新一代天气雷达观测规定(修订)

新一代天气雷达观测规定(修订)
新一代天气雷达观测规定(修订)

新一代天气雷达观测规定(修订)

编写说明

新一代天气雷达观测规定(修订)是在《关于印发《新一代天气雷达观测规定》的通知》(气测函〔2005〕81号)的基础上,结合天气雷达质量整改工作需要编制而成。

本规定由中国气象局气象探测中心组织起草,主要编写人员包括:周旭辉、李斐斐、周薇、陈玉宝、邵楠等。

第一章总则

第一条为适应新一代天气雷达业务发展,进一步加强对新一代天气雷达业务的管理,根据《中华人民共和国气象法》及《气象设施和气象探测环境保护》,并考虑到新一代天气雷达功能及特点制定本规定。

第二条新一代天气雷达是指中国气象局布网的CINRAD系列的新一代天气雷达,S波段新一代天气雷达有CINRAD/SA、CINRAD/SB、CINRAD/SC等;C波段新一代天气雷达有CINRAD/CA、CINRAD/CB、CINRAD/CC和CINRAD/CD等。

第三条新一代天气雷达观测是气象业务观测的重要组成部分,新一代天气雷达观测业务包括雷达开关机、数据采集、处理、存储、传输、整编、填报报表、归档、雷达系统的维护维修、定标和气象探测环境保护等内容,本规定是新一代天气雷达业务的基本准则。

第四条新一代天气雷达观测的主要目的是监测和预警灾害性天气。探测重点是热带气旋、暴雨、冰雹、雷雨大风、龙卷、雪暴、沙尘暴以及其它天气系统中的中小尺度结构等。

第二章岗位要求及职责

第五条从事新一代天气雷达业务工作的人员应具备相关专业大专及以上学历或中级及以上技术职称。

第六条从事新一代天气雷达业务工作人员的主要职责包括:

(一)严守工作岗位,严格按照本规定开展观测工作,认真分析雷达回波及其演变,做好重要天气的监测和预警,确保重大灾害性天气观测无遗漏和资料的可靠性、完整性及真实性;

(二) 认真填写、妥善保管各种电子档和纸质记录、表簿和各类技术档案;

(三) 严格执行值班制度、交接班制度、雷达运行监控制度和其他有关规章制度;

(四)负责雷达系统运行保障、工作模式选择、雷达系统适配参数设置、元数据参数配置、系统软件维护;

(五)负责雷达系统定标,以及雷达系统和附属设备的维护、保养与检修,保证雷达系统和附属设备可靠运行。

第二章探测环境及保护

第七条雷达站址环境应当符合下列要求:在雷达主要探测方向,包括重点服务地区和重要天气过程的主要来向,其遮挡物对雷达电磁波的遮挡仰角不应大于0.5?,其他方向的遮挡仰角不应大于1?,孤立遮挡方位角不应大于1?,且总的遮挡方位角不应大于5?,如临近雷达可覆盖该遮挡区域的则可适当降低要求;

(一)探测环境应受到当地规划保护,并确保长期稳定;

(二)雷达所在位置以雷达天线经度、纬度、海拔高度表示,经、纬度误差应小于1秒,海拨高度误差应小于5米;测量方法按中国气象局综合观测司下发的相关规定执行。

(三)建站时应绘制四周遮挡角分布图,以及距测站上空1千米高度和海拔3千米、6千米高度的等射束高度图。观测环境发生变化应重新绘制遮挡角分布图、等射束高度图,并上报上级业务主管部门;

(四)雷达站不能有影响雷达工作的电磁干扰;一旦出现干扰,协调无线电管理委员会解决。

(五)雷达站应具备必要的通信、水、电、路和消防、安保设施,人员生活基本条件及自备供电能力。

第八条雷达机房应当符合下列基本要求:

(一) 雷达机房内应配备精密空调设施,保证适宜雷达工作的温度、湿度,收、发机运行环境温度一般不超过22℃,相对湿度一般不超过80%;

(二) 雷达机房内各分机与墙之间留有足够的空间,净宽度不应小于1.2m。连接电缆和导线应埋设在预置的地沟板槽中或电缆架上,机房内工作线缆应屏蔽;

(三) 雷达机房地面铺设防静电板地,防止静电或漏电对设备、人身造成损伤;

(四) 雷达机房内必须有防火警报系统和气体消防设施;应有防水、防风、防尘、防腐蚀、防潮、防盗等措施,

防止鼠类和各种昆虫侵入。

(五)具体参照《新一代天气雷达运行环境功能设计规范》。

第九条雷达和人员安全保护应当符合下列要求:

(一) 雷达站安全是保障雷达正常运行的重要环节。雷达站应安装视频监视设备,具有防偷盗、防破坏等安全保护措施;

(二)雷达供电系统必须符合国家有关标准。各路供电电压和电流应满足设备要求,负荷应留有足够的余量;

(三)机房地线要符合要求,接地电阻一般应小于1欧姆,地线布线安全有效;

(四)雷达站应采取有效措施,防止发射机微波辐射泄漏对雷达工作人员产生危害;

(五)天线罩周围应设有防护拦,防止人员跌落;

(六)雷达站必须安装防雷设施,并严格按照《建筑物防雷设计规范》(GB50057-2016)规定对防雷设施进行定期检测。

第三章观测时段及方式

第十条新一代天气雷达观测采用北京时间。计时方法采用24小时制,计时精度为秒,观测资料的记录时间从00:00:00到23:59:59。观测用的钟表和计算机每天至少对时一次,保证时间准确。

第十一条汛期观测时段应当符合下列规定:

(一) 北京、天津、河北、山西、内蒙、辽宁、吉林、黑龙江、陕西、甘肃、青海、宁夏、新疆、西藏等省、自治区、直辖市从6月1日-8月31日;

(二) 上海、江苏、安徽、山东、河南、湖北、四川、云南、贵州、重庆等省、自治区、直辖市从5月1日-9月30日;

(三) 浙江、江西、湖南、福建、广东、广西、海南等省、自治区从4月15日-9月30日。

第十二条在汛期观测时段内,新一代天气雷达应当全天时连续立体扫描观测。

第十三条非汛期观测时段应当符合下列规定:

