Protein A 、Protein G 与抗体的结合(2020年7月整理).pdf

Protein A 、Protein G 与抗体的结合(2020年7月整理).pdf
Protein A 、Protein G 与抗体的结合(2020年7月整理).pdf

Protein A 、Protein G 与抗体的结合

1 Protein A Sepharose 、rProtein A Sepharose 亲和层析介质与抗体的结合

目前,约70-80%的抗体纯化使用Protein A、Protein G 亲和层析。蛋白A (Protein A) 来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG分子的Fc段特异性结合的结构域。蛋白A作为亲和配基被偶联到琼脂糖基质上,可以特异性的和样品中的抗体分子结合,而使其他杂蛋白流穿,具有极高的选择性,一步亲和层析就可达到超过95%的纯度。1个蛋白A分子至少可以结合2个IgG。蛋白A也可以结合另一些免疫球蛋白,如用于某些种属的IgA、IgM的纯化。

天然(Native Protein A) 和重组的蛋白A (rProtein A) 对于IgG的Fc段有着相似的特异结合。重组的蛋白A经改造后含有一个C末端半胱氨酸,可以单一位点偶联于琼脂糖上,降低了空间位阻,增加了与IgG 的结合能力。蛋白A 与IgG的结合强度很大成度上依赖于该抗体的种属和亚型,而其动态结合能力则决定于结合强度(解离常数) 及传质阻力等多种因素(例如上样时样品在柱内的停留时间)。

2 Protein G Sepharose 亲和层析介质与抗体的结合

蛋白G是一种源自链球菌G族的细胞表面蛋白,为三型Fc受体。其通过类似于蛋白A 的非免疫机制与抗体的Fc段结合。像蛋白A 一样,蛋白G可以与IgG的Fc 区域特异性结合,不同的是,Protein G Sepharose 可以广泛、更强地结合更多类型的IgG, 多克隆IgG及人IgG,同时血清蛋白结合水平更低,纯度更高,配基脱落也相对更低。此外,蛋白G还可以和某些抗体的Fab 和F (ab’)2 段结合。

Protein G是从G类Streptococci细菌中分离出来的胞壁蛋白,与多数哺乳动物的IgG Fc段结合(包括:人、山羊、绵羊、兔、豚鼠、马、猪、猴、小鼠等),分子量:25kDa。Protein G可用于纯化不能与Protein A很好结合的哺乳动物单抗和多抗IgG的纯化。相对于Protein A,Protein G对于大多数哺乳动物的IgG 有着更高的亲和力,尤其是对于IgG的亚基,如人 IgG3,小鼠IgG1和鼠 IgG2a。与Protein A不同,Protein G不与狗IgG结合、不结合人IgM,IgD,或IgA。

重组蛋白G(Recomb Protein G)已经除去了与白蛋白及细胞表面结合位点,减少了交叉反应和非特异性结合。因此,它比天然蛋白G和蛋白A有更大的亲和力。可以代替二抗,广泛应用于免疫化学等领域。在亲和力、稳定性等方面好。

本产品将我公司自主设计和生产的新型重组蛋白G偶联到环氧活化的琼脂糖凝胶6B上,成为用于抗体分离纯化的亲和层析介质

本产品稳定性好,基团脱落少,使用寿命长,使用方便,可从腹水或培养液中直接分离纯化抗体。

由于采用了环氧活化的方法,与溴化氰活化方法相比,可获得长短更适合的结合臂,使抗体纯化获得更好的效果。并且这种方法活化的琼脂糖凝胶没有离子交换的作用,因而其死吸附少。

二、亲和介质特性:

三、适用范围

Protein A和Protein G的相对结合强度

++++ =强结合,++ =中等结合,- =弱或不结

四、缓冲液配制

建议采用磷酸缓冲液,洗脱后不影响下游的标记。

A缓冲液1mol/L Na2HPO4.12H2O(MW358.14)……………… 358.14g

1500 mM NaCl l(MW68.08g/mol) ………………… 87.7g

溶于1升水,滤膜过滤

B缓冲液1mol/L NaH2P04 (MW156.01) ………………………156.01g

1500 mM NaCl l(MW68.08g/mol) ………………… 87.7g

溶于1升水,滤膜过滤

C 吸附和洗涤缓冲液

根据所需PH值,按下表3配制。按照所列比例量取后混合,然后再加9倍体积的水,稀释成应用溶液。

如果洗脱下的抗体有些杂带,可加吐温-20至终浓度0.05%

D 中和缓冲液:A液77.4ml 、B液22.6ml;两液混合成PH7.4的中和缓冲液

E 洗脱液0.1mol/L NaH2P04 (MW156.01) ………………………15.601g

150 mM NaCl l(MW68.08g/mol) ……………………… 8.77g

溶于1升水,滤膜过滤,HCl调整PH至3.0

五、应用举例

A 实验名称:从小鼠腹水中分离纯化IgG2a

1、重组蛋白G 琼脂糖凝胶装柱,柱床体积为1ml,流尽20%乙醇溶液;

2、以缓冲液C平衡5-10个床体积,流速为1ml/min;(缓冲液C配制方法:取A液35.2ml、B液64.8ml,再加900ml水,混合后PH6.5).

