高中物理竞赛解题方法之降维法例题

高中物理竞赛解题方法之降维法例题
高中物理竞赛解题方法之降维法例题

十三、降维法

方法简介

降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。

赛题精讲

例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何?

解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。

将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。

如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为:

G G F F 2

2212=

+=' F ′的方向沿斜面向下与推力成α角, 则 ?=∴==

451tan 1

ααF

G

这就是物体做匀速运动的方向

物体受到的滑动摩擦力与F ′平衡,即 2/2G F f ='=

所以摩擦因数:3

6

30cos 2/2=

?==

G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋

形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子?

解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n

周时,外侧面上一共移动的

水平距离为22

1

22at n D =π

① 圆弧槽内小球下降的高度为2

2

1gt nh = ②

解①、②两式,可得,为使螺旋形槽内小球能自由下落,圆柱体侧面绳子拉动的加速度应为h

Dg

a π=

例3:如图13—3所示,表面光滑的实心圆球B 的半径R=20cm ,质量M=20kg ,悬线

长L=30cm 。正方形物块A 的厚度△h=10cm ,质量m=2kg ,物体A 与墙之间的动摩擦因数μ=0.2,取g=10m/s 2。求:

(1)墙对物块A 的摩擦力为多大?

(2)如果要物体A 上施加一个与墙平行的外力,使物体A 在未脱离圆球前贴着墙沿水平方向做加速度a =5m/s 2 匀加速直线运动,那么这个外力大小方向如何?

解析:这里物体A 、B 所受的力也不在一个平面内,混起来考虑比较复杂,可以在垂直于墙的竖直平面内分析A 、B 间压力和A 对墙的压力;在与墙面平行的平面内分析A 物体沿墙水平运动时的受力情况。

(1)通过受力分析可知墙对物块A 的静摩擦力大小等于物块A 的重力。(2)由于物体A 贴着墙沿水平方向做匀加速直线运动,所以摩擦力沿水平方向,合力也沿水平方向且与摩擦力方向相反。又因为

物体受竖直向下的重力,所以推力F 方向应斜向上。

设物体A 对墙的压力为N ,则沿垂直于墙的方向,物体B 受到物体A 的支持力大小也为N ,有θμtan ,Mg N N f ==而

又因为4

3tan 5

3

sin =

=++?=

θθ所以R L R h 在与墙面平行的平面内,对物体A 沿竖直方向做受力分析,如图13—3—甲所示有

mg F =αsin

沿水平方向做受力分析,有 ma f F =-αcos 由

)

5/5a r c s i n (,520)()(22==++=a N ma f mg

F

因此,对物体A 施加的外力F 的大小为205N ,方向沿墙面斜向上且与物体A 水平运动方向的夹角为).5/5arcsin(

例4:一质量m=20kg 的钢件,架在两根完全相同的平行长直圆柱上,如图13—4所示,钢件的重心与两柱等距,两柱的轴线在同一水平面内,圆柱的半径r=0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。两圆柱各绕自己的轴线做转向相反的转动,角速度./40s rad =ω若沿平行于柱轴的方向施力推着钢件做速度为

s m /050.00=υ的匀速运动,求推力是多大?(设钢件不发生横

向运动)

解析:本题关键是搞清滑动摩擦力的方向,滑动摩擦力的方向与相对运动的方向相反,由于钢件和圆柱都相对地面在运动,直接不易观察到相对地面在运动,直接不易观察到相对运动的方向,而且钢件的受力不在同一平面内,所以考虑“降维”,即选一个合适的角度观察。我们从上往上看,画出俯视图,如图13—4—甲所示。

我们选考虑左边圆柱与钢件之间的摩擦力,先分析相对运动的方向,钢件有向前的速度0υ,左边圆住有向右的速度ωr ,则钢

件相对于圆柱的速度是0υ与ωr 的矢量差,如图中△v ,即为钢件相对于圆柱的速度,所以滑动摩擦力f 的方向与△v ,的方向相反,如图13—4—甲所示。

以钢件为研究对象,在水平面上受到推力F 和两个摩擦力f 的作用,设f 与圆柱轴线的夹角为θ,当推钢件沿圆柱轴线匀速运动时,应有

2

20

00

)

(22cos 2ωθr v v f v

v f

f F +=?== ①

再从正面看钢件在竖直平面内的受力可以求出F N ,如图13—4—乙所示,钢件受重力G 和两个向上的支持力F N ,且G=2F N ,

所以把N N F f G

F μ==

,2

代入①式,得 推力N r v v mg

r v v F F N 2)

(22)(222002

200

=+?=+?

