电容器的主要电气参数

电容器的主要电气参数
电容器的主要电气参数

电容器的主要电气参数

————————————————————————————————作者:————————————————————————————————日期:

电容器的主要电气参数有哪些?

字体: 小中大| 上一篇| 下一篇发布: 06-07 15:47 作者: 本站整理来源: 互联网查看: 34次

电容器主要电气规格:

1. 电容量Capacitance: 一般电解电容器的电容量范围为0.47uF-10000uF, 测试频率为120Hz. 塑料薄膜电容器的电容量范围为0.001uF-0.47uF, 测试频率为1KHz. 陶瓷电容器T/C type的电容量范围为1 pF-680pF, 测试频率为1MHz. Hi-K type的电容量范围为100pF-0.047uF, 测试频率为1KHz. S/C type的电容量范围为0.01uF-0.33uF.

2. 电容值误差Tolerance: 一般电解电容器的电容值误差范围为M 即+/-20%, 塑料薄膜电容器为J即

+/-5%或K即+/-10%, 或M即+/-20%三种, 陶瓷电容器T/C type为C即+/-0.25pF (10pF以下时), 或D即+/-0.5pF (10pF以下时), 或J或K四种. Hi-K type 及S/C type为K或M或Z即+80/-20%三种.

3. 损失角即D值: 一般电解电容器因为内阻较大故D值较高, 其规格视电容值高低决定, 为0.1-0.24以下. 塑料薄膜电容器则D值较低, 视其材质决定为0.001-0.01以下. 陶瓷电容器视其材质决定, Hi-K type 及S/C type为0.025以下. T/C type其规格以Q值表示需高于400-1000. (Q值相当于D值的倒数)

4. 温度系数Temperature Coefficient: 即为电容量受温度变化改变之比例值, 一般仅适用于陶瓷电容器. T/C type其常用代号为CH或NPO 即为+/-60ppm, UJ即为-750+/-120ppm, SL即为+350+/-1000ppm. Hi-K type (Z)及S/C type (Y), 其常用代号为B (5P)即为+/-10%, E (5U)即为+20/-55%, F (5V)即为+30/-80%.

5. 漏电流量Leakage current: 此为电解电容器之特定规格, 一般以电容器本身额定电压加压3 Min后, 串接电流表测试, 其漏电流量需在0.01CV ( uF电容量值与额定电压相乘积) 或3uA以下(取其较大数值). 特定低漏电流量使用(Low leakage type) 则其漏电流量需在0.002CV或0.4uA以下.

6. 冲击电压Surge Voltage: 一般以电容器本身额定电压之1.3倍电压加压, 需工作正常无异状.

7. 使用温度范围: 一般电解电容器的使用温度范围为-25℃至+85℃, 特定高温用或低漏电流量用者为

-40℃至+105℃. 塑料薄膜电容器为-40℃至+85℃. 陶瓷电容器T/C type为-40℃至+85℃, Hi-K type 及S/C type为-25℃至+85℃.

度知道:如何选择电容

字体: 小中大| 上一篇| 下一篇发布: 03-14 09:01 作者: 本站整理来源: 互联网查看: 1047次

如何选择电容

悬赏分:10-解决时间:2006-5-16 08:56

在构建一个有相位差的电路中,根据电工原理知道,电流流过电容C后产生90度的相位滞后,而电阻不会。但是用RC可以构建一个输入与输出有相位差的电路。

我在试验中计算了电阻R,电容C,但是只能在频率《20HZ才能构成相位差,而高于20Hz的频率信号通过电容后,电容成了一导线作用。

请问如果在构建一个相位差电路,如何选择电容,选择哪种类型的电容??

问题补充:使得电感也可以造成相位差,不过我没有使用过,不知道在交流电路中要构成一个相位差电路,如何选择呢;/

以下是网友对问题的回答部分:

电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。

①电容的功能和表示方法。

由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。

②电容的分类。

电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。

③电容的容量。

电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。

④电容的容量单位和耐压。

电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,

1μF=1000nF=1000000pF。

每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。

⑤电容的标注方法和容量误差。

电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。

数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。

色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。

电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。

⑥电容的正负极区分和测量。

电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。

当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。

⑦电容使用的一些经验及来四个误区。

一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。

四个误区:

●电容容量越大越好。

很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。

●同样容量的电容,并联越多的小电容越好,

耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡设计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。

●ESR越低,效果越好。

结合我们上面的提高的供电电路来说,对于输入电容来说,输入电容的容量要大一点。相对容量的要求,对ESR 的要求可以适当的降低。因为输入电容主要是耐压,其次是吸收MOSFET的开关脉冲。对于输出电容来说,耐压的要求和容量可以适当的降低一点。ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。

●好电容代表着高品质。

“唯电容论”曾经盛极一时,一些厂商和媒体也刻意的把这个事情做成一个卖点。在板卡设计中,电路设计水平是关键。和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好产品。衡量一个产品,一定要全方位多角度的去考虑,切不可把电容的作用有意无意的夸大.

电子元件基础知识电容篇:什么电容的ESR?