3、将0.2ml小鼠腹水用缓冲液C稀释到2ml,0.45μm 滤膜过滤,上样。流速为1ml/min;

4、用缓冲液C再洗5-10 个床体积,流速为1ml/min;

5、用洗脱液E,洗脱3体积。

6、在洗脱液加入0.2体积中和缓冲液,以PH试纸确认溶液为中性。溶液太酸,会损伤抗体活性(中和缓冲液配制方法:A液77.4ml 、B液22.6ml;两液混合成PH7.4的中和缓冲液

7、将分离纯化的IgG2a 与对照品同时进行SDS-PAGE 电泳分析。

8、用纯水流洗10个柱床体积,再用20%的乙醇流洗10 个柱床体积,流速为2ml/min,

柱子置于+4~8℃环境中保存

表三,25℃下0.1mol/L磷酸钠缓冲液的配制

根据比例量取混合,然后在加9倍体积的水,稀释成应用溶液。

B 免疫沉淀(Immunoprecipitation, IP):

(1)蛋白样品的准备:

1)对于10厘米细胞培养皿中的贴壁细胞,吸除细胞培养液,PBS洗涤一次,然后加入500微升至2毫升细胞裂解液裂解细胞。

3)对于组织样品参考贴壁细胞使用裂解液的比例进行裂解。

4)对于悬浮细胞,离心收集细胞后,PBS洗涤一次,然后参考贴壁细胞的裂解方法进行裂解。

注:详细的裂解方法参考不同裂解液的详细使用方法。对于不同的培养器材,参考10厘米培养皿的裂解液的用量进行裂解。如果裂解获得的蛋白样品浓度过高,可以用裂解液或PBS适当稀释,如果蛋白样品浓度过低,在以后的裂解过程中宜适当减少裂解液的用量。

(2). 去除非特异性结合(可选做):

1). 取200微升至1毫升蛋白样品,蛋白量约为200微克至1毫克,加入约1微克和免疫沉淀时使用的IgG种属相同的普通IgG和20微升充分重悬的Protein A+G Agarose,4℃缓慢摇动30分钟至2小时。2). 2500rpm(约1000g)离心5分钟,取上清用于后续的免疫沉淀。

注:所谓种属相同的IgG是指,例如后续免疫沉淀时用的是小鼠IgG,则在本步骤中可以加入normal mouse IgG,如无normal IgG可以加入其它不影响后续检测的其它mouse IgG类型的抗体。通过和normal IgG

和Protein A+GAgarose的孵育,可以充分降低非特异性的结合,降低背景。

(3). 免疫沉淀:

1). 加入0.2-2微克用于免疫沉淀的一抗,4℃缓慢摇动过夜。

2). 再加入20微升充分重悬的Protein A+G Agarose,4℃缓慢摇动1-3个小时。(为方便后续的洗涤操作可以把加入充分重悬的Protein A+G Agarose的量调整为40微升。)

3). 2500rpm(约1000g)离心5分钟,或瞬时高速离心,小心吸除上清,注意宁可留下少量上清也不能吸掉Protein A+GAgarose。

4). 用准备蛋白样品时的裂解液或PBS洗涤沉淀5次,裂解液或PBS的用量每次为0.5-1毫升。洗涤时离心条件和吸除上清的要求同上面的步骤C3。

5). 完成最后一次洗涤后,去除上清,加入20-40微升1XSDS-PAGE电泳上样缓冲液Vortex重悬沉淀,瞬时高速离心把样品离心至管底。

6). 100℃或沸水浴处理3-5分钟,取部分或全部样品用于SDS-PAGE电泳,暂时不用的样品可以-20℃保存。

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

融合蛋白定义

融合蛋白 科技名词定义 中文名称:融合蛋白 英文名称:fusion protein 定义1:融合基因的表达产物,或通过生物学和化学方法融合的两个或两个以上蛋白质。 所属学科:免疫学(一级学科);应用免疫(二级学科);免疫学检测和诊断(三级学科) 定义2:通过基因工程方法将编码不同蛋白质的基因片段按照正确的读框进行重组,将其表达后获得的新蛋白质。 所属学科:生物化学与分子生物学(一级学科);方法与技术(二级学科) 定义3:由两段或多段基因序列串联形成的融合基因表达所产生的蛋白质。 所属学科:细胞生物学(一级学科);细胞培养与细胞工程(二级学科) 本内容由全国科学技术名词审定委员会审定公布 目录