=ωμ

ωμ

例5:如图13—5所示,将质量为M 的匀质链条套在一个表面光滑的圆锥上,圆锥顶

角为α,设圆锥底面水平,链条静止时也水平,求链条内的张力。

解析:要求张力,应在链条上取一段质量元m ?

进行研究。因为该问题是三维问题,

图13—4—乙

各力不在同一平面内,所以用“降维法”作出不同角度的平面图进行研究。

作出俯视图13—5—甲,设质量元m ?两端所受张力为T ,其合力为F ,因为它所对的圆心角θ很小,所以2

sin 2θT F =,即F=T θ。

再作出正视图13—5—乙,质量元受重力m ?g 、支持力N 和张力的合力F 而处于平衡状态,由几何知识可得:2

cot 22

cot

απθα

?=

??=Mg mg F 所以链条内的张力

2

cot 22α

π?==

Mg F T 例6:杂技演员在圆筒形建筑物内表演飞车走壁。演员骑摩托车从底部开始运动,随着速度增加,圈子

越兜越大,最后在竖直圆筒

壁上匀速率行驶,如图13

—6所示。如果演员和摩托车的总质量为M ,直壁半径为R ,匀速率行驶的速率为v ,每绕一周上升的距离为h ,求摩托车匀速走壁时的向心力。

解析:摩托车的运动速度v ,可分解为水平速度v 1和竖直分速度为

v 2,则向心力速度为R

v a 2

1=。处理这个问题的关键是将螺旋线展开为

一个斜面,其倾角的余弦为2

2

)2(2cos h

R R a +=ππ,如图13—6—甲

所示。

所以有v h

R R v v 2

2

1)2(2cos +=

=ππα

向心加速度为:22

2221))2(2(h R R R v R v a +==ππ 向心力 )

4(422222

h R R

Mv Ma F +==ππ

例7:A 、B 、C 为三个完全相同的表面光滑的小球,B 、C 两球各被一长为L=2.00m 的不可伸和的轻线悬挂于天花板上,两球刚好接触,以接触点O 为原点作一直角坐标系

z Oxyz ,轴竖直向上,O x 与两球的连心线重合,如图13—7所示。今让A 球射向B 、C 两

球,并与两球同时发生碰撞。碰撞前,A 球速度方向沿y 轴正方向,速率为s m v A /00.40=。相碰后,A 球沿y 轴负方向反弹,速率A v =0.40m/s 。

(1)求B 、C 两球被碰后偏离O 点的最大位移量;

(2)讨论长时间内B 、C 两球的运动情况。(忽略空气阻力,取g=10m/s 2) 解析:(1)A 、B 、C 三球在碰撞前、后的运动发生在Oxy 平面内,设刚碰完后,A 的速度大小为A v ,B 、C 两球的速度分别为B v 与

C v ,在x 方向和y 方向的分速度的大小分别为Bx v ,Cy Cx By v v v ,和,

如图13—7—甲所示,由动量守恒定律,有0=-Bx Cx mv mv ①

A Cy By Ax mv mv mv mv -+= ②

由于球面是光滑的,在碰撞过程中,A 球对B 球的作用力方向沿A 、B 两球的连心线,A 球对C 球的作用力方向沿A 、C 两球的连心线,由几何关系,得

??

?

?

?

??