(一)每天从10时到15时进行连续观测,艰苦雷达站根据实际情况可酌情进行观测,并报中国气象局备案;

(二)在雷达监测范围内,预测和发现天气系统,应开机进行连续观测,直至天气过程结束;

(三)各雷达站应根据当地气象服务需求,增加观测时次或进行连续观测。

第十四条根据防汛抗灾、气象业务及科学研究的需要,上级业务主管部门可以增加雷达观测任务。

第五章观测模式

第十五条新一代天气雷达具有立体扫描模式(VOL)、圆锥扫描模式(PPI)、垂直扫描模式(RHI)。业务观测主要以连续自动立体扫描模式为主。

(一) 降水观测模式1:仰角为0.5°、1.5°、2.4°、

3.35°、

4.3°、

5.25°、

6.2°、

7.5°、

8.7°、10.0°、12.0°、14.0°、16.7°、1

9.5°的14层观测模式。对降水结构作详细分析时主要采用该模式。

(二) 降水观测模式2:仰角为0.5°、1.5°、2.4°、

3.3°、

4.3°、6.0°、9.9°、14.6°、19.5°的9层观测模式。在降水过程中主要采用该模式。

(三)晴空观测模式:仰角为0.5°、1.5°、2.5°、3.5°、4.5°的5层观测模式。在对晴空气象回波观测时采用该模式。

(四)高山观测模式:仰角为0.0°、1.0°、1.9°、2.8°、3.8°、5.5°、9.5°、14.1°、19.0°的9层观测模式。该模式适用于海拔较高的雷达站采用。

(五)自选观测模式:除降水观测模式1、降水观测模式2、晴空观测模式及高山观测模式外,各雷达站可以根据当地天气系统特点和业务科研的特殊要求,设置或选择所需的观测模式进行观测。

第六章基本观测程序

第十六条雷达开机前应当检查电源电压,天线位置,并确保天线附近无人,严防天线转动和微波辐射对人体的伤害。

第十七条开机时应当检查系统中各项设置是否符合要求,检查雷达各分机是否处在正常工作状态,检查雷达系统

的产品生成、使用终端及通信网络等是否正常,并按照规定步骤开机。

第十八条雷达进入正常运行状态后,根据当地气候和天气状况确定观测模式。

第十九条雷达系统运行过程中,雷达工作人员应注意监视运行状况。

第二十条观测业务工作人员必须注意回波演变,监视重要天气的发生发展,及时向上级部门和有关单位报告灾害性天气的监测和预警信息。

第二十一条雷达工作人员应当及时存储数据,生成和传送规定产品。

第二十二条观测结束时应当按规定步骤关机。

第二十三条因设备维护或故障等原因雷达不能正常工作时,工作人员应报上级主管部门,并通报用户和有关服务单位。

第七章资料传输与分发

第二十四条新一代天气雷达探测资料必须按有关规定向国家、省级信息中心传送,并向有关单位分发。

第二十五条传输资料的种类、格式、传输等具体要求以国家级相关业务管理部门正式发文为准。

第二十六条区域或省内天气雷达产品互传的办法应当报中国气象局业务主管部门备案。

第二十七条本地服务传输时次和方式由省(区、市)

和地(市)气象局自行规定,报上级主管职能部门备案。

第八章资料存储和整编

第二十八条雷达观测基数据,是指以极坐标形式排列的方位、仰角、时间、反射率因子、径向速度、速度谱宽以及采样时的雷达参数等信息的数据集。基数据是长期性保存的气象资料,以文件形式存档。离线数据保存介质:光盘等。

第二十九条雷达站数据保存时间

(一)基数据:雷达站永久离线保存,雷达站在线保存至少1年;

(二)产品文件:雷达站在线保存至少1年;

(三)状态文件与定标数据:雷达站永久离线保存,在线保存至少1年;

第三十条基数据文件整编

(一)基数据文件每年必须进行整编;

(二)数据文件整编以时间序列为线索,统计基数据文件的起止时间、基数据文件的种类及个数等;

(三)整编后的基数据按规定归档到省级气象档案部门,并要求雷达站有备份。

第三十一条典型个例资料整编

(一)典型个例资料整编,是指对灾害性天气或具有科学价值的个例等进行整编。

(二)整编的内容包括:建立典型个例基数据集、典型

个例产品图象集、过程演变索引和其它相关资料等。

(三)个例数据整编的结果及其它资料形成文档装订成册,并制做成电子文本和图像集。

(四)整编后的典型个例资料按规定归档到省级气象档案部门,雷达站同时要进行备份保存,并于下一年度3月份前上报中国气象局业务主管部门。

第九章维护维修及定标

第三十二条观测时段内每日应对雷达运行状态、自动定标数据进行检查并记录,出现异常及时处理。

第三十三条雷达硬件设备和软件系统应当进行日巡查和周、月、年维护与保养,配套的发电机每月至少启动一次,配套的UPS每三个月维护一次,保障新一代天气雷达的正常运行。

第三十四条每年汛期开始前,应当对雷达系统用机内、外仪表进行一次全面的检查标定及维护。汛期观测期间,周、月维护及月定标应选择在本站监测范围内无重要天气过程时段内停机进行。每年汛期结束后,应当对雷达系统进行一次全面的检查维护和保养。

第三十五条当系统设备出现故障时,雷达站工作人员必须及时处理并向本单位主管领导报告;故障在6小时内未能排除,应当向上级业务保障和业务主管部门报告;故障在12小时内未能排除,应当向省局业务保障和业务主管部门报告;故障在48小时以上未能排除,由省局业务主管部门上