融合蛋白 - 技术概况融合蛋白技术是为获得大量标准融合蛋白而进 行的有目的性的基因融合和蛋白表达方法。利用融合蛋白技术,可构建和表达具有多种功能的新型目的蛋白。 技术特点 融合蛋白 融合基因可在原核细胞(如大肠杆菌) 也可在真核细胞中进行表达。 原核表达系统的特点是时程短,费用低,是科研中的主要工具。其缺点是真核蛋白表达没有得到确切修饰;大量蛋白常常沉淀成不溶性包涵体聚合物,需要复杂的变性和复性过程;大量蛋白的分泌较困难。真核表达系统的特点是蛋白翻译后加工机会多,甚至可被改造成人源型;真核细胞易被转染,具有遗传稳定性和可重复性;产物可被分泌,提纯简单,成本低。 技术内容 构建融合蛋白的基本原则是,将第一个蛋白的终止密码子删除,再接上带有终止密码子的第二个蛋白基因,以实现两个基因的共同表达。具体步骤有: 1.进行目的基因的克隆:根据基因序列互补原则,设计合适的引物序列,以cDNA为模板,利用PCR技术扩增不同的目的DNA片段。 2.在载体中进行重组:通过限制内切酶将两个DNA片段进行酶切并回收,然后通过连接酶将两个具有相同末端酶切位点的基因片段进行体外连接,并克隆到高表达质粒载体中,构建重组质粒。 3.将重组表达载体转染宿主细胞并利用选择标志进行筛选及测序。 4.融合基因的诱导表达及表达蛋白的纯化。 技术关键 在构建融合蛋白中,一个关键的问题是两蛋白间的接头序列( Linker ),即连接肽。它的长度对蛋白质的折叠和稳定性非常重要。如果接头序列太短,可能影响两蛋白高级结构的折叠,从而相互干扰;如果接头序列太长,又涉及免疫原性的问题,因为接头序列本身就是新的抗原。 一般来说, 3-5 个氨基酸的Linker 可满足大部分融合蛋白的正确折叠的要求。有人尝试在融合蛋白间加入一段有疏水性和一定伸展性的较长肽链,如(Gly4Ser1),目的是将两者分开,以缓解相互干扰作用,并获得了满意的结果。但具体涉及到每种蛋白时,需具体分析。当我们构建融合蛋

GST亲和层析介质使用说明书

GST亲和层析介质使用说明书 一、简介 GST亲和层析介质(GST Agarose)是专门设计用于纯化谷胱甘肽S-转移酶(GST)融合蛋白、其它谷胱甘肽转移酶以及与谷胱甘肽有亲和作用蛋白的分离介质,一步分离就可得到高纯度的GST融合目标蛋白,纯化条件温和,可以保证蛋白的活性。 本产品是自主设计合成的GST琼脂糖凝胶,具有优良的物理和化学稳定性,使用寿命长,操作方便,批次重复性好,易于放大,是研发与生产的理想选择。 二、性能参数 三、适用范围 分离谷胱甘肽S-转移酶(GST)融合蛋白、其它谷胱甘肽转移酶以及与谷胱甘肽有亲和作用的蛋白。 四、操作说明 1. 缓冲液配制 缓冲液A(平衡缓冲液):10mM Na2HPO4,1.8mM KH2PO4,140mM NaCl,2.7mM KCl,调节pH值至8.0。 缓冲液B(洗脱缓冲液):10mM Glutathione(还原型),50mM Tris-HCl,调节pH值至8.0。因Glutathione易氧化,需现用现配。 (注:各种溶液配制完毕后,最好进行脱气处理,0.45 μm滤膜过滤备用)。 2. 样品预处理:

按每克湿重菌体/2~5ml平衡缓冲液的比例充分悬浮离心收集的菌体;600w功率,每循环超声3s,冷却3s,循环99×3次,破碎菌体;4℃、15000rpm离心15m,收集上清液,或用0.45μm滤膜过滤。 3. 装柱: 聚苯乙烯层析柱 1) 将层析柱固定在铁架台或层析架上,封闭层析柱下端出口,向柱内充入纯水,排开层析柱内空气,先将垫片完全浸没于水面下方,在保持水平的状态下,小心推向底部,避免垫片下方滞留气泡。 2) 打开层析柱下端出口,排出柱中纯水;在液面低至距垫片1~1.5cm高度时封闭下端出口,用移液枪按需要量吸取介质,或用玻璃棒紧靠柱子内壁引流,将介质加入到层析柱中;静置30min,让介质自然沉降。 3) 从上端管口将另一垫片缓慢推至介质沉降平面,使介质表面保持水平状态,注意避免垫片与介质接触面滞留气泡(如对实验结果要求不严,也可不放入上垫片,以提高流速)。 4) 在使用一段时间后,如果层析柱流速减慢,可先用小镊子沿边缘将垫片推翻,夹出垫片,倒出介质,清洗或更换新的垫片后,按2)、3)所述 玻璃层析柱 1) 将层析柱洗净后垂直固定到铁架台上;向柱中加入蒸馏水,排开柱子中的空气,在蒸馏水排尽以前,关闭柱子出口,在柱内保留5~8cm高度的蒸馏水。 2) 先将介质混匀,用移液枪按需要量吸取介质,或用玻璃棒紧靠柱子内壁引流,将介质加入到层析柱中;静置30min,让介质自然沉降。 3) 从上端管口将转换杆出液端缓慢推至介质沉降平面,使介质表面保持水平状态,注意避免转换杆与介质接触面间滞留气泡。 4) 在使用一段时间后,如果流速减慢,可先卸下上转换杆,将介质倒出,再取出下转换接头中滤网,清洗或更换后重新装柱。 4. 过柱: 1) 用10倍介质体积缓冲液A过柱,平衡介质;

常用的分离纯化手段

常用的分离纯化手段 分离 发布日期:2012-8-1有效日期至:2013-1-28查看联系方式 发布单位: 杭州哲博化工科技有限公司分析检测中心查看该会员所有的供求信息查看该会员所有的产品信息 常用的分离纯化手段 资深专家团队---专业检测机构---精准分析服务----先进仪器设备--雄厚技术实力赵老师18 96 8197 425 哲博检测中心,浙大国家大学科技园提供【各种精细化工和高分子材料性能检测,成分分析,配方还原,工艺失效分析】【名校科研院所博士领衔、专业分析专家】 关键词:分离纯化配方分析成分分析 1. 化学分离法 蒸馏与分馏 分离沸点与挥发度相差较大组分的有效方法。有常压蒸馏,减压蒸馏,水蒸气蒸馏。适用于混合液体及液固的分离。 萃取 利用物质在不同溶剂中溶解度的不同和分配系数的差异,使物质达到相互分离的方法。适用于液固,液液的分离。 提取 利用不同的溶剂,从固体样品的基体中,使某种组分得到分离和浓缩。主要利用索氏提取器。如高聚物与填料,高聚物材料中微量助剂的提取与浓缩处理。缺点:①易引起热不稳定的组分变质②溶剂中的杂质也被浓缩③溶剂用量大 结晶与沉淀(溶解沉淀法) 利用样品中各组分在溶剂中的溶解度差异,使某些组分从浓溶液中生成结晶分离出来,是纯化物质的一种有效的方法。适用与高聚物的分离。 过滤与膜分离 过滤是分离液-固非均一体系常用的分离方法。适用于>1μm的颗粒。 膜分离适用于分离< 1μm的胶体颗粒。分为固体高分子膜,阳离子膜,阴离子膜。 灰化,酸化,微波消解—用于无机物的分离。 2. 色谱分离法: 柱色谱法—分离有机化合物的有效手段。分为: 硅胶填充柱—适用于分离大多数弱极性,中等极性和较强极性的化合物。 氧化铝填充柱—适用于分离非极性,弱极性化合物 聚酰胺填充柱—可用于染料,表面活性剂的分离。 阳离子交换柱—分离阳离子,适用于阳离子表面活性剂。 阴离子交换柱—分离阴离子,适用于阴离子表面活性剂。 凝胶色谱法 分为: 凝胶过滤色谱(GFC)—用于分离水溶性大分子。 凝胶渗透色谱(GPC)—用于有机溶剂中可溶的高聚物分子量分布分析及分离。 薄层色谱法—适用于有机化合物的分离。 纸色谱法—主要用于强极性和水溶性化合物,如氨基酸,糖类,有机酸及盐等的分离,亦可用于多种金属阳离子,阴离子的分离与鉴定。 气相色谱法—热稳定好,易挥发的中,小分子量的有机化合物的分离。

