964年在上海味精厂首次投入生产以来,发酵法生产谷氨酸的生产技术进步较大,尤其是近几年随着菌种的突破以及新技术,新设备的应用进展更快,进入九十年代,尤其九五年后,技术进步较快,目前行业最好水平时(仅少数厂家)制糖收率99%以上,发酵产酸11-12%,转化率59-62%,提取收率96-98%精制收率96%,与80年代比较全行业平均制糖收率提高了10%,发酵产酸率提高了117%,转化率提高了43%,提取收率提高了20%,精制收率提高了8.8%,综合技术指标淀粉消耗下降了166%

1.2谷氨酸的生产工艺流程 1.2.1液化和糖化 因为大米涨价, 目前大多数味精厂都使用淀粉作为原材料。淀粉先要经过液化阶段。然后再与β- 淀粉酶作用进入糖化阶段。首先利用α- 淀粉酶将淀粉浆液化, 降低淀粉粘度并将其水解成糊精和低聚糖, 应为淀粉中蛋白质的含量低于原来的大米, 所以经过液化的混合液可直接加入糖化酶进入糖化阶段, 而不用像以大米为原材料那样液化后需经过板筐压滤机滤去大量蛋白质沉淀。液化过程中除了加淀粉酶还要加氯化钙,整个液化时间约30min。一定温度下液化后的糊精及低聚糖在糖化罐内进一步水解为葡萄糖。淀粉浆液化后, 通过冷却器降温至60℃进入糖化罐, 加入糖化酶进行糖化。糖化温度控制在60℃左右, pH 值4.5, 糖化时间18~32h。糖化结束后, 将糖化罐加热至80~85℃, 灭酶30min。过滤得葡萄糖液, 经过压滤机后进行油水分离( 一冷分离, 二冷分离) , 再经过滤后连续消毒后进入发酵罐。 1.2.2谷氨酸发酵

相关文档
最新文档