字体: 小中大| 上一篇| 下一篇发布: 05-11 11:15 作者: 佚名来源: 互联网查看: 740次

虽然是个简单的概念,不过一写成洋文,就变得不容易理解了。

ESR,是EquivalentSeriesResistance三个单词的缩写,翻译过来就是“等效串连电阻”。

理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。这个损耗在外部,表现为就像一个电阻跟电容串连在一起,所以就起了个名字叫做“等效串连电阻”。

ESR的出现导致电容的行为背离了原始的定义。

比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。

同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。

所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。

不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。

比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较

电容器 电容器通常简称其为电容,用字母C表示。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。 相关公式 电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联 C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3) 标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 容量大的电容其容量值在电容上直接标明,如10 μF/16V 容量小的电容其容量值在电容上用字母表示或数字表示 字母表示法:1m=1000 μF 1P2= 1n=1000PF 数字表示法:三位数字的表示法也称电容量的数码表示法。三位数字的前两位数字为标称容量的有效数宇,第三位数宇表示有效数字后面零的个数,它们的单位都是pF。如:102表示标称容量为1000pF。 221表示标称容量为220pF。 224表示标称容量为22x10(4)pF。 在这种表示法中有一个特殊情况,就是当第三位数字用"9"表示时,是用有效数宇乘上10的-1次方来表示容量大小。如:229表示标称容量为22x(10-1)pF=。 允许误差±1% ±2% ±5% ±10% ±15% ±20% 如:一瓷片电容为104J表示容量为μF、误差为±5%。 电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:D——005级——±%;F——01级——±1%;G——02级——±2%;J——I 级——±5%;K——II级——±10%;M——III级——±20%。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。 主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。他们分别使用的允许偏差是+-5% +-10% +-20%。 额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。常见的电容额定电压与耐压测试仪测量值的关系( 600V的耐压测试仪测量电压为760V以上550V的耐压测试仪测量电压为715V以上; 500V的耐压测试仪测量电压为650V以上; 450V的耐压测试仪测量电压为585V以上; 400V的耐压测试仪测量电压为520V以上; 250V的耐压测试仪测量电压为325V以上; 200V的耐压测试仪测量电压为260V以上;

DC868系列常规型智能低压电容器 产品使用说明 安装和使用前认真阅读并理解本册内容 检查产品附件 按要求安装、调试

目录 一、安全使用注意事项 (3) 二、产品概述 (3) 三、产品主要技术参数 (3) 四、产品型号说明 (4) 五、产品常规型号规格表 (4) 六、产品外形及安装尺寸 (5) 七、智能电容安装说明 (5) 1、拆除外包装 (5) 2、智能电容概观 (6) 3、安装要求 (6) 4、产品安装示意 (7) 七、现场检查 (8) 1. 接线正确性检查注意事项: (8) 2. 产品工作正常性检查注意事项: (8) 3. 上电前注意事项: (8) 八、人机显示与操作说明 (8) 1. 功能描述 (8) 2. 界面描述 (8) 3、显示与操作 (10) 4. 菜单示例 (12) 九、产品常见错误与异常处理 (16) 1.常见错误 (17) 2.常见异常处理 (17)

一、安全使用注意事项 在安装、保养和使用我公司低压智能电力电容器时,请仔细阅读这些说明内容并谨慎操作,以便能够充分利用电容器的功能,延长本机的使用寿命。对因使用不当造成的损失,本公司不承担责任。 1、请勿撞击! 2、电源线的规格应满足用电负荷的要求,30kvar 及以上容量的电容器使用16 mm2截面积的多芯铜导线。请正确连接A、B、C 相,外壳应可靠接地。 3、在保养电容器之前,请把电容器开关全部退掉。 4、电容器正常运行期间,如果外壳没有可靠接地,电容器本体可能带电,请勿触摸电容器金属部分,否则有触电可能。 二、产品概述 DC868系列智能低压电容器是以二组(△型)或一组(Y型)低压电力电容器为主体,集成了现代测控、电力电子、网络通讯、自动化控制等先进技术,替代传统的由控制器、熔丝、复合开关或机械式接触器、热继电器、低压电容器、指示灯等分离器件在柜内用导线连接而组成的成套无功补偿装置。由它组成的低压无功补偿装置具有补偿方式灵活、补偿效果好、装置体积小、功耗低、安装维护方便、使用寿命长、保护功能强、可靠性高等特点,并真正做到过零投切,满足用户对设备的实际需求,适应了现代电网对无功补偿设备的更高要求。 三、产品主要技术参数 ■环境条件 运输存储温度:-25℃~55℃ 极限工作温度:(电容温度极限) 相对湿度:20% ~90% 海拔高度:≤2000m 其他条件:安装地点无腐蚀金属和破坏绝缘的气体及导电介质存在,不得含有爆炸危险的介质,无较强的振动和冲击,无严重霉菌存在。 ■电源条件 工作电压:共补380V AC ,分补230V AC 电压偏差:±20% 工作频率:50±1.5Hz 电压谐波:电压总畸变率不大于5%