HILIC色谱柱介绍

亲水作用色谱(HILIC)是近年来色谱领域研究的热点之一。本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的注意事项进行了总结。 1. HILIC的概念 亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。2. HILIC的分离机制 HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。 3.HILIC影响保留的主要因素 普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。 影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显著增加样品的保留因子。在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显著的亲水作用。如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。 Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid. 4. HILIC与RP-HPLC的比较 传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。 HILIC正好可以解决这些问题,它提供了一种与传统RPLC互补的保留方式,能够使在RPLC 上保留较弱或没有保留的物质在HILIC柱上提供合适的保留,如图2所示:

生物化学-(原创)蛋白质相互作用的研究方法

蛋白质相互作用的研究方法 摘要过去15年来,蛋白质组学得到迅速发展,蛋白质间的相互作用作为蛋白质组学的重 要内容,更是成为国内外竞相研究的重点,研究方法的快速发展为蛋白质间相互作用的研究奠定了坚实基础。本文综述了当前研究蛋白质相互作用的主要技术方法,包括酵母双杂交技术,GST pull-down技术,免疫共沉淀技术和串联亲和纯化技术等多种研究方法,总结了各种研究方法的原理及应用。 关键词:蛋白质,相互作用,研究方法 1 酵母双杂交技术(two hybrid system) 1.1基本原理真核生物细胞转录激活因子一般都含有2个不同的结构域: DNA结合结构域(DNA-bindingdomain, BD)和DNA转录激活结构域(transcription activation domain, AD)。这两个结构域相互独立但功能上又相互依赖,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的活性。将拟研究的编码“猎物”蛋白的基因与AD序列结合,编码“诱饵”蛋白的基因与BD序列结合,形成两段融合基因,并在同一菌株核内表达,若“诱饵”蛋白与“猎物”蛋白在核内存在相互作用,就可以重新形成完整的有活性的转录因子,从而激活报告基因的转录。因此根据报告基因的表达与否,即可判断“诱饵”蛋白与“猎物”蛋白之间是否具有相互作用。 1.2应用 Hurst等利用酵母双杂交的方法研究与乳腺癌转移抑制因子1(BRMS1)的相互作用蛋白,得到此蛋白为Hsp90伴侣蛋白。Reddi等利用酵母双杂交系统研究肝炎B病毒反式作用因子HBx蛋白的自我偶联作用,结果发现HBx蛋白在分子环境中可以通过其碳末端区域产生自我偶联作用。酵母双杂交技术也应用于大规模蛋白质相互作用网络的研究,Lim 等人利用此技术鉴定了770多个可能相互作用的蛋白,有75对蛋白质产生相互作用,其中有83%相互作用的蛋白质在哺乳动物细胞中得到验证。 1.3优点在检测蛋白质之间相互作用方面, 酵母双杂交系统具有非常高的灵敏度,尤其对蛋 白质间微弱的、瞬间的作用也能够通过报告基因 的表达产物敏感地检测到。酵母双杂交技术研究 蛋白质相互作用是基于酵母细胞内的试验,不需 要经过提纯蛋白来研究蛋白的相互作用,避免了 提纯过程引起的蛋白变性,因而研究的是有生物 活性的蛋白-蛋白相互作用,反映体内的真实的相 互作用情况。 1.4缺点(1)对相互作用蛋白在细胞内的定位 要求严格,酵母双杂交不能检测定位于胞浆内、 细胞膜和通过分泌泡分泌到细胞外的蛋白而且融 合表达可能会影响目的蛋白修饰和折叠,尤其在 研究异源蛋白相互作用时,蛋白不一定能正确修 饰和折叠,从而影响蛋白的活性。 (2)由于某些蛋白质本身具有转录激活功,使"猎物"蛋白AD融合基因与“诱饵”

常用色谱柱简介

常用色谱柱简介 气相色谱毛细柱 (键合,聚二甲基硅氧烷) HP-1,DB-1,P-1,CP-SIL5CB, Ultra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101,使用 温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍 生物,维生素衍生物,镇痛药,农药,溶剂,胆固SPB-50型中等极性柱 醇,香料,咖啡,食品添加剂等。 (键合, 50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17,RTx-50,AT-50 SPB-5型弱极性柱 类似固定相:OV-17, SP-2250,使用温度:30℃-310℃(键合,5%苯基,95%甲基聚硅氧烷) 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB, 油三酸酯,喹啉,卤素化合物,香料,农药,酯,Ultra-2, ,RTx-5,AT-5 镇痛药,除草剂等。 类似固定相:SE-54,SE-52,OV-73 使用温度: -60℃-320℃ PTE-5,PTE-5QTM型弱极性柱