报省局领导和中国气象局业务保障和业务主管部门。

第三十六条雷达定标具体操作按照中国气象局观测司下发《天气雷达定标业务规范》(气测函〔2016〕80号)执行。

第三十七条机外测试仪表应当按计量检验规定定期检定。

第三十八条应当妥善保管雷达随机资料、仪器仪表、工具、备件等。

第三十九条重大故障排除后,对故障进行总结并提交相关业务管理部门。

第十章表簿

第四十条新一代天气雷达站业务工作人员必须填写天气雷达值班日志和维护维修纸质或电子记录,保存在本站备查。及时填报ASOM业务系统,编制和上报电子报表。

第四十一条雷达站必须保存天气雷达运行状态日志和定标记录、年维护和年巡检的电子文档。

第四十二条按照有关规定报送编制和报送报表。

第十一章附则

第四十三条本规定由中国气象局业务主管部门负责解释。

第四十四条本规定自发布之日起施行。

新一代天气雷达观测规定(第二版)

新一代天气雷达观测规定 (第二版) 综合观测司 二○一八年十二月

第一章总则 第一条本规定是在《新一代天气雷达观测规定》(见气测函〔2005〕81号)基础上,为适应新一代天气雷达业务发展,进一步加强对新一代天气雷达业务的管理,依据《中华人民共和国气象法》和《气象设施和气象探测环境保护条例》修订而成。 第二条新一代天气雷达是指中国气象局布网的S波段、C波段多普勒天气雷达,其主要观测目的是监测和预警灾害性天气,特别是热带气旋、暴雨、冰雹、雷雨大风、龙卷、雪暴以及其它天气系统中的中小尺度结构等。 第三条新一代天气雷达观测业务是气象观测业务的重要组成部分,主要包括数据采集、处理、存储、传输、质控、整编、归档和雷达系统的维护维修、定标及气象探测环境保护等内容。 第二章岗位要求与职责 第四条新一代天气雷达观测人员应具备相关专业大专及以上学历或中级及以上技术职称,了解雷达基本结构和原理,掌握雷达维护维修、定标及回波分析等技能。 第五条新一代天气雷达观测人员主要职责: (一)按照本规定开展观测工作,确保重大灾害性天气观测无遗漏和资料的可靠性、完整性、及时性及真实性。 (二)填写、保管各种电子和纸质记录、表簿及技术档案。

(三)执行雷达运行、监控和其他有关规章制度。 (四)负责雷达系统运行保障、工作模式选择、雷达系统适配参数和元数据参数管理、软件维护。 (五)负责雷达系统定标,以及雷达系统和附属设备的维护、保养与检修,保证雷达系统和附属设备稳定运行。 (六)负责雷达观测资料的整编、刻录(拷贝)、归档、存贮、可靠性检查。 第三章探测环境与保护 第六条雷达站址环境及相关要求如下: (一)在雷达主要探测方向,包括重点服务地区和重要天气过程的主要来向,其遮挡物对雷达电磁波的遮挡仰角不应大于0.5?,其他方向的遮挡仰角不应大于1?,孤立遮挡方位角不应大于1?,且总的遮挡方位角不应大于5?,邻近雷达能覆盖该遮挡区域的则可适当降低要求。 (二)雷达站周边不能有影响雷达工作的电磁干扰,一旦出现干扰,相关管理部门应及时向当地无线电管理委员会提出申请,协调解决。 (三)建站时应绘制四周遮挡角分布图,以及距测站上空1千米高度和海拔3千米、6千米高度的等射束高度图,观测环境发生变化时应重新绘制遮挡角分布图、等射束高度图,并上报上级业务主管部门。 (四)应采用2000国家大地坐标系和1985国家高程基准,确定雷达天线馈源的经度、纬度、海拔高度,并作为雷达位臵报上级业务主管部门。经、纬度误差应小于1秒,海

数据库技术发展趋势

数据库技术领域的发展趋势 1 泛数据研究 2 国际数据库研究界动态 3 主流技术发展趋势 3.1 信息集成 3.2 数据流管理 3.3 传感器数据库技术 3.4 XML 数据管理 3.5网格数据管理 3.6 DBMS的自适应管理 3.7移动数据管理 3.8 微小型数据库技术 3.9 数据库用户界面 1 泛数据研究的时代 数据库技术从诞生到现在,在不到半个世纪的时间里,形成了坚实的理论基础、成熟的商业产品和广泛的应用领域,吸引了越来越多的研究者加入,使得数据库成为一个研究者众多且被广泛关注的研究领域.随着信息管理内容的不断扩展和新技术的层出不穷,数据库技术面临着前所未有的挑战.面对新的数据形式,人们提出了丰富多样的数据模型(层次模型、网状模型、关系模型、面向对象模型、半结构化模型等),同时也提出了众多新的数据库技术(XML 数据管理、数据流管理、Web数据集成、数据挖掘等). 回顾数据库发展之初,数据模型是制约数据库系统的关键因素.E.F Codd 博士(1923-2003)提出的关系模型充分考虑了企业业务数据的特点,从现实问题出发,为数据库建立了一个坚实的数学基础.在整个计算机软件领域,恐怕难以找到第2 个像关系模型这样,概念如此简单,但却能带来如此巨大市场价值的技术. 关系模型在关系数据库理论基本成熟后,各大学、研究机构和各大公司在关系数据库管理系统(RDBMS)的实现和产品开发中,都遇到了一系列技术问题.主要是在数据库的规模愈来愈大,数据库的结构愈来愈复杂,又有愈来愈多的用户共享数据库的情况下,如何保障数据的完整性、安全性、并发性以及故障恢复的能力,它成为数据库产品是否能够进入实用并最终

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无 关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

气象雷达新技术及其应用02121010朱潇杰

新技术讲座大作业 班级:021211 学号:02121010 姓名:朱潇杰

气象雷达新技术及其应用 摘要:气象雷达近几十年来呈高速发展的态势, 受到世界上大多数国家和包括世界气,象组织在内的气象、水文和相关学科的国,际气象组织的高度重视。特别是多普勒天,气雷达技术的应用,使获取更多的大气运,动状态信息成为可能, 极大地提高了各国,气象和水文部门对极端灾害性天气的监测,和预报能力, 已成为世界各国构建业务雷达网之首选。本文首先阐述了国外发达国家气象雷,达的发展现状,然后分别简要介绍双(多)基,地天气雷达、双线偏振雷达、相控阵天气雷,达、激光天气雷达、风廓线雷达等新型雷达,探测大气的原理及其在气象中的应用。 关键词:气象雷达;民航安全;应用 一、气象雷达发展现状 气象雷达属于雷达领域中的一个重要分支,其发展至今大致经历了从模拟、数字到以美国NEXRAD为代表的新一代气象雷达三个发展阶段,目前已广泛应用于天气预报以及农业、水文、林业、交通、能源、海洋、航空、航天、国防、建筑、旅游、医疗等领域的专业气象服务。随着气象雷达探测技术的改进和应用范围的扩大,气象雷达在民航安全中的应用引起了民航界和相关学术界的广泛重视.现代气象雷达系统除了能监测雷雨等灾害天气外, 还可以对严重影响民航安全的风切变、湍流和鸟类危险目标进行有效探测和预警,为降低进近机场区域