电容器主要技术参数的标注方法: 1.直标法 指在电容器的表面直接用数字和单位符号或字母标注出标称容量和耐压等。 例某电容器上标CD—1、2200μF、35V,表示这是一个铝电解电容器,标称容量 为2200μF,耐压为35V。 某电容器上标CA1—1、2.2±5%、DC63V,表示这是一个钽电解电容器,标称容量 为2.2μF,允许误差为±5%,直流耐压为63V。 2.数字加字母标注法 指用数字和字母有规律的组合来表示容量,字母既表示小数点,又表示后缀单位。 例 p10表示0.1pF 1p0表示1pF 6P 8表示6.8pF 2μ2表示2.2μF 7p5表示7.5 pF 2n2表示2.2nF 8n2表示8200pF M1表示0.1μF 3m3表示3300μ F G1表示100μF 3.数码标注法 数码标注法多用于非电解电容器的标注,它采用三位数标注和四位数标注: 1)三位数标注法采用三位数标注的电容器,前两位数字表示标称值的有效数 字,第三位表示有效数字后缀零的个数,它们的单位是pF。这种标注法中有一个特殊的, 就是当第三位数字是9时,它表示有效数字乘以10-1。 例102表示标称容量是1000pF,即1nF; 473表示标称容量是47000pF,即47nF。479表示标称容量是 4.7pF。 2) 四位数标注法采用四位数标注的电容器不标注单位。这种标注方法是用1 ~4位数字表示电容量,其容量单位是pF;若用0.0X或0.X时,其单位为μF。

例 47表示标称容量是47 pF ;0.56表示标称容量是0.56μF 。 采用数码标注的,有些后面带的还有字母,它表示允许误差。识别方法: D——±0.5% F——±1% G——±2% J——±5% K——±10% M——±20% 例 223J表示标称容量是22000 pF,误差为±5% 。 4.电容器容量允许误差的标注方法 电容器容量允许误差的标注方法主要有三种: 1)用字母表误差 识别方法: B——±0.1% C——±0.25% D——±0. 5% F——±1% G——±2% J——±5% K——±10% M——±20% N——±30% 例 223J表示标称容量是22000 pF,误差为±5% 。 2)直接标出误差的值 例33 pF±0.2 pF则表示电容器的标称容量是33 pF,允许误差是±0.2 pF。 3)直接用数字表示百分比的误差 例 0.33/5 则表示电容器的标称容量是0.33μF,允许误差是±5%

智能复合开关技术手册 石家庄福润新技术有限公司 版权所有

一、产品概述: ZFK型智能低压复合开关是最新一代低压无功补偿装置中电容器的投切开关,是一种智能化的环保节能型控制执行部件,是我公司针对可控硅和交流接触器在低压无功补偿应用方面存在的先天不足而精心研制开发的最新科技成果。本产品已通过 3 C 认证。 本产品适用于对低压无功补偿电容器的通断控制。基本工作原理是将可控硅与磁保持继电器并接。使复合开关在接通和断开的瞬间具有可控硅过零投切的优点,而在正常接通期间又具有接触器无功耗的优点。 本产品与交流接触器、可控硅或固态继电器等开关元件相比较有很大的技术优势。主要优点是接到外部控制信号后,通过逻辑判断,自动寻找最佳投切点;保证过零投切,无涌流;触点不烧结;能耗小;无谐波注入;与同类产品相比,其在技术上具有极大的先进性,高效低耗,环保节能,尤其是在涌流和安全可靠性方面性能大大提高。 产品图片: 产品外形图:

二、技术参数 1.工作环境条件 环境温度:-20℃~+60℃; 相对湿度:40℃时,20%~90%; 2.额定电压、工作电源及额定电流 额定工作电压:380V(共补)/220V(分补)三相四线交流50HZ; 允许偏差:三相电压同步变化不大于±20%; 波形为正弦波,失真度小于5%; 额定频率:50HZ±5%; 控制电流:32/40/50/63/80A。 3.主要技术指标: 使用寿命:50万次 相数:三相(△型接法);单向(Y型接法) 控制容量:三相共补电容器组容量:≤16/20/25/30/40Kvar 分相补偿三相电容器组总容量:≤16/20/25/30/40Kvar 功耗:≤2W 接点耐压:≥2000V 响应时间:≤60ms 连续两次接通间隔:≥30秒 2

电容的型号功能和应用的详细介绍 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 定义: 电容是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离, k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S为极板面积,d为极板间的距离。)

电容器的电势能计算公式:E=CU^2/2=QU/2 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 电容器的型号命名方法 第一部分 | 第二部分 | 第三部分 | 第四部分 名称 | 材料 | 特征 | 序号 电容器 | 符号 | 意义 | 符号 | 意义 | 符号 C 高频瓷 T 铁电 T 低频瓷 W 微调 I 玻璃 J 金属化 符号 Y 釉云母 X 小型 C Z 纸介 D 电压用字母或数字 J 金属化 M 密封 L 纸涤纶 Y 高压