==6tan

6tan ππCy Cx By Bx v v v v ③ 由对称关系可知 Cy Bx v v = ④

解①、②、③、④式可得 s m v v Cy Bx /27.1==

s m v v Cy Bx /20.2==

由此解得 s m v v Cy Bx /54.2==

设C 球在x >0, y>0, z >0的空间中的最大位移为,OQ Q 点的z 坐标为z Q ,则由机械能守恒定律可写出

Q C m g z mv =2

2

1 ⑤ 所以 g

v z C

Q 22= 代入数值解得 z Q =0.32m

而Q 点到O z 轴的距离为 )2()(22Q Q Q z L z z L L QD -=--=

图13—7甲

所以C 球离O 点的最大位移量 Q Q Lz OD z OQ 222=+= ⑥

代入数值,得 m OQ 13.1= ⑦

由对称性,可得B 球在0,0,0>>

m OQ OP 13.1== ⑧

(2)当B 、C 两球各达到最大位移后,便做回到原点的摆动,并发生两球间的碰撞,

两球第一次返回O 点碰撞前速度的大小和方向分别为

s m v Bx /27.1= 方向沿正x 轴方向 By v =2.20m/s 方向沿y 轴方向

s m v Cx /27.1= 方向沿正x 轴方向 Cy v =2.20m/s 方向沿y 轴方向

设碰撞后的速度分别为11C B v v 和,对应的分速度的大小分别为x B v 1、y B v 1、x C v 1和

y C v 1,由于两球在碰撞过程中的相互作用力只可能沿x 轴方向,故碰撞后,沿y 轴方向的

速度大小和方向均保持不变(因为小球都是光滑的),即

y B v 1=By v 方向沿负y 轴方向 ⑨ y C v 1=Cy v 方向沿负y 轴方向 ⑩

碰撞过程中,沿x 轴方向的动量守恒,则 Cx Bx x B x C mv mv mv mv -=-11 因为Cx Bx v v = 所以x B x C v v 11=

即碰撞后两球在x 方向的分速度大小也相等,方向相反,具体数值取决于碰撞过程中是否机械能损失。在A 球与B 、C 两球同时碰撞的过程中,碰撞前,三者的机械能

m mv E AD 82

12

1==

碰撞后三者的机械能 122

22259.6212121E E m mv mv mv E C B A <=++=

表明在碰撞过程中有机械能损失,小球的材料不是完全弹性体,故B 、C 两球在碰撞

过程中也有机械能损失,即

)(2

1)(21)(212

222221111Y

X X X Y X B B C C B B v v m v v m v v m +<+++ ○11 由⑨、⑩和○11三式,和 Cx Bx C B v v v v x X =<=11 ○12

或C B C B v v v v =<=11

当B 、C 两球第二次返回O 点时,两球发生第二次碰撞,设碰撞后两球的速度分别为

22C B v v 和,对应的分速度的大小分别为y C x C B B v v v v y X 22,,22和,

则有y y y y C B C B v v v v 1122=== y x x x C B C B v v v v 1122=<= 或 12B B v v < 12C C v v <

由此可见,B 、C 两球每经过一次碰撞,沿x 方向的分速度都要变小,即

x x x x x x X C B C B C B Cx B v v v v v v v v 332211=>=>=>= ……

而y 方向的分速度的大小保持不变,即

y t y y y y y C B C B C B Cy B v v v v v v v v 332211======= ……

当两球反复碰撞足够多次数后,沿x 方向的分速度为零,只有y 方向的分速度。设足

够多的次数为n ,则有 0==nx nx C B v v ○

13 s m v v v y ny ny B C B /20.2=== ○

14 即最后,B 、C 两球一起的Oyz 平面内摆动,经过最低点O 的速度由○

14式给出,设最高点的z 轴坐标为Qn z ,则 Qn Cny mgz mv =2

21 得g

v z Cny Qn 22

=

代入数值,得 m z Qn 24.0= ○

15 最高点的y 坐标由下式给出:Qn Qn Qn Qn z z L z L L y )2()(2

2-±=--±=

代入数值,得:m y Qn 95.0±= ○

16 例8:一半径R=1.00m 的水平光滑圆桌面,圆心为O ,有一竖直

的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图13—8所示。一根不可伸长的柔软的细轻绳,一

端固定在封闭曲线上某一点,另一端系一质量为m=7.5×10—

2kg 的小物块。将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂

图13—8

直、大小为s m v /0.40=的初速度,物块在桌面上运动时,绳将缠绕在立柱上。已知当绳的张力为T 0=2.0N 时,绳即断开,在绳断开前物块始终在桌面上运动。

(1)问绳刚要断开时,绳的伸直部分的长度为多少?

(2)若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度H=0.80m ,物块在桌面上运动时未与立柱相碰。取重力加速度大小为10m/s 2。

解析:(1)这一问题比较简单。绳断开前,绳的张力即为物块所受的向心力,因为初速度与绳垂直,所以绳的张力只改变物块的速度方向,而速度大小不变,绳刚要断开时,绳的伸直部分的长度可求出。

设绳的伸直部分长为x ,则由牛顿第二定律得:x

v m T 20

0=

代入已知数值得:x =0.60m

(2)选取桌面为分析平面,将物块的落地点投影到此分析平面上,然后由平抛运动的知识求解。如图13—8—甲所示,设绳刚要断开时物块位于桌面上的P 点,并用A 点表示物块离开桌面时的位置,先取桌面为分析平面,将物块的落地点投影到此分析平面上,其位置用D 点表示,易知D 点应在直线PA 的延长线上,OD 即等于物块落地点与桌面圆心O 的水平距离,而AD 等于物块离开桌面后做平抛运动的水平射程。