低空风变、飞机尾流和鸟击事件风险做出巨大贡献,对保障飞机飞行的安全性、经济性和舒适性具有重要意义。 二、气象雷达新技术 (一)双线偏振雷达 为了识别降水目标、区分不同的降水类型,人们采用多参数雷达进行天气研究,其中双偏振雷达是人们常采用的技术之一,它是根据不同的降水粒子对入射电磁波极化散射特性不同对降水类型进行识别和分类的。双线偏振天气雷达能交替发射和接收水平和垂直的线偏振波,与常规天气雷达相比,除能测量水平反射率因子ZH外,还可以测量差分反射率ZDR、比差分传播相移KDP、相关系数ρHV(0)、退偏振比LDR等,从而了解降水粒子的形状、相态、粒子谱分布、以及粒子的空间取向等,在提高定量测量降水精度、识别冰雹并确定冰雹的大小、区分冬季降水类型、识别风暴中的闪电活动、确定飞机结冰条件等方面具有广泛的应用。双线偏振天气雷达对云雨时空变化的连续观测,可明显提高对水成物形成的微物理过程的理解,提高降水强度的估测精度,改善雷达测量单点和流域的降水强度和降水总量的效果。(二)双(多)基地雷达 双(多)基地雷达主要针对常见的单基地雷达而言的。单基地雷达一般是收发同址,即接收站和发射站位于同一个地方,而双(多)基地雷达则是收发异址,具有一(多)个发射站和一(多)个接收站,以离散的形式配置。从布置的位置方面来看, 可分为地发/地收,空发/地收,地发/空收等几种形式,多基地雷达还具有一发多收,多发多收等形式。而双(多)基

数据库技术及其发展趋势

数据库技术及其发展趋势 数据库技术是通过研究数据库的结构、存储、设计、管理以及应用的基本理论和实现方法,并利用这些理论来实现对数据库中的数据进行处理、分析和理解的技术。 数据库技术研究和管理的对象是数据,所以数据库技术所涉及的具体内容主要包括:通过对数据的统一组织和管理,按照指定的结构建立相应的数据库和数据仓库;利用数据库管理系统和数据挖掘系统设计出能够实现对数据库中的数据进行添加、修改、删除、处理、分析、理解、报表和打印等多种功能的数据管理和数据挖掘应用系统;并利用应用管理系统最终实现对数据的处理、分析和理解。 一、数据库发展历史 第一代数据库系统是20世纪70年代研制的层次和网状数据库系统。层次数据库系统的典型代表是1969年IBM公司研制出的层次模型的数据库管理系统IMS。20世纪60年代末70年代初,美国数据库系统语言协会CODASYL(Conference on Data System Language)下属的数据库任务组DBTG(Data Base Task Group)提出了若干报告,被称为DBTG报告。DBTG报告确定并建立了网状数据库系统的许多概念、方法和技术,是网状数据库的典型代表。在DBTG思想和方法的指引下数据库系统的实现技术不断成熟,开发了许多商品化的数据库系统,它们都是基于层次模型和网状模型的。 可以说,层次数据库是数据库系统的先驱,而网状数据库则是数据库概念、方法、技术的奠基者。 第二代数据库系统是关系数据库系统。20世纪70年代是关系数据库理论研究和原型开发的时代,其中以IBM公司的San Jose研究试验室开发的System R 和Berkeley大学研制的Ingres为典型代表。大量的理论成果和实践经验终于使关系数据库从实验室走向了社会,因此,人们把20世纪70年代称为数据库时代。20世纪80年代几乎所有新开发的系统均是关系型的,其中涌现出了许多性能优良的商品化关系数据库管理系统,如DB2、Ingres、Oracle、Informix、Sybase 等。这些商用数据库系统的应用使数据库技术日益广泛地应用到企业管理、情报检索、辅助决策等方面,成为实现和优化信息系统的基本技术。 第三代数据库系统从20世纪80年代以来,数据库技术在商业上的巨大成功刺激了其他领域对数据库技术需求的迅速增长。这些新的领域为数据库应用开辟了新的天地,并在应用中提出了一些新的数据管理的需求,推动了数据库技术的研究与发展。 1990年高级DBMS功能委员会发表了《第三代数据库系统宣言》,提出了第三代数据库管理系统应具有的三个基本特征: 应支持数据管理、对象管理和知识管理。必须保持或继承第二代数据库系统的技术。必须对其他系统开放 二、数据库技术发展趋势 针对关系数据库技术现有的局限性,理论界如今主要有三种观点 :

多普勒天气雷达练习题精编版

练习题2 1.业务运行的多普勒天气雷达通常采用体积扫描的方式观测。我国业务运行多普勒雷达通常采用的体描模式(VCP11、VCP21、VCP31)2.多普勒天气雷达与常规天气雷达的主要区别在于:前者可以测量目标物(沿雷达径向速度),从而大大加强了天气雷达对各种天气系统特别是(强对流天气系统)的识别和预警能力。 3.新一代雷达系统对灾害天气有强的监测和预警能力。对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。 4.新一代雷达系统对灾害天气有强的监测和预警能力。对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。 5.新一代雷达观测的实时的图像中,提供了丰富的有关(强对流天气)信息。 6.新一代雷达速度埸中,辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线(一致)。7.新一代雷达速度埸中,气流中的小尺度气旋(或反气旋),在径向风场图像中表现为一个最大和最小的径向速度对,但中心连线走向则与雷达射线相(垂直)。 8.新一代天气雷达观测采用的是北京时。计时方法采用24小时制,计时精度为秒。 9.速度场(零等值线)的走向不仅表示风向随高度的变化,同时表示雷达有效探测范围内的(冷、暖平流)。 10.在距离雷达一定距离的一个小区域内,通过对该区域内沿雷达径向速度特征的分析,可以确定该区域内的气流(辐合)、(辐散)和(旋转)等特征。 11.天气雷达是用来探测大气中降水区的(位置)、大小、强度及变化