JKWNA-9 低压无功补偿控制器 使用说明书江苏南自通华电力自动化有限公司 1产品简介 1.1概述 JKWNA-9低压无功补偿控制器和NA系列智能集成式电力电容补偿装置配套使用,具备采集并显示电测量数据,监测和显示智能电容器运行工况、投切状态,以及根据无功功率与目标功率因数自动控制投切电容器等功能。 1.2产品特点 JKWNA-9低压无功补偿控制器通过通信总线连接NA系列智能集成式电力电容补偿装置;控制器采集电网电测数据,在显示智能电容器组运行情况的同时,可以直接根据当前的电测数据,对电容器组进行智能投切控制,以达到无功补偿的效果。 1.3外观尺寸 2技术参数

显示分辨率128×64,显示12点阵汉字输入测量RJ45方式接入智能电容器网络 电源 工作范围AC380V±30% 功耗≤2W 工作条件 -10~55℃,相对湿度≤93% 无腐蚀气体场所,海拔≤2000m 隔离耐压电源>2500V 绝缘电阻≥2MΩ 尺寸 面框尺寸:120mm×120mm 开孔尺寸: 3使用说明 JKWNA-9低压无功补偿控制器面板由产品名称及公司信息、液晶显示屏、操作按键组成。下面对液晶显示屏显示内容和主要功能作简单说明: 3.1主菜单 液晶屏第1行从左到右依次显示:联网电容器数量、当前投切控制方式(自控/手控和软件版本号;

当前所有联网电容器的投切状态以图形的方式直观显示在液晶屏上,同时显示投入到电网中总的补偿容量,显示界面如下: 注:表示分补表示共补表示投入表示切除 当前电容柜补偿电流界面如下: 3.2运行工况 显示开关故障、过压保护、过流保护、过温保护、过谐波保护的电容器信息。 使用和切换界面查看各种保护与故障,按 键返回主菜单。 3.3设置参数 设置参数 CT变比(比值:0000 目标功率因数:0.99 无功算法时间:040 设置现场的电流互感器变比,无功控制的目标功率因数和无功算法时间。

电解电容器的参数特性 上海BIT-CAP技术中心2.1容量 2.1.1标称容量(C R) 电容器设计所确定的容量和通常在电容器上所标出的电容量值。 2.1.2容量公差 容量偏差是指电容器的实际容量离开标称容量的范围,容量偏差一般会标示在出货检验单上和包装箱盒贴上。YM产品的容量公差为±20%。 2.1.3容量偏差等级 为了保证每批电容器容量的一致性,保证客户装在同一台机器上的所有电容器之间的容量偏 差在。特别为每一个电容器贴上表示容量偏差的标签。客户在装机时选用同一标签的电容器装在一台设备内,这样能够有效的保证了同一台设备内的电容器容量的一致性。偏差等级见表1。 容量等级代码容量偏差 D-20%≤Cap<-15% C-15%≤Cap<-10% B-10%≤Cap<-5% A-5%≤Cap<0 E0≤Cap<5% F5%≤Cap<10% G10%≤Cap<15% H15%≤Cap≤20% 表1容量偏差等级表 2.1.4容量的温度特性 电解电容的容量不是所有的工作温度下都是常量,温度对容量的影响很大。温度降低时,电解液的粘性增加,导电能力下降,容量下降。

图4容量温度特性(测试频率120Hz ) 2.1.5 容量的频率特性 电解电容器的容量决定于温度,还决定于测试频率。容量频率关系:C 代表容量,单位F f 代表频率,单位Hz z 代表阻抗,单位Ω 图5容量频率特性曲线(测试温度20℃) 2.1.6频繁的电压波动及充放电 频繁的电压波动及充放电都会导致容量下降,为了应对频繁的电压波动及充放电的使用条件,特别设计了ER6系列产品(充放电应对品)。详细情况请联系我们。2.2损耗角的正切值tan δ 用于脉动电路中的铝电解电容器,实际上要消耗一部分的有功功率,这可以用损耗角的正切值来表征。损耗角的正切值为在正弦电压下有功功率与无功功率的比值。对于电解电容器较常采用的等效电路,如图6,则损耗角的正切值为: 图6等效串联电路图

常用电容器主要参数与特点 1、标称电容量和允许偏差 标称电容量是标志在电容器上的电容量。 电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。在标准JISC 5102 规定:铝电解电容的电容量的测量条件是在频率为 120Hz,最大交 流电压为(Voltage Root Mean Square,通常指交流电压的有效值),DC bias (直流偏压直流偏置直流偏移直流偏磁)电压为~的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。 电容器中存储的能量 E = CV^2/2 电容器的线性充电量 I = C (dV/dt) 电容的总阻抗(欧姆) Z = √ [ RS^2 + (XC – XL)^2 ] 容性电抗(欧姆) XC = 1/(2πfC)