即 g

H v AD 20

= 故20

2

22)2(g H v x R x OD +-+= 代入已知数值得物块落地点到桌面圆心O 的水平距离 m OD 47.2=

例9:如图13—9所示是一种记录地震装置的水平摆,摆球m 固定在边长为L ,质量

可忽略不计的等边三角形的顶点A 上。它的对边BC 跟竖直线成不大的夹角α,摆球可以绕固定轴BC 摆动。求摆做微小振动的周期。

解析:若m 做微小振动,则其轨迹一定在过A 点,垂直于BC 的平面内的以O 为圆心,OA 为半径的圆弧上。

因此我

们可以作一个过A 点垂直于BC 的平面M ,如图13—9—甲所示,将重力mg 沿M 平面和垂直于M 平面方向分解,则在平面M 内,m 的振动等效于一个只在重力α

sin mg g m ='作用下简谐运动,摆长.2

360sin L L L =

?=' 所以周期 α

π

π

sin 2322g L

g L T =''= 例10:六个相同的电阻(阻值均为R )连成一个电阻环,

六个结点依次为1、2、3、4、5和6,如图13—10所示。现有五个完全相同的这样的电阻环,分别称为D 1、D 2、…、D 5。现将D 1的1、3、5三点分别与D 2的2、4、6三点用导线连接,如图13—10—甲所示。然后将D 2的1、3、5三点分别与D 3的2、4、6三点用导线连接……依次类推,最后将D 5的1、3、5三点分别连接到D 4的2、4、6三点上。

证明:全部接好后,在D 1

上的1、3、两点间的等效是电阻为

R 627

724

。 解析:由于连接电阻R 的导线,连接环D 之间的导线均不计电阻,因此,可改变环的半径,

使五个环的大小满足:D 1

将图13—10—甲所示的圆柱形网络变成圆台形网络,在沿与底面垂直的方向将此圆台形网络压缩成一个平面,如图13—10—乙所示的平面电路图。

现将圆形电阻环变成三角形,1、3、5三点为三角形的顶点,2、4、6三点为三角形三边的中点,图13—10—乙又变为如图13—10—丙所示电路图。不难发现,图13—10—丙所示的电路相对虚直线3、6具有左右对称性。

可以用多种解法求。如将电路等效为图13—10—丁。 A 1B 1以内的电阻

R R B A 5

411=

A 2

B 2以内的电阻

R R R R R R R R B A B A B A 19

14)2()2(111122=

+++=

A 3

B 3以内的电阻R R

R R R R R R B A B A B A 7152)2()2(222233=

++?+=

A 4

B 4以内的电阻R R R R R R R R B A B A B A 265194

)2()2(333344=++?+=

A 5

B 5以内的电阻R R

R R R R R R B A B A B A 627

724

)2()2(444455=

++?+=

即为D 1环上1、3两点间的等效电阻。

例11:如图13—11所示,用12根阻值均为r 的相同的电阻丝构成正立方体框架。试求AG 两点间的等效电阻。

解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示。

考虑到D 、E 、B 三点等势,C 、F 、H 三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG 间总电阻为 r r r r R 6

5363=++=

例12:如图13—12所示,倾角为θ的斜面上放一木制圆制,其质量m=0.2kg ,半径为r ,长度L=0.1m ,圆柱上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面平行,斜面处于竖直向上的匀强磁场中,磁感应强度B=0.5T ,当通入多大电流时,圆柱才不致往下滚动?

解析:要准确地表达各物理量之间的关系,最好画

出正视图,问题就比较容易求解了。如图13—12—甲所示,

磁场力F m 对线圈的力矩为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为:

M G =mgsin θ,平衡时有:M B =M G

则可解得:A NBL

mg

I 96.12==

例13:空间由电阻丝组成的无穷网络如图13—13所示,每段电阻丝的电阻均为r ,试求A 、B 间的等效电阻R AB 。

解析:设想电流A 点流入,从B 点流出,由对称性可知,网络中背面那一根无限长电阻丝中各点等电势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路。