12.气象目标对雷达电磁波的(散射)是雷达探测的基础。 13.气象上云滴、雨滴和冰雹等粒子一般可近似地看作是圆球。当雷达波长确定后,球形粒子的散射情况在很大程度上依赖于粒子直径D 和入射波长λ之比。对于(D远小于λ)情况下的球形粒子散射称为瑞利散射;而(D与λ尺度相当)情况下的球形粒子散射称为(Mie)米散射。 14.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF测(速度)。 15.每秒产生的触发脉冲的数目,称为(脉冲重复频率),用PRF 表示。两个相邻脉冲之间的间隔时间,称为(脉冲重复周期),用PRT表示,它等于脉冲重复频率的(倒)数。 16.降水粒子产生的回波功率与降水粒子集合的反射率因子成(正比)。与取样体积到雷达的距离的平方成(反比)。 17.S波段天气雷达是(10)cm波长的雷达。 18.在天线方向上两个半功率点方向的夹角称为(c波束宽度)。19.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波. 20.降水粒子的后向散射截面是随粒子尺度增大而(增大)。 21.0 dBZ、-10dBZ、30dBZ和40dBZ对应的Z值分别为(1)、(0.1)、(1000)、(10000) (mm6/m3)。 22.SA雷达基数据中反射率因子的分辨率为(1km×1°)。 23.写出Z-I关系的表达公式 (b Z ) AI 24.Ze的物理意义是(所有粒子直径的6次方之和)。 25.雷达反射率η是单位体积中,所有降水粒子的(雷达截面之和)。 26.雷达气象方程说明回波功率与距离的(二)次方成反比。

新一代天气雷达业务质量考核办法

word 关于印发新一代天气雷达业务质量 考核办法(试行)的通知 各省、自治区、直辖市气象局: 《新一代天气雷达业务质量考核办法(试行)》已经中国气象局审定通过,现印发给你们,自2012年1月1日起实施,请遵照执行。 二○一一年九月二十八日 中国气象局综合观测司 气测函〔2011〕202号

word 新一代天气雷达业务质量考核办法 (试行) 一、目的和要求 开展新一代天气雷达业务质量考核工作的目的:通过对新一代天气雷达台站各项业务工作的考核,进一步规范全国新一代天气雷达基本业务,促进雷达整体业务质量水平的提高。 本办法依据《新一代天气雷达观测规定》、《新一代天气雷达业务管理和运行保障职责》、《综合气象观测系统运行监控业务职责流程(试行)》等规定制定,用于对中国气象局布局的新一代天气雷达台站各项业务工作的考核。 业务质量考核工作坚持实事求是的科学态度,考核工作严禁弄虚作假。 二、考核内容 本办法考核的雷达业务是指以单部新一代天气雷达为单位开展的台站级雷达观测业务和雷达保障业务。其中,台站级雷达观测业务包括:数据采集,产品生成,数据产品传输,观测分析联防,数据产品存储、整编、归档和质量报表编制等内容;台站级雷达保障业务包括:日、周、月维护以及参与年维护、巡检工作情况,故障维修,维护维修信息在综合气象观测系统运行监控平台(以下简称“ASOM”)中的填报,防雷检查,消防检查,雷达备件、仪器、仪表保管及保养等内容。 为反映雷达业务人员个人和雷达台站整体的工作情况,本办

word 法对雷达业务人员个人和雷达台站业务分别进行考核;为反映雷达业务各项工作情况,本办法对考核内容实行分项统计。 三、基数与错情统计 新一代天气雷达业务基数及错情由雷达观测业务和雷达保障业务基数及错情组成。各新一代天气雷达台站应建立雷达业务交接班制度,雷达业务交班人员应统计每日工作基数和错情,接班人员要对上一班的工作基数和错情进行校对,并及时纠正,接班人员未校对出错误,后期审核发现后出错人按实际错情计算,接班人员按实际错情的一半计算。 (一)雷达业务基数统计 ⒈雷达观测业务个人基数统计 (1)数据与产品 雷达观测业务人员值班期间应确保雷达基数据正常采集和存储,确保雷达产品正常生成。 ①数据采集基数 按规定要求,雷达正常采集存储基数据的每小时计0.5个基数;基数据采集存储不满1小时的,该小时内基数据正常采集存储时间大于30分钟的计0.3个基数,小于30分钟的计0.2个基数;未采集存储的不计基数。采集的基数据应及时存储,未存储则不计基数。 ②产品生成基数 按规定要求,雷达正常生成业务要求所有产品的每小时计