应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪(MS专用柱,键合,5%苯基,95%甲基聚硅氧烷) 酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联 对照品牌:HP-5 MS,DB-5 MS, DB-5.625,XTI-5, 苯胺,卤代烃,多氯联苯,,糖类衍生物,维生素衍BPX625,半挥发污染物分析柱(US EPA方法525, 生物,有机酸,镇痛药,农药,抗组胺药,溶剂,625.5,625) 生物碱,防腐剂,香料等。 类似固定相:SE-54,SE-52 使用温度:-60℃-320℃ 应用范围:多氯联苯,胺,有机磷,有机氯农药,SUPELCOWAX 10型极性柱 含氯除草剂,酚,苯胺,香料等。 (键合,聚乙二醇二万) 对照品牌:HP-Wax,DB-Wax,BP-20,CP-Wax 52CB,SPB-1701型中等极性柱 HP-INNO Wax,AT-Wax (键合, 14%氰丙基,86%二甲基聚硅氧烷) 类似固定相:PEG-20M, CARBOWAX-20M,使用温 对照品牌:HP-1701,DB-1701,RTx-1701,AT-1701,度:35℃-280℃ BP-10,CPSil19CB 应用范围:低沸点芳烃,醇,酮,酸,酯,醛,醚, 类似固定相:OV-1701,SP-2250 使用温度:室温-280 乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代 ℃ 烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,

镍离子金属鳌合亲和层析介质(Ni-NTA)说明

镍离子金属鳌合亲和层析介质(Ni-NTA)说明书 一、简介 金属螯合亲和层析介质,又称固定金属离子亲和色谱,其原理是利用蛋白质表面的一些氨基酸,如组氨酸能与多种过渡金属离子如Cu2+,Zn2+,Ni2+,Co2+,Fe3+发生特殊的相互作用,能够吸附富含这类氨基酸的蛋白质,从而达到分离纯化的目的。因此,偶联这些金属离子的琼脂糖凝胶就能够选择性地分离出这些含有多个组氨酸的蛋白以及对金属离子有吸附作用的多肽、蛋白和核苷酸。半胱氨酸和色氨酸也能与固定金属离子结合,但这种结合力要远小于组氨酸残基与金属离子的结合力。 镍NTA亲和层析介质(Ni-NTA )具有特异性好、流速快的优点,颗粒粒度均匀,粒径小,并且螯合镍更稳定,能耐受更高的还原剂,物理和化学稳定性好,批次重复性好。本产品已经螯合好镍离子,使用更方便。 二、性能参数: 特点基团密度高,载量大,分辨率高,使用方便 基质6%的交联琼脂糖凝胶 配体 Ni2+ 配体密度20-40μmol /ml 吸附载量15mg蛋白/ml 介质颗粒大小45-165μm 最大流速600cm/h pH范围3-10,在位清洗时pH范围可到2-11 保存温度+4-8℃ 保存液体20%乙醇 三、适用范围 分离带His标签的重组蛋白及能被金属离子吸附的多肽、蛋白、核苷酸、磷酸化蛋白。四、应用实例 实验名称:Ni-NTA 分离带His标签的重组蛋白 实验步骤: 1、Ni-NTA 装柱,1.6×20cm,柱床体积为10ml; 2、用缓冲液1平衡2~5个床体积,流速为2ml/min; 3、将20ml细胞破碎液(50mM PBS,pH7.4,0.5M NaCl)0.45μm滤膜过滤,上样,流速为 1ml/min;

亲和层析柱使用说明

亲和层析柱使用说明货号 名称规格说明DS0101 亲和层析柱1ml 含1个空管柱,上下盖和2个筛板(亲水性,孔径50um) DS0103 亲和层析柱3ml DS0106 亲和层析柱6ml DS0110 亲和层析柱10ml DS0130 亲和层析柱30ml DS0150 亲和层析柱50ml 一、产品说明 亲和层析是利用生物分子间所具有的专一亲和力而设计的层析技术。它是利用生物分子间 存在很多特异性的相互作用(如抗原和抗体、酶 和底物或抑制剂、激素和受体等),通过将具有 亲和力的两个分子中的一个固定在不溶性基质 上,利用分子间亲和力的特异性和可逆性,对另 一个分子进行分离纯化。 提供的亲和层析柱工具可应用于如下方面: ①纯化重组蛋白;②纯化抗原和抗体;③纯化多 肽;④纯化DNA;⑤糖蛋白的纯化;⑥纯化磷酸 化蛋白和肽;⑦DNA 结合蛋白的纯化;⑧去除内毒素,等。 亲和层析柱空柱管的材质为医疗级的聚丙烯,这种工程材料通过大量的应用证明具有清洁无毒,不与生物分子结合和低溶解度的优点。 亲和层析柱空柱所用的筛板是选用纯净的UHWM-PE(超高分子量聚乙烯)为原料,经独特的工艺加工而成,具有亲水性。筛板在装填时安置在填料基质的上下端,以阻挡昂贵的基质渗出。亲水性筛板采用了领先的亲水性UHWM-PE 生产技术,该筛板能保证使用重力法时的流速为1-2ml/分钟或1-2滴/秒。同时,该筛板和其它同类产品相比,不会由于亲水性基团的引入而对蛋白质产生吸附。另外,该亲水性筛板在使用过程中不易形成气泡,气泡会使流速降低,液体通过基质不均匀。