(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值,所以

r r r r r 3

2

32=?=

' 横线每根电阻仍为r ,此时将立体网络变成平面网络。

(2

)由于此网络具有左

右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络。

其中横线每根电阻为21r r =

,竖线每根电阻为32r r r ='='' AB 对应那根的电阻为r r 3

2

=',此时由左右无限大变为右边无限大。

(3)设第二个网络的结点为CD ,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示。再设R CD =R n -1(不包含CD 所对应的竖线电阻)

则N B A R R =',网络如图13—13—丁所示。

此时 1111

1

1133

3222------++=+?+?=+''''+

=n n n n n n n R r rR r R r R

r r R r R r r R

当∞→n 时,R n =R n -1 ∴ 上式变为n

n

n n n R r rR r R r rR r R 3432++=

++=

由此解得:r r R n 6213+=

即r r

R B A 6

213+=' 补上AB 竖线对应的电阻

r 3

2

,网络变为如图13—13—戊所示的电路。 r r r r r r

R r R r R B A B A AB

21212)321(21)213(221321)213(26

2133262133232322=++=++=+++?=+?=''

例14:设在地面上方的真空室内,存在匀强电场和匀强磁场,

已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m ,磁感应强度的大小B=0.15T ,今有一个带负电的质点以v =20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m 以及磁场的所有可能方向(角度可用反三角函数表)。

解析:因为带负电的质点做匀速直线运动,

说明此质点所受的

合外力为零。又因为电场强度和磁感应强度的方向相同,所以该带电质点所受的电场力和洛仑兹力的方向垂直共面,且必受重力作用,否则所受合外力不可能为零,设质点速度方向垂直纸面向里。由此该带电质点的受力图如图13—14所示。由平衡条件有

有水平方向:θθsin cos Bqv Eq = ① 在竖直方向:mg Bqv Eq =+θθcos sin ② 解得:34tan =

θ 3

4a r c t a n =θ q/m=2 同理,当质点速度方向垂直纸面向外时受力情况如图

13—14—甲,由平衡条件可解出θ值与上式解出的一样,只是与纸平面的夹角不同,故此带电质点的电量与质量之比为2。

磁场的所有可能方向与水平方向的夹角都是 3

4tan 3

4arctan =

=θθ或

针对训练

1.如图13—15所示,一个重1000N 的物体放在倾角为30°的斜面上,物体与斜面间的摩擦系数μ为1/3。今有一个与斜面最大倾斜线成30°角的力F 作用于物体上,使物体在斜面上保持静止,求力F 的大小。

2.斜面倾角θ=37°,斜面长为0.8m ,宽为0.6m ,如图13—16所示。质量为2kg 的木块与斜面间的动摩擦因数为μ=0.5,在平行于斜面方向的恒力F 的作用下,沿斜面对角线从A 点运动到B 点(g=10m/s 2,sin37°=0.6)。求:

(1)力F 的最小值是多大?

(2)力F 取最小值时木块的加速度。

3.质量为0.8kg 的长方形木块静止在倾角为30°的斜面上,若用平行于斜面沿水平方向大小等于3N 的力推物体,它仍保持静止,如图13—17所示,则木块所受摩擦力大小为 ,方向为 。

4.如图13—18,四面体框架由电阻同为R 的6个电阻连接而成,试求任意两个顶点AB 间的等效电阻。

5.如图13—19所示三棱柱由电阻同为R 的电阻线连接而成,试求AB

两个顶点间的

等效电阻。

6.将同种材料粗细均匀的电阻丝连接成立方体的形状,如图13—20所示,每段电阻丝电阻均为r 。试求:

(1)AB 两点间等效电阻R AG ; (2)AD 两点间等效电阻R AD 。

参考答案

1.0.288×103N ≤F ≤0.577×103N 2.(1)7.2N (2)0.8m/s 2

3.5N 沿斜面指向右上方水平方向的夹角为53 ° 4.2R R AB = 5.R R AB

9

4= 6.(1)r R AG 65= (2)r R AD 12

7=

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

全国高中物理竞赛-历年赛题分析电学+力学

24届 二、(25分)图中所示为用三角形刚性细杆AB、BC、CD连成的平面连杆结构图。AB和CD杆可分别绕过A、D的垂直于纸面的固定轴转动,A、D两点位于同一水平线上。BC杆的两端分别与AB杆和CD杆相连,可绕连接处转动(类似铰链)。当AB杆绕A轴以恒定的角速度 转到图中所示的位置时,AB杆处于竖直位置。BC杆与CD杆都与水平方向成45°角, a的大小和方向已知AB杆的长度为l,BC杆和CD杆的长度由图给定。求此时C点加速度 c (用与CD杆之间的夹角表示) 27复 28复 二、(20分)质量均匀分布的刚性杆AB、CD如图放置,A点与水平地面接触,与地面间的 静摩擦系数为μA,B、D两点与光滑竖直墙面接触, 杆AB和CD接触处的静摩擦系数为μC,两杆的质量均 为m,长度均为l。 1、已知系统平衡时AB杆与墙面夹角为θ,求CD杆 与墙面夹角α应该满足的条件(用α及已知量满足的 方程式表示)。 2、若μA=1.00,μC=0.866,θ=60.0°。求系统平衡时 α的取值范围(用数值计算求出)。