第十二章_数据库技术新发展_1_

第十二章数据库技术新发展 1.试述数据库技术的发展过程。 答: (1)数据模型是数据库系统的核心和基础。数据库技术的三个发展阶段应该按照数据模型的进展来界定。按照数据模型的进展,数据库技术可以相应地分为三个发展阶段。 (2)数据模型的发展经历了格式化数据模型(包括层次数据模型和网状数据模型)、关系数据模型两个阶段,发展到以面向对象数据模型为代表的非传统数据模型的阶段。 (3)读者可以从每一代数据库系统的主要特征、代表性系统、主要成就、优点和不足来了解数据库技术的发展过程。 层次数据库系统和网状数据库系统的数据模型虽然分别为层次模型和网状模型,但实质上层次模型是网状模型的特例。它们都是格式化模型。它们从体系结构、数据库语言到数据存储管理均具有共同特征,是第一代数据库系统。 关系数据库系统支持关系模型。关系模型不仅简单、清晰,而且有关系代数作为语言模型,有关系数据理论作为理论基础。因此,关系数据库系统具有形式基础好、数据独立性强、数据库语言非过程化等特色,标志着数据库技术发展到了第二代。 第二代数据库系统的数据模型虽然描述了现实世界数据的结构和一些重要的相互联系,但是仍不能捕捉和表达数据对象所具有的丰富而重要的语义,因此尚只能属于语法模型。 第三代的数据库系统将以更加丰富的数据模型和更强大的数据管理功能为特征,从而满足传统数据库系统难以支持的新的应用要求。 2.当前数据库技术发展的主要特征是什么? 答:新一代数据库技术的特点是: (1)面向对象的方法和技术对数据库发展的影响最为深远 数据库研究人员借鉴和吸收了面向对象的方法和技术,提出了面向对象数据模型(简称对象模型)。该模型克服了传统数据模型的局限性,促进了数据库技术在一个新的技术基础上继续发展。 (2)数据库技术与多学科技术的有机结合 计算机领域中其他新兴技术的发展对数据库技术产生了重大影响。传统的数据库技术和其他计算机技术,如网络通信技术、人工智能技术、面向对象程序设计技术、并行计算技术、移动计算技术等的互相结合、互相渗透,使数据库中新的技术内容层出不穷。 (3)面向应用领域的数据库技术的研究 在传统数据库系统基础上,结合各个应用领域的特点,研究适合该应用领域的数据库技术,如数据仓库、工程数据库、统计数据库、科学数据库、空间数据库。地理数据库等,这是当前数据库技术发展的又一重要特征。 解析:可以用一个三维空间的视图,比较清晰地从数据模型、其他计算机技术、应用领域3个方面描述新一代数据库系统及其相互关系。

最新1多普勒天气雷达原理与应用

1多普勒天气雷达原 理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 3 60/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在 一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷

国外气象雷达发展动向与趋势

国外气象雷达发展动向与趋势 [2005-1-10 9:17:56] 气象雷达是大气监测的重要手段,在突发性、灾害性的监测、预报和警报中具有极为重要的作用。目,全球设有1000多个天气雷达站,分布在世界各地。气象雷达技术的发展大体分3个阶段,第一阶段为20世纪40年代末到60年代;第二阶段20世纪70年代到80年代;第三阶段从20世纪90年代开始。近20年气象雷达最突出的发展是,气象多普勒雷达在大气遥感探测和研究中的应用,如探测降水云内和晴空大气中水平风场和垂直风场,降水滴谱和大气湍流等。 一、发展动向 1.美国、日本、德国、印度尼西亚等国家参加的国 际赤道观测站计划,旨在对影响气候变化的赤道上空大气进行探测。该计划除在印度尼西亚斯马特拉岛设站外还计划在非洲、南美设站。 2.欧盟为了促进雷达观测资料在各国之间交换,扩大受益面,加强了各国之间的合作。重点研究雷达探测降水和雷达资料国际网络,促进了天气雷达的发展。未来几年欧洲天气雷达仍然以发展C波段多 普勒雷达为主,双PRF技术可能用脉冲压缩技术来代替。 3.美国联邦航空局在纽约已成功地研制成一部风切变告警雷达。该雷达是一部多普勒C波段雷达,可以全自动探测和告警显示机场周围的恶劣天气,防止风切变造成的危害和微爆现象。 4.日本开发了一种直径仅1米的小型雷达,其性能与机场等使用的大型气象雷达相当。这种小型雷达使用了适合在低空进行观测的3000兆赫的电磁波。观测几乎是实时的,时间仅需约1分钟。由于体积 小,能安装在汽车和小型船舶上,可预测1平方公里小范围内的天气现象。 5.美国宇航局的兰利研究中心在宇宙飞船“发现号”上安装激光雷达,进行激光雷达系统从太空观测大气。这一研究将使空间遥感技术进入一个新的时代,有可能找到至今仍使气候模式研究人员感到困 惑的许多问题的答案。观测的数据包括云、对流层和平流层的气溶胶、行星边界层的特征、地面以上625英里平流层的空气密度和温度以及一系列的地面特征。 二、发展趋势 1.尽管近年来电子计算机技术飞跃发展,加快了科技成果向业务转化的速度,但由于技术和经费等方面的原因,在2020年之前各国气象部门采用更新一代的天气雷达投入业务应用的可能性很小。今后20年间,天气雷达技术的发展将集中在以下几个方面: (1)当今大气科学的发展重点是更长时间尺度的气象研究和更短空间尺度的中小尺度气象学研究和应用,多普勒天气雷达是天气雷达发展的方向和趋势。今后将一步发展多普勒天气雷达技术,扩展探测功能。目前,多普勒天气雷达主要用于对与降水伴随的灾害性天气的监测和短时预报,而对于晴空探测、特别是获取晴空风场信息,将是多普勒天气雷达功能扩展的下一个目标。据估算,采用相干累加技术有可能使雷达获取晴空风场的能力提高15—21dB。多普勒天气雷达对下击暴流、微下击暴流有很好的监测能力,但由于这类恶劣天气现象生命史极短,仅一两分钟,最多不超过10分钟,改变现行多普勒天气雷达扫描取样的体制,可行的最简单的是在天线垂直波束上采用相控技术,形成多波束,这样雷达仅做方位角一周的扫描便可以获取低层大气中三维立体的风场数据信息,可以迅速而准确地监测和预警下击暴流或微下击暴流。 (2)快速扫描技术将应用于天气雷达。现有的天气雷达是利用天线扫描的方法完成立体扫描的,一个体积扫描约需要5—10分钟,这对下击暴流等小尺度现象的探测就显得慢了。为此,在水平方向旋