电容器实际电容量与标称电容量的偏差称误差,在允许的偏差范围称精度。 精度等级与允许误差对应关系:00(01)-±1%、0(02)-±2%、Ⅰ-±5%、Ⅱ-±10%、Ⅲ-±20%、Ⅳ-(+20%-10%)、Ⅴ-(+50%-20%)、Ⅵ-(+50%-30%) 一般电容器常用Ⅰ、Ⅱ、Ⅲ级,电解电容器用Ⅳ、Ⅴ、Ⅵ级,根据用途选取。 2、额定电压 在最低环境温度和额定环境温度下可连续加在电容器的最高直流电压有效值,一般直接标注在电容器外壳上,如果工作电压超过电容器的耐压,电容器击穿,造成不可修复的永久损坏。 3、绝缘电阻 直流电压加在电容上,并产生漏电电流,两者之比称为绝缘电阻。 当电容较小时,主要取决于电容的表面状态,容量〉时,主要取决于介质的性能,绝缘电阻越大越好。 电容的时间常数:为恰当的评价大容量电容的绝缘情况而引入了时间常数,他等于电容的绝缘电阻与容量的乘积。 4、损耗 电容在电场作用下,在单位时间内因发热所消耗的能量叫做损耗。各类电容都规定了其在某频率范围内的损耗允许值,电容的损耗主要由介质损耗,电导损耗和电容所有金属部分的电阻所引起的。

科技创新、节能环保 1 目录 一、 产品概述 二、 产品型号规格和说明 1、 型号说明 2、 常规产品的型号规格 三、 产品外形与安装尺寸 四、 接线端子排列与定义 五、 产品应用电气连接及接线 1、 三相共补接线图 2、 混合补偿接线图 六、 显示面板定义说明 七、 开机前的检查与试验 八、 操作说明 1、 数据查看 2、 参数设定

科技创新、节能环保 2 九、 查看数据界面 1、 三相共补式数据查看说明 2、 单相分补式数据查看说明 十、 参数设定界面 1、 三相共补式参数设定说明 2、 单相分补式参数设定说明 十一、 常见故障分析 1、 通电后产品数码管暗或无显示 2、 PF 值显示负值 3、 故障指示灯亮

科技创新、节能环保 3 一、 产品概述 DC868系列低压智能电容器是应用于0.4kV 低压电网的新一代无功补偿装置。它由CPU 测控单元、同步开关、保护装置、两台(△型)或一台(Y 型)低压自愈式电力电容器组成一个独立完整的智能补偿单元,替代由智能无功控制器、熔丝(或微断)、晶闸管复合开关(或接触器)、热继电器、指示灯、低压电力电容器多种分散器件组装而成的自动无功补偿装置。由DC868系列智能电容器组成的低压无功补偿装置具有补偿方式灵活(共补和分补可任意组合)、补偿效果好、装置体积小、功耗低、价格廉、安装维护方便、使用寿命长、保护功能强、可靠性高等特点,并真正做到过零投切,满足用户对无功补偿要切实达到提高功率因数、改善电压质量、节能降损的实际需求。

科技创新、节能环保 4 二、 产品型号说明 1、 型号说明 DC ∕450 二级容量(kvar ) 分相补偿只有一级容量 一级容量(kvar) 额定电压(V ) 显示方式:Y-液晶显示 数 码显示无字母 补偿方式:S-共补 F-分补 组网方式:R-RS485 L-蓝牙 W-无线 产品系列号:868-通用型 868X-抗谐波型 企业代号:得诚

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

电容参数:X5R,X7R,Y5V,COG 详解 在我们选择无极性电容式,不知道大家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本人特意为此查阅了相关的文献,现在翻译出来奉献给大家。 这类参数描述了电容采用的电介质材料类别,温度特性以及误差等参数,不同的值也对应着一定的电容容量的范围。具体来说,就是: X7R常用于容量为3300pF~0.33uF的电容,这类电容适用于滤波,耦合等场合,电介质常数比较大,当温度从0°C 变化为70°C时,电容容量的变化为±15%; Y5P与Y5V常用于容量为150pF~2nF的电容,温度范围比较宽,随着温度变化,电容容量变化范围为±10%或者 +22%/-82%。 对于其他的编码与温度特性的关系,大家可以参考表4-1。例如,X5R的意思就是该电容的正常工作温度为 -55°C~+85°C,对应的电容容量变化为±15%。 表4-1 电容的温度与容量误差编码 下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在

使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一、NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%, 相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO 电容器可选取的容量范围。 NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。 二 X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 三 Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。 Z5U电容器的其他技术指标如下:工作温度范围+10℃ --- +85℃ 温度特性 +22% ---- -56% 介质损耗最大 4% 四 Y5V电容器 Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%。 Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器。 Y5V电容器的取值范围如下表所示 Y5V电容器的其他技术指标如下:工作温度范围 -30℃ --- +85℃ 温度特性 +22% ---- -82% 介质损耗最大 5% 贴片电容器命名方法可到AVX网站上找到。 NPO,X7R及Y5V电容的特性及主要用途 NPO的特性及主要用途 属1类陶瓷介质,电气性能稳定,基本上不随时间、温度、电压变化,适用于高可靠、高稳定的高额、特高频场合。特性: 电容范围 1pF~0.1uF (1±0.2V rms 1MHz) 环境温度: -55℃~+125℃ 组别:CG 温度特性:0±30ppm/℃ 损耗角正切值: 15x10-4 绝缘电阻:≥10GΩ 抗电强度: 2.5倍额定电压 5秒浪涌电流:≤50毫安