26复 二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。已知桌腿受力后将产生弹性微小形变。现于桌面中心点O 至角A 的连线 OA 上某点P 施加一竖直向下的力F ,令c OA OP =,求桌面 对桌腿1的压力F 1。 25复 三、(22分)足球射到球门横梁上时,因速度方向不同、射在横梁上的位置有别,其落地点也是不同的。已知球门的横梁为圆柱形,设足球以水平方向的速度沿垂直于横梁的方向射到横梁上,球与横梁间的滑动摩擦系数0.70μ=,球与横梁碰撞时的恢复系数e=0.70。试问足球应射在横梁上什么位置才能使球心落在球门线内(含球门上)?足球射在横梁上的位置用球与横梁的撞击点到横梁轴线的垂线与水平方向(垂直于横梁的轴线)的夹角θ(小于 90 )来表示。不计空气及重力的影响。 27复 24届 一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹 A

高中物理竞赛经典方法 7对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动。 根据平抛运动的规律:02x v t 1y gt 2 =???=?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v 0 = 3s 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距

为d ,一个小球以初速度v 0从两墙正中间的O 点斜向上抛出,与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。 解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 02 0x v cos t 1y v sin t gt 2 =θ??? ?=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 20 2gd v 所以,抛射角θ =1 2 arcsin 20 2gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° =

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

历届全国初中物理竞赛(简单机械)

最近十年初中应用物理知识竞赛题分类解析专题12--简单机械 一、选择题 1. (2013全国初中应用物理知识竞赛预赛题)某次刮大风时把一棵大树吹倒了,需要两个工人把它扶起,工人们想到了如图l2所示的四种方案,每个人所需拉力最小的方案是 ( ) 1.答案:B 解析:根据滑轮知识,AB图绳中拉力为二人拉力之和,且拉树的力为两根绳中的拉力。根据杠杆知识,B图在动力臂大,所以每个人所需拉力最小的方案是B。 2.(2010全国初中应用物理知识竞赛题).图5是环卫工人用的一种垃圾夹的结构示意图。拉绳的一端固定在手把上,另一端穿过空心管杆与两夹爪的一端相连。当用力捏手把时,夹爪在拉绳的作用下可夹持物体,同时弹簧被压缩;当松开手把时, 夹爪在弹簧的作用下恢复原状。在使用过程中,手 把和夹爪分别是 ( ) A.省力杠杆,费力杠杆 B.费力杠杆,省力杠杆 C省力杠杆,省力杠杆 D.费力杠杆,费力杠杆 . 答案:A解析:手把动力臂大于阻力臂,是省力杠杆,夹爪动力臂小于阻力臂,是费力杠杆。 3.(2010全国初中应用物理知识竞赛题).体操、投掷、攀岩等体育运动都不能缺少的“镁粉”,它的学名是碳酸镁。体操运动员在上杠前都要在手上涂擦“镁粉”,其目的是 ( ) A.仅仅是为了利用“镁粉”,吸汗的作用,增加手和器械表面的摩擦而防止打滑 B.仅仅是为了利用手握着器械并急剧转动时“镁粉”,能起到衬垫作用,相当于在中间添加了一层“小球”做“滚动摩擦” C仅仅是为了利用“镁粉”,填平手掌的褶皱和纹路,使手掌与器械的接触面增大,将握力变得更加实在和均匀 D.上述各种功能都具有