数据库新技术及其发展趋势

数据库新技术及其发展 趋势 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

数据库新技术及其发展趋势 数据库技术是计算机科学的重要分支,主要研究如何安全高效地管理大量、 持久、共享的数据。数据库的研究始于20世纪60年代中期,它的发展有着三大 标志性事件。第一件大事, 1969年IBM公司研制开发了基于层次模型的数据库管理系统的商品化软件InformationManagement System,即IMS系统,是首例成功的数据库管理系统软件。第二件大事,美国数据系统语言协会CODASYL (Conference On DataSystem Language)下属的数据库任务组DBTG(Data Base TaskGroup)对数据库方法进行系统的研究和讨论后,于20世纪60年代末到70年代初提出了若干报告。DBTG报告确定并建立了数据库系统的许多概念、方法和技术。DBTG所提议的方法是基于网状结构的,它是数据库网状模型的基础和典型代表。第三件大事, 1970年IBM公司San Jose研究实验室的研究员E. F. Codd博士发表了题为“大型共享数据库数据的关系模型”的论文,提出数据库的关系模型,从而开创了数据库关系方法和关系数据理论的研究领域,为关系数据库技术奠定了理论基础, E. F. Codd因此在1981年获得ACM图录奖。20世纪80年代几乎所有新开发的 系统都是关系系统。随着计算机系统硬件、Internet和Web技术的发展,数据库系统所管理的数据格式、数据处理方法以及应用环境不断变化,同时人工智能、 多媒体技术和其他学科技术的发展,数据库技术面临着前所未有的挑战。 当前数据库技术发展的现状,关系数据库技术仍然是主流 国内数据库的发展趋势也是飞速的,在数据库技术的当前及未来发展里程中, 数据仓库以及基于此技术的商业智能无疑将是大势所趋。IBM的实验室在这方面进行了10 多年的研究, 并将研究成果发展成为商用产品。除了用于

新一代天气雷达复习笔记

目录 第一章引论 (2) 1.1 新一代天气雷达概述 (2) 1.2 天气雷达的局限性 (2) 第二章多普勒天气雷达原理 (3) 2.1 后向散射截面 (3) 2.2 球形粒子的散射 (3) 2.3 电磁波在大气中的衰减和折射 (3) 2.4 雷达气象方程 (4) 2.5 最大不模糊距离和距离折叠 (5) 2.6 多普勒效应 (5) 2.7 最大不模糊速度和速度模糊 (5) 2.8 谱宽 (5) 2.9 雷达取样技术 (6) 第三章多普勒雷达图识别基础 (6) 3.1 识别反射率基本知识 (7) 3.2 识别速度图的基本知识 (7) 第四章雷达数据质量控制 (11) 4.1 地物杂波抑制 (11) 第五章对流风暴及其雷达回波特征 (12) 5.1 普通风暴单体生命史: (12) 5.2 强风暴的雷达回波特征: (12) 5.3 弱垂直风切变中的强风暴——脉冲风暴的回波特征 (12) 5.4 中等到强垂直风切变环境中多单体风暴的雷达回波特征 (13) 5.5 超级单体 (13) 第六章灾害性对流天气的探测与预警 (15) 6.1 龙卷 (15) 6.2 大冰雹 (16) 6.3 灾害性大风 (16) 6.4 暴洪(短时强降水) (17) 6.5 强对流天气预报和预警的发布 (17) 第七章雷达产品与算法 (18) 7.1 产品概述 (18) 7.2 基本产品 (19) 7.3 一些算法简单的重要导出产品 (20) 7.4 风暴单体识别与跟踪算法及其产品 (24) 7.5 冰雹指数产品及其算法 (24) 7.6 中气旋(M)和龙卷涡旋特征(TVS)算法和产品 (25) 7.7 V AD风廓线算法 (25) 7.8 降水算法及其产品 (26) 参考文献: (29)

新一代天气雷达系统功能规格需求书(C波段)..

新一代天气雷达系统功能规格需求书 (C波段) 中国气象局 二〇一〇年八月

修订说明 为指导和规范新一代天气雷达建设和技术升级工作,统一组网新一代天气雷达技术状态,进一步提高雷达系统运行保障能力,更好地满足气象业务应用和发展需求,根据天气雷达技术发展状况,中国气象局组织对1997年发布的《新一代天气雷达系统功能规格需求书》进行了修订完善。 主要修订了新一代天气雷达系统的部分性能参数,增加了雷达保障和培训方面的内容,同时对雷达的自动在线标定、易维护性、保障维护时效、故障定位诊断、随机文件和仪表、机内状态监控、厂家的保障培训职责等提出了明确要求。 修订工作由中国气象局综合观测司组织,中国气象局气象探测中心牵头承担,高玉春、潘新民、黄晓、柴秀梅、陈大任、周红根、高克伟、陈玉宝、蒋小平、徐俊领、雷茂生等同志参加了修订,张培昌、葛润生、张沛源、王顺生、李柏、李建明、苏德斌、李建国、张建云、蒋斌、陈晓辉、陆建兵等专家进行了指导。

目录 1. 前言 2. 新一代天气雷达(C波段)系统总体性能规格需求 3. 雷达子系统功能规格需求 4. 雷达信号处理机功能规格需求 5. 数据处理与显示子系统功能规格需求 6. 雷达输出产品功能规格需求 7. 系统检测、标校功能规格需求 8. 系统与外部通信联接的性能规格需求 9. 保障性需求 10. 培训需求 11. 系统性能评估

1 前言 1.1 《气象事业发展纲要(1991-2020年)》明确指出,“2000年前将大力发展新一代天气雷达,加速多普勒天气雷达软硬件和应用技术的研究,建立新一代天气雷达的业务试验基地;2020年前将进一步加强新一代天气雷达、多参数天气雷达和激光雷达等的研制,发展具有通信功能的气象卫星、新一代天气雷达及其他地基遥测遥感手段,进一步发展、完善中尺度气象监测网和气候监测网”。发展新一代天气雷达,并投入气象业务使用,是气象事业发展的需要。 1.2 《我国新一代天气雷达发展规划(1994-2010)》明确指出,“新一代天气雷达应该是一个能够定量估算回波强度、径向速度、谱宽和降水物相态等信息的全相干系统。主要选用S和C两种波段,选取全相干体制。新一代天气雷达的主要定量探测和测量对象,包括降水、热带气旋、雷暴、中尺度气旋、湍流、龙卷、冰雹、冻雨、冻结层、融化层等,并具备一定的晴空回波的探测能力”。 1.3按照《新一代天气雷达建设增补站点布局方案》对建立培训、研发和保障体系的要求,根据《气象事业发展纲要(1991-2020年)》、《我国新一代天气雷达发展规划》、《新一代天气雷达建设增补站点布局方案》,对《中国新一代天气雷达(CINRAD)性能要求》进行了修订,它对新一代天气雷达系统基本结构、各子系统的性能等提出了要求。 1.4 为保证新一代天气雷达性能进一步满足气象业务发展的需要,更好地在灾害性天气监测、预警中发挥作用,修订了《新一代天气雷达系统功能规格需求书》。修订后的《新一代天气雷达系统功能规格需求书》分S波段、C波段两种,分别作为S波段和C波段新一代天气雷达系统设计生产、考核、验收的基本依据。 2 新一代天气雷达(C波段)系统总体性能规格需求 2.1 对台风、暴雨、飑线、冰雹、龙卷等灾害性天气的有效监测和预警是新一代天气雷达系统的重要任务。上述灾害性天气的空间尺度分布跨度较大,从台风的