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

超级电容器的分类 (资料来源:中国联保网)按原理 超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。 按原理分为双电层型超级电容器和赝电容型超级电容器: 双电层型超级电容器 1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。 2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极。 3.碳气凝胶电极材料,采用前驱材料制备凝胶,经过炭化活化得到电极材料。 4.碳纳米管电极材料,碳纳米管具有极好的中孔性能和导电性,采用高比表面积的碳纳米管材料,可以制得非常优良的超级电容器电极。 以上电极材料可以制成: 1.平板型超级电容器,在扣式体系中多采用平板状和圆片状的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作

电压。 2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有更大的电容量和更高的功率密度。 赝电容型超级电容器 包括金属氧化物电极材料与聚合物电极材料,金属氧化物包括NiOx、MnO2、V2O5等作为正极材料,活性炭作为负极材料制备的超级电容器,导电聚合物材料包括PPY、PTH、PAn i、PAS、PFPT等经P型或N型或P/N型掺杂制取电极,以此制备超级电容器。这一类型超级电容器具有非常高的能量密度,除NiOx型外,其它类型多处于研究阶段,还没有实现产业化生产。 按电解质类型 可以分为水性电解质和有机电解质类型: 水性电解质 1.酸性电解质,多采用36%的H2SO4水溶液作为电解质。

2.碱性电解质,通常采用KOH、NaOH等强碱作为电解质,水作为溶剂。 3.中性电解质,通常采用KCl、NaCl等盐作为电解质,水作为溶剂,多用于氧化锰电极材料的电解液。 有机电解质 通常采用LiClO4为典型代表的锂盐、TEABF4作为典型代表的季胺盐等作为电解质,有机溶剂如PC、ACN、GBL、THL等有机溶剂作为溶剂,电解质在溶剂中接近饱和溶解度。 其他 1.液体电解质超级电容器,多数超级电容器电解质均为液态。 2.固体电解质超级电容器,随着锂离子电池固态电解液的发展,应用于超级电容器的电解质也对凝胶电解质和PEO等固体电解质进行研究。

3.运行工况界面 运行工况里包含了配电电压、电流、功率因数、功率、电压各次谐波、电流各次谐波等各电参数的数值显示,以及测控仪与智能电容器的通信状况,通过“或”键切换界面查看各电参数以及测控仪与智能电容器的通信状况,按“”键返回到主菜单界面。以下细分界面依次对各项进行介绍:(1)配电三相功率因数、电压、电流界面 在使用过程中若出现过补偿或配电电流接线接反,则在上述界面中功率因数数值前显示‘-’,例如A相功率因数显示‘-0.960’,表示此时A相电容已过补偿或A相配电电流方向接反。 在使用过程中若出现过压或欠压现象,在上述界面中电压反显显示,例如A相电压显示“”,表示此时A相电压已超过设定过压值。 (2)有功、无功、电容电流界面 P(KW) :实时的有功功率; Q(Kvar):系统当前过补偿或欠补偿的无功数值; C-I(A) :实时的电容器电流值。(3)通信界面 测控仪与不同的智能电容器通讯,其显示的通信界面略有不同,如下图所示:图1 图2 图3 图1为测控仪与三相式智能电容器或智能抑谐式电容器(双电容电抗)通信界面; 图2为测控仪与三相式智能抑谐式电容器(单电容电抗)的通信界面; 图3为测控仪与分相式智能电容器的通信界面; “JH C1 C2”中“JH”表示三相式智能电容器的地址,“C1 C2”分别表示部两组电容器的容量(如图所示“060 20.20”表示此三相式智能电容器地址为“60”,容量为20 Kvar +20Kvar)。 “JH C”中“JH”表示三相式智能抑谐式电容器(单电容电抗)的地址,“C”表示电容器的容量(如图所示“060 40”表示此三相式智能抑谐式电容器(单电容电抗)地址为“60”,容量为40 Kvar)。 “JH A B C”表示分相式智能电容器的地址及A、B、C三相容量(如图所示“06 6.6 6.6 6.6”表示此分相式智能电容器地址为6,电容器容量为20Kvar)。 智能电容器投入后,状态反显显示。例如显示“060 20.20”,则表示此台智能电容器C1投入,C2切除。 注:若系统中无分相式智能电容器,则分相式电容通信界面不显示。