.答案:D解析:体操运动员在上杠前在手上涂擦“镁粉”的目的是为了利用“镁粉”吸汗的作用,增加手和器械表面的摩擦而防止打滑;利用手握着器械并急剧转动时“镁粉”能起到衬垫作用,相当于在中间添加了一层“小球”做“滚动摩擦”;利用“镁粉”填平手掌的褶皱和纹路,使手掌与器械的接触面增大,将握力变得更加实在和均匀,所以选项D正确。 4. (2011上海初中物理知识竞赛题)某人在车后用80牛的水平力推车,使车在平直公路上匀速前进,突然发现车辆前方出现情况,他马上改用120的水平拉力使车减速,在减速的过程中,车受到的合力大小为( ) A.40牛 B.80牛 C.120牛 D.200牛 3. 答案:D解析:用80牛的水平力推车,使车在平直公路上匀速前进,说明车运动受到的阻力为80N。改用120的水平拉力使车减速,在减速的过程中,车受到人向后拉力120N,阻力80N,所以车受到的合力大小为120N+80N=200N. ,选项D正确。 5. (2011上海初中物理知识竞赛题)分别用铁和铝做成两个外部直径和高度 相等,但内径不等的圆柱形容器,铁杯装满质量为m1的水后总重为G1;铝杯装 满质量为m2的水后总重为G2。下列关系不可能正确的是() A.G1G2,m1>m2 C.G1m2 D.G1>G2,m1G2,所以A不可能正确。 6. (2011上海初中物理知识竞赛题)如图所示,两根硬杆AB、BC用 铰链连接于A、B、C,整个装置处于静止状态。关于AB杆对BC杆作用 力的方向正确的是() A.若计AB杆重力,而不计BC杆重力时,由A指向B B.若计AB杆重力,而不计BC杆重力时,由C指向B C.若不计AB杆重力,而计BC杆重力时,由B指向A D.若不计AB杆重力,而计BC杆重力时,由B指向C 答案:C解析:若计AB杆重力,而不计BC杆重力时,取A点为支点,由杠杆平衡条件,BC杆对AB 杆作用力的方向竖直向上,由牛顿第三定律,AB杆对BC杆作用力的方向竖直向下,选项AB错误;若不计AB杆重力,而计BC杆重力时,取C点为支点,由杠杆平衡条件,AB杆对BC杆作用力的方向由B指向A,选项C正确D错误。

高中物理竞赛精彩试题及问题详解

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟. 第Ⅰ卷(选择题共40 分) 一、本题共10 小题,每小题 4 分,共40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得2 分,有错选或不答的得0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说确的有 A.若甲的初速度比乙大,则甲的速度后减到0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M的笼子,笼有一只质量为m的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2(如图Ⅰ-3),关于F1和F2的大小,下列判断中正确的是 A.F1 = F2>(M + m)g B.F1>(M + m)g,F2<(M + m)g C.F1>F2>(M + m)g D.F1<(M + m)g,F2>(M + m)g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab= U bc,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q 图Ⅰ-3 图Ⅰ-4 图Ⅰ-2

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

全国第31届高中物理竞赛初赛试题

全国第31届中学生物理竞赛预赛试题 一、选择题.本题共5小题,每小题6分,在每小题给出的4个选 项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3 C.α3D.3α 2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为lcm3的较重的合金块,杆上有表示液体密度数值的刻度.当秤砣放在Q点处时秤杆恰好平衡,如图所示,当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度.下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.一列简谐横波在均匀的介质中沿z轴正向传播,两质点P1和P2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24 m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式,电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用钢、铝和硅制成的形状、大小和横截面积均相同的三种环;当电流突然接通时,它们所受到的推力分别为F1、F2和F3.若环的重力可忽略,下列说法正确的是 A.F1>F2>F3B.F2>F3 >F1 C.F3 >F2> F1D.F1=F2=F3 5.质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰.假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高中物理竞赛方法集锦 等效法

四、等效法方法简介 在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法. 等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解. 赛题精讲 例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解. 由题意得:g v v t v d θ θθsin 2cos cos 2000? =?= 可解得抛射角 20 2arcsin 21v gd = θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度. 解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线 运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解. 因加速度随通过的距离均匀增加,则此运动中的平均加速度为 n a n n a an n a n a a a a a 2)13(232)1(2 -= -=-++= += 末 初平 由匀变速运动的导出公式得2 22v v L a B -=平 解得 n aL n v v B )13(2 0-+ = 例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成