数据库技术的最新发展

数据库技术的最新发展 数据库技术经过短短三十年,已从第一代的网状、层次数据库系统, 第一代的关系数据库系统,发展到第三代以面向对象模型为主要特征的数 据库系统。并且数据库技术与网络通信技术、人工智能技术、面向对象程 序设计技术、并行计算技术等等互相渗透,互相结合,也成为当前数据库 技术发展的主要特征。 数据库技术的发展体现 在三个方面:数据模型、新技术内容、 应用领域。通过右图,立体的阐述了 新一代数据库系统及其相互关系。 数据模型是数据库系统的核心和基础。 1、第一代数据库系统(层次数据库系统和网状数据库系统) - 格式化模型,层次模型是网状模型的特例 2、第二代数据库系统(关系数据库系统) -关系模型简单、清晰,关系代数作为语言模型,关系数据理论作为理论基础。关系数据库系统具有形式基础好、数据独立性强、数据库语言非过程化等特色。 3、第三代数据库系统 -更加丰富的数据模型、更强大的数据管理功能、满足新应用要求。 新一代数据库技术的研究与发展。 一、新应用领域的需求 新的数据库应用领域,如CAD/CAM、CIM、CASE、OIS(办公信息系统)、

GIS(地理信息系统)、知识库系统、实时系统等,需要数据库的支持,而其所需的数据管理功能有相当一部分是传统的数据库系统所不能支持的。例如它们通常需要数据库系统支持以下功能: –存储和处理复杂对象。这些对象不仅内部结构复杂,很难用普通的关系结构来表示,而且相互之间的联系也有复杂多样的语义。 –支持复杂的数据类型。包括抽象数据类型、半结构或无结构的超长数据、时间和版本数据等。还要具备支持用户自定义类型的可扩展能力。 –需要常驻内存的对象管理以及支持对大量对象的存取和计算。 –实现程序设计语言和数据库语言无缝地集成。 –支持长事务和嵌套事务的处理。 二、传统数据库系统的局限性 传统数据库系统的局限性主要表现在以下几个方面: 1. 面向机器的语法数据模型 2. 数据类型简单、固定 3. 结构与行为分离 4. 阻抗失配(编程模式不同、类型系统不匹配) 5. 被动响应 6. 存储、管理的对象有限 7. 事务处理能力较差(只能支持非嵌套事务) 三、新一代数据库技术的特点 ?一方面立足于数据库已有的成果和技术,加以发展进化,有人称之为“进化论”的观点和方法。另一方面的努力是立足于新的应用需求和计算机

《新一代天气雷达观测规定》

新一代天气雷达观测规定 中国气象局 二○○五年五月

第一章总则 第一条为加强对新一代天气雷达观测业务的管理,根据《气象法》及《全国气象事业发展规划》(2001-2015)、《全国新一代天气雷达发展规划》(1994-2010),并考虑到新一代天气雷达功能及特点,制定本规定。 第二条新一代天气雷达是指中国气象局布网的CINRAD雷达系列的多普勒天气雷达,S波段多普勒天气雷达有CINRAD/SA、CINRAD/SB、CINRAD/SC等;C波段多普勒天气雷达有CINRAD/CB、CINRAD/CC、CINRAD/CD 和CINRAD/CCJ等。 第三条新一代天气雷达观测是气象业务观测的重要组成部分,新一代天气雷达观测业务包括雷达开机、数据采集、处理、存储、传输、整编、归档,编制各种雷达观测报表,观测环境的保护,雷达参数测量和标校,雷达系统的维护和检修等内容,本规定是新一代天气雷达观测业务的基本准则,适用于新一代天气雷达气象业务观测。 第四条新一代天气雷达观测的主要目的是监测和预警灾害性天气。探测重点是热带气旋、暴雨、冰雹、雷雨大风、龙卷、雪暴、沙尘暴以及其它天气系统中的中小尺度结构等。 第五条从事新一代天气雷达业务工作的人员应具备相关专业大专及以上学历或中级及以上技术职称。 第六条从事新一代天气雷达业务工作人员的主要职

责包括: (一)严守工作岗位,严格按照本规定开展观测工作,认真分析雷达回波及其演变,做好重要天气的监测和预警,确保重大灾害性天气观测无遗漏和资料的可靠性、完整性及真实性; (二) 认真填写、妥善保管各种观测记录、统计表簿和各类技术档案; (三) 严格执行值班制度、交接班制度、雷达标校制度和其他有关规章制度,检查各种安全设施; (四)负责系统运行管理、工作模式选择、雷达系统适配参数设置、系统软件维护; (五)负责雷达系统和网络设备的维护、保养与检修,监视雷达工作状态,发现异常及时处理、报告。 第二章观测环境 第七条雷达站址环境应当符合下列要求: (一)雷达站址周围无高大建筑物、高大树木、山脉等遮挡。在雷达主要探测方向上(天气系统的主要来向)的遮挡物对天线的遮挡仰角不应大于0.5?,其他方向的遮挡角一般不大于1?; (二)雷达天线所在位置以经度、纬度、海拔高度表示,经纬度定位精度应小于3秒,海拨高度测量误差应小于5米; (三)建站时应绘制四周遮挡角分布图,以及距测站1千

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

相关文档
最新文档