电容器的主要参数有哪些? 电容器的主要参数有标称容量(简称容量)、允许偏差、额定电压、漏电流、绝缘电阻、损耗因数、温度系数、频率特性等。 (一)标称容量 标称容量是指标注在电容器上的电容量。 电容量的基本单位是法拉(简称法),用字母“F”表示。比法拉小的单位还在毫法(mF)、微法(μF)、纳法(nF)、皮法(pF),它们之间的换算关系是: 1F=1000mF 1mF=1000μF 1μF=1000nF 1nF=1000pF 其中,微法(μF)和皮法(pF)两单位最常用。 在实际应用时,电容量在1万皮法以上电容量,通常用微法作单位,例如:0.047μF、0.1μF、2.2μF、47μF、330μF、4700μF等等。 电容量在1万皮法以下的电容器,通常用皮法作单位,例如:2pF、68 pF、100 pF、680 pF、5600 pF等等。 标称容量的标注方法有直标法、文字符号标注法和色标法等,具体的识别方法将在以后的内容中作详细介绍。 (二)允许偏差 允许偏差是指电容器的标称容量与实际容量之间的允许最大偏差范围。 电容器的容量偏差与电容器介质材料及容量大小有关。电解电容器的容量较大,误差范围大于±10%;而云母电容器、玻璃釉电容器、瓷介电容器及各种无极性高频在机薄膜介质电容器(如涤纶电容器、聚苯乙烯电容器、聚丙烯电容器

等)的容量相对较小,误差范围小于±20%。 (三)额定电压 额定电压也称电容器的耐压值,是指电容器在规定的温度范围内,能够连续正常工作时所能承受的最高电压。 该额定电压值通常标注在电容器上。在实际应用时,电容器的工作电压应低于电容器上标注的额定电压值,否则会造成电容器因过压而击穿损坏。 (四)漏电流 电容器的介质材料不是绝艰绝缘体,宁在一定的工作温度及电压条件下,也会有电流通过,此电流即为漏电流。 一般电解电容器的漏电流略大一些,而其它类型电容器的漏电流较小。 (五)绝缘电阻 绝缘电阻也称漏电阻,它与电容器的漏电流成反比。漏电流越大,绝缘电阻越小。绝缘电阻越大,表明电容器的漏电流越小,质量也越好。 (六)损耗因数 损耗因数也称电容器的损耗角正切值,用来表示电容器能量损耗的大小。该值越小,说明电容器的质量越好。 (七)温度系数 温度系数是指在一定温度范围内,温度每变化1℃时,电容器容量的相对变化值。温度系数值越小,电容器的性能越好。 (八)频率特性 频率特性是指电容器对各种不同高低的频率所表现出的性能(即电容量等电参数随着电路工作频率的变化而变化的特性)。不同介质材料的电容器,其最高工作频率也不同,例如,容量较大的电容器(如电解电容器)只能在低频电路中正常工作,高频电路中只能使用容量较小的高频瓷介电容器或云母电容器等。 信息来源:慧聪电子 【我来说两句】【推荐给朋友】【关闭窗口】

超级电容器的分类与优缺点分析 摘要:电容器是储存电荷的常用电子器件,在许多电子设备中得到了广泛的运用。由于新时期行业技术的迅速发展,早期的电路结构逐渐被更复杂的电路形式取代,普通的电容器已经满足不了电路运行的需要。为了达到高负荷或超负荷电路运行的需要,国内开始推广使用超级电容器,这种器件在性能上比传统电容器更加优越。文中阐述了电容器的原理、基本功能、优缺点等。 常规电容仅能满足结构简单、负荷较小的电路运行要求,对于大负荷的电路运行则难以起到储存电荷的效果。近年来,超级电容器的推广应用有效地解决了大负荷电路运行的难题,保证了电力电子设备使用性能的正常发挥。 1 超级电容器原理与应用 超级电容器实际上属于电化学元件,引起电荷或电能储存流程可相互逆转,其循环充电的次数达到10万次。凭借多个方面的性能优势,超级电容器的应用范围逐渐扩大,掌握该装置的原理有助于正常的操作使用。 1.1 超级电容器的原理 "双电层原理"是超级电容器的核心,这是由该装置的双电层结构决定的。超级电容器是利用双电层原理的电容器。当外加电压作用于普通电容器的两个极板时,装置存储电荷的原理是一样的,即正电极与正电荷对应、负电极与负电荷对应。而超级电容器除了这些功能外,若其受到电场作用则会在电解液、电极之间产生相反的电荷,此时正电荷、负电荷分别处于不同的接触面,这种条件下的负荷分布则属于"双电层",原理如图1.因电容器结构组合上的改进,超级电容器的电容储存量极大。此外,如果超级电容器两极板间电势小于电解液的标准电位时,超级电容器则是正常的工作状态,相反则不正常。根据超级电容器原理,其在运用过程中并没有出现化学反应,仅仅是在物理性质上的变化,因而超级电容器的稳定性更加可靠。

智能电容控制器说明书-A

3.运行工况界面 运行工况里包含了配电电压、电流、功率因数、功率、电压各次谐波、电流各次谐波等各电参数的数值显示,以及测控仪与智能电容器的通信状况,通过“ 或”键切换界面查看各电参数以及测控仪与智能电容器的通信状况,按“”键返回到主菜单界面。以下细分界面依次对各项进行介绍: (1)配电三相功率因数、电压、电流界面 在使用过程中若出现过补偿或配电电流接线接反,则在上述界面中功率因数数值前显示‘-’,例如A相功率因数显示‘-0.960’,表示此时A相电容已过补偿或A相配电电流方向接反。 在使用过程中若出现过压或欠压现象,在上述界面中电压反显显示,例如A 相电压显示“”,表示此时A相电压已超过设定过压值。 (2)有功、无功、电容电流界面(3)通信界面 测控仪与不同的智能电容器通讯,其显示的通信界面略有不同,如下图所示: 图1 图2 图3 图1为测控仪与三相式智能电容器或智能抑谐式电容器(双电容电抗)通信界面; 图2为测控仪与三相式智能抑谐式电容器(单电容电抗)的通信界面; 图3为测控仪与分相式智能电容器 5 6