二、产品应用 1,抗体纯化 纯化抗体一般用Protein A作为纯化的配体,也可以用Protein G或Protein L或异源性抗体作为配体。 2,小分子物质提取(以提取黄曲霉毒素M1为例) 试样通过免疫亲和柱时,黄曲霉毒素M1被提取。亲和柱内含有的黄曲霉毒素M1特异性单克隆抗体交联在固体支持物上,当样品通过亲和柱时,抗体选择性的与黄曲霉毒素M1(抗原)键合,形成抗体一抗原复合体。用水洗柱除去柱内杂质,然后用洗脱剂洗脱吸附在柱上的黄曲霉毒素M1,收集洗脱液。用带有荧光检测器的高效液相色谱仪测定洗脱液中黄曲霉毒素M1含量。 3,重组蛋白纯化 近年来,随着生物技术,特别是基因工程技术的迅猛发展,重组蛋白表达和纯化越来越容易。常用的重组蛋白表达策略是把蛋白与亲和标签融合表达,利用亲和标签一步纯化出目标蛋白。此方法无需了解蛋白质的生化特性或生理活性,就可通过带标签的重组融合蛋白选择性地与层析基质上的配体结合,从而得以纯化任何蛋白质。此方法与常规的层析方法不同之处在于,无需针对不同的蛋白质开发特定的配体和方法。采用保护蛋白质结构和功能完整性的温和条件,可一步亲和层析从粗提物中纯化出重组蛋白,纯度可达90%以上。 亲和标签已成为后基因组学时代纯化重组蛋白常用手段。亲和标签系统一般具有以下特征:(a)一步的吸附纯化;(b)对三级结构和生物活性影响小;(c)可方便且专一的去除以产生天然蛋白质;(d)在纯化过程中重组蛋白的分析简便准确;(e)适用于大量的不同蛋白质。但是没有哪个标签是完美的,只能根据实际需要去自己筛选,下表是分的标签以及纯化的方案。

单链抗体及重组白介素-双功能抗体融合蛋白的表达及其软件预测.

单链抗体及重组白介素-2双功能抗体融合蛋白的表达及其软件预测 2010-10-22 目的利用生物信息学网络资源分析融合蛋白的二级结构及其理化性质,并探讨分泌型抗成骨肉瘤单链双功能抗体基因的表达.方法采用聚合酶链式反应(PCR)将人工合成的`抗体分泌信号肽序列加在抗成骨肉瘤单链抗体(scFv)基因5′端,其3′与白介素-2(IL-2)基因连接构成分泌型单链双功能抗体scFv- IL-2基因,将该基因克隆至逆转录病毒表达载体PLxSN,重组质粒pL(scFv- IL-2)SN 在脂质体介导下转染PA317包装细胞,G418筛选,直至出现抗性克隆,扩大培养,用NIH3T3测定病毒滴度,将重组病毒感染人成骨肉瘤细胞命名为OSC/scFv-IL-2,以PCR,RT-PCR以及Western blotting 对scFv-IL-2基因修饰的OSC9901细胞进行鉴定.在构建融合蛋白之后,运用DNA分析软件DNAssist和蛋白质分析软件ANTHEPROT V5分析融合蛋白的氨基酸序列、二级结构及其理化性质.结果经酶切、PCR及Western blotting分析鉴定,成功地构建了融合基因表达载体 pL(scFv- IL-2)SN,并获得高滴度产毒细胞株C26,scFv-IL-2融合蛋白通过DNAssist和ANTHEPROT V5软件分析获得了融合蛋白的二级结构及其理化性质.结论利用生物信息学网络资源进行分析预测融合蛋白的性质,为进一步探讨单链双功能抗体基因融合蛋白提供依据. 作者:史梦远王海涛张芳琳 SHI Meng-yu WANG Hai-tao ZHANG Fang- li 作者单位:第四军医大学基础部微生物教研室,陕西,西安,710032 刊名:新乡医学院学报 ISTIC英文刊名:JOURNAL OF XINXIANG MEDICAL COLLEGE 年,卷(期):2008 25(2) 分类号:Q782 关键词:单链抗 体生物信息学资源融合蛋白