《全国中学生物理竞赛大纲》2020版

《全国中学生物理竞赛大纲2020版》 (2020年4月修订,2020年开始实行) 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2020年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 力学 1.运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度 曲率半径角速度和※角加速度 相对运动伽里略速度变换 2.动力学 重力弹性力摩擦力惯性参考系 牛顿第一、二、三运动定律胡克定律万有引力定律均匀球壳对壳内和壳外质点的引力公式(不要求导出) ※非惯性参考系※平动加速参考系中的惯性力 ※匀速转动参考系惯性离心力、视重 ☆科里奥利力 3.物体的平衡 共点力作用下物体的平衡 力矩刚体的平衡条件 ☆虚功原理 4.动量 冲量动量质点与质点组的动量定理动量守恒定律※质心 ※质心运动定理 ※质心参考系 反冲运动 ※变质量体系的运动 5.机械能 功和功率

动能和动能定理※质心动能定理 重力势能引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)弹簧的弹性势能功能原理机械能守恒定律 碰撞 弹性碰撞与非弹性碰撞恢复系数 6.※角动量 冲量矩角动量 质点和质点组的角动量定理和转动定理 角动量守恒定律 7.有心运动 在万有引力和库仑力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道和椭圆轨道运动 8.※刚体 刚体的平动刚体的定轴转动 绕轴的转动惯量 平行轴定理正交轴定理 刚体定轴转动的角动量定理刚体的平面平行运动9.流体力学 静止流体中的压强 浮力 ☆连续性方程☆伯努利方程 10.振动 简谐振动振幅频率和周期相位 振动的图像 参考圆简谐振动的速度 (线性)恢复力由动力学方程确定简谐振动的频率简谐振动的能量同方向同频率简谐振动的合成 阻尼振动受迫振动和共振(定性了解) 11.波动 横波和纵波 波长频率和波速的关系 波的图像 ※平面简谐波的表示式 波的干涉※驻波波的衍射(定性) 声波 声音的响度、音调和音品声音的共鸣乐音和噪声

高一物理竞赛讲义第3讲.教师版

第3讲运动的关联 温馨寄语 前面我们讨论了物理量以及物理量之间的关系,尤其是变化率变化量的关系。我们还学习了非常牛的几个方法:相对运动法,微元法,图像法。 然而,物理抽象思想除了物理量之外,还有一大块就是模型,而各种模型都有自己的一些特点,根据这些特点,决定了这些模型的运动学性质。探究这些性质就成了我们今天的主要任务。 知识点睛 一、分速度和合速度 首先速度作为矢量是可以合成和分解的。但是同样的作为矢量,速度的合成和分解,和力这个矢量有一点不同。这个不同在于,两个作用在同一个物体上的力,可以直接合成。但是同一个物体,已经知道在两个方向上的速度,最后的总速度,并不一定是这两个速度的矢量和。 (CPhO选讲)例如: (这里面速度是通过两个速度各自从矢量末端做垂线相交得到的) 第二个原则就是:合速度=真实的这个物体的运动速度矢量。

这里力和速度的区别是:我们看到的多个力,不见得是“合力”在各个方向上的投影;但是我们看到的多个速度,就是“合速度”在各个方向上的分速度。所以,当且仅当两个分速度相互垂直的时候,合速度等于两个分速度的矢量和。 这个东西大家可以这样想。遛狗的时候,每个狗的力是作用在一起的,所以遛狗越多,需要的力越大。但是每个狗都有个速度,最后遛狗人的速度和狗的速度大小还是差不多的,不会因为遛狗个数越多就速度越快…… 二、体现关联关系的模型 1.绳(杆)两端运动的关联:实际运动时合运动,由伸缩运动与旋转运动合成。 实际运动=旋转运动+伸缩运动 【例】吊苹果逗小孩儿有两种逗法,一种是伸缩,一种是摆动。 不难总结: 一段不可伸长的细绳伸缩运动速度相等——沿绳(杆)速度相等,转速无论多大不可改变绳子长度。 2.叠加运动的关联 先举个例子:如图的定滑轮,两边重物都在竖直运动,并且滑轮也在竖直运动,设两边重物位移分别沃为x 1x 2,轮中心的位移为x 。 不难由绳子长度不变得位移关系: 12 2x x x += 对应的必然有速度关系: 12 2v v v += 加速度关系: 12 2 a a a += 我们用运动关联的目的是为了使未知量变少。 物理学中非常重要的思想就是把现实中的物体抽象成为理想的模型,然后用物理原理以及模型对应的牵连关系来解决问题.常见的模型有杆,绳,斜面,等等. 3.轻杆 杆两端,沿着杆方向的速度相同\ 4.轻绳 绳子的两端也是沿着绳子的方向速度相同\.绳子中的力是可以突变的,突变的条件是剪断或者是突然绷紧等等. 5.斜面

相关文档
最新文档