P(KW) :实时的有功功率; Q(Kvar):系统当前过补偿或欠补偿的无功数值; C-I(A) :实时的电容器电流值。的通信界面; “JH C1 C2”中“JH”表示三相式智能电容器的地址,“C1 C2”分别表示内部两组电容器的容量(如图所示“060 20.20”表示此三相式智能电容器地址为“60”,容量为20 Kvar +20Kvar)。 “JH C”中“JH”表示三相式智能抑谐式电容器(单电容电抗)的地址,“C”表示电容器的容量(如图所示“060 40”表示此三相式智能抑谐式电容器(单电容电抗)地址为“60”,容量为40 Kvar)。 “JH A B C”表示分相式智能电容器的地址及A、B、C三相容量(如图所示“06 6.6 6.6 6.6”表示此分相式智能电容器地址为6,电容器容量为20Kvar)。 智能电容器投入后,状态反显显示。例如显示“060 20.20”,则表示此台 5 6

超级电容器的主要应用领域 超级电容器发展展望: 超级电容器也叫做电化学电容器,是介于传统电容器和充电电池之间的一种新型储能装置,比容量为传统电容器的20~200倍,比功率一般大于1000W/kg,循环寿命大于100000次,可储蓄的能量比传统电容要高得多,并且充电快速。由于它们的使用寿命非常长,可被应用于终端产品的整个生命周期。而且超级电容器对环境无污染,可以说,超级电容器是一种高效、实用、环保的能量储蓄装置。当高能量电池和燃料电池与超级电容器技术相结合时,可实现高比功率、高比能量特性和长的工作寿命。近年来,由于超级电容器在新能源领域所表现出的朝阳产业趋势,许多发达国家都已经把超级电容器项目作为国家重点研究和开发项目,超级电容器的国内外市场正呈现出前所未有的蓬勃景象。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量预计将从2007年的4亿美元发展到2013年的120亿美元(见下图1),其中,在电动汽车/新能源汽车领域的市场规模有望在2013年达到40亿美元,在消费电子领域的市场规模有望在2013年达到30亿美元,在工业(风力发电、轨道交通、重型机械等)领域的市场规模有望在2013年达到40亿美元。

根据中商情报预测,截至2014年,我国超容产业的增长率都在30%以上。 超级电容器的主要应用领域: 1.超级电容器在太阳能能源系统中的应用 太阳能源的利用最终归结为太阳能利用和太阳光利用两个方面。太阳能发电分为光伏发电和光热发电,其中光伏发电就是利用光伏电池将太阳能直接转化为电能。光伏发电不论在转化效率、设备成本和发展前景尚都远远强于光热发电。 自从实用型多晶硅的光伏电池问世以来,世界上就便开始了太阳能光伏发电的应

一、产品概述 GFC系列低压智能电力电容器是在低压自愈式电力电容器的基础上,以微处理器为控制中心,按电源相位角进行投切的控制具有完整投切功能的一种新型并联补偿电力电容器。该产品集传统控制回路的熔断器、接触器、热继电器、电力电容器于一身,以精确的相位角控制方式,实现了过零投切,避免了常规投切控制方式对系统的冲击和扰动。本产品使用方便,直接替代了老式并联电容器,具有很高的性能价格比。 二、产品特点 结构紧凑、体积小、重量轻、外形美观; 兼容传统控制接线,简化安装工艺; 可靠性高,抗干扰能力强,对外界无干扰,使用寿命长; 本产品具有抗谐波、抗涌流能力,可长期运行于不良的电气环境和气候温度在-25℃~+70℃的条件下; 本产品采用模块化一体式设计,采用先进的微电子技术,实现全自动控制。其可靠性、安全性、自动化程度等技术指标已达到国际先进水平; 本产品具有过零投切,独特的串行控制功能、避免投切时电流巨大的突变 全密封无裸露设计,可实现柜外现场安装。 单位综合造价低于传统模式,性能价格比高。 三、产品型号规格说明 1、型号说明

(kVar) 20=20kVar 30=30kVar Y=单相Y型接法 Δ=共补Δ型接法 M=主机(Ⅱ型) S=从机 Ⅰ=第一代(电平控制) Ⅱ=第二代(规约控制) 注:只有GFC-Ⅱ型(第二代规约控制)才有主机(M)可选,GFC-Ⅰ型(第一代电平控制)只可做为从机,只能通过无功补偿控制器进行控制,请选型时注意。 2、产品型号选择 表1 产品选型表

注:有其他容量需求,请与市场人员联系。 四、产品外观及安装尺寸 H 图1.外形尺寸注:高度尺寸H根据实际电容容量来确定

相关文档
最新文档