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

Ni柱亲和层析纯化poly-his变性重组蛋白的标准操作规程

Ni柱亲和层析纯化poly-his变性重组蛋白的标准操作规程(编号:066)1、目的及适用范围 利用Ni2+鳌合层析纯化体外表达的带有His标签的包涵体重组蛋白。 2、主要仪器 超声破碎仪、冷冻离心机、Ni柱、垂直混匀仪 3、主要试剂 3.1 裂解Buffer:50mM Tris,5mM EDTA,0.8%NaCl,pH8.5 3.2 变性剂:6M盐酸胍,2mM EDTA, 50mM Tris,10mM DTT,pH8.5 3.3 Buffer B:8M尿素,0.1M NaH2PO4,10mM Tris,pH8.0 3.4 Buffer C:8M尿素,0.1M NaH2PO4,10mM Tris,pH6.3 3.5 Buffer D:8M尿素,0.1M NaH2PO4,10mM Tris,pH5.9 3.6 Buffer E:8M尿素,0.1M NaH2PO4,10mM Tris,pH 4.5 4、相关的预处理 Ni柱的预处理: 4.1用5个柱体积的无菌水冲洗柱子; 4.2用5个柱体积的0.1M NiSO4冲洗柱子,使柱子挂Ni; 4.3用5个柱体积的无菌水冲洗柱子,除去多余的Ni; 4.4用5个柱体积的酸性Buffer冲洗柱子(使柱子变得疏松); 4.5用5个柱体积的Buffer B平衡柱子。 5、操作步骤 5.1蛋白的纯化 5.1.1大肠杆菌诱导表达目的蛋白; 5.1.2 4500rpm,离心10-15min,收集菌体; 5.1.3用裂解buffer重悬菌体,8000rpm离心10min,弃上清,收集菌体; 5.1.4 将菌体用裂解buffer重悬,超声破碎菌体; 5.1.5 4℃,12000rpm离心15min,弃上清; 5.1.6 将沉淀用PBST洗涤,4℃,12000rpm离心10min,重复1次; 135

抗体标签

标签抗体 简介 标签抗体,别名为抗原表位,又称抗原决定簇,是抗原分子中决定抗原特异性的特殊区域或基团,是与抗体特异性结合的结构或序列。随着生物技术的发展,科研人员可以通过DNA重组技术,构建包含目的基因以及表位标记的融合蛋白,进而通过特异性标签抗体对其鉴定与纯化,以达到研究的需求。 主要类别 Flag抗体-抗Flag标签抗体 融合标签,如Flag、GST等标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。常用的标签包括myc、HA、Flag、His、GST等。其中Flag标签系统利用一个短的亲水性八氨基酸肽(DYKDDDDK)融合到目标蛋白。Flag标签可位于蛋白质的C端或N端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的Flag标签抗体也被广泛应用。由于Flag标签系统的纯化条件是非变性的,因此可以纯化所有有活性的融合蛋白。Flag标签可以通过加入肠激酶处理去除,肠激酶专一识别该肽序列C末端的5个氨基酸残基。Flag抗体可以用于检测和Flag标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测Flag融合表达蛋白等。 His抗体-抗His标签抗体 融合标签根据其相对分子质量大小可以分为两大类:大的蛋白质分子和小的多肽片段。融合标签的使用可以简化蛋白质的纯化过程、控制蛋白质固定的空间取向及方便检测、使体内生物事件可视化、提高重组蛋白质的产量、增强重组蛋白质的可溶性和稳定性等。His 标签是由6个组氨酸(His-His-His-His-His-His)组成的短肽,专门设计用于重组蛋白质的吸附纯化。由于分子量较小,并且较容易分离和纯化,His融合标签与其他标签相比有很多明显优势,是目前用于纯化的融合标签中使用最为广泛的一种。利用His标签可以建立一个基于融合蛋白的高效检测和纯化系统。His抗体可以用于检测和His标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测His融合表达蛋白等。 GST抗体-抗GST标签抗体 随着越来越多的新基因的发现,基因融合蛋白表达体系以其在新发现蛋白研究中的显著优势已得到广泛应用。其中GST标签体系具有蛋白表达产率高、表达产物纯化方便,以及利于GST抗体制备等特点。GST融合蛋白在水溶液中可溶,可从细菌裂解液中提取,在不变性的条件下通过亲和层析得到。GST融合蛋白可被位点特异性蛋白酶裂解,从而除去GST 蛋白。融合蛋白又是一个非常好的强免疫原,因此,很容易制备抗新蛋白的抗体。正是由于以上的优点,商品化的GST融合蛋白表达体系以及GST标签抗体系统至今仍被广泛应用。近年来在原核表达体系中,谷胱甘肽S转移酶GST表达纯化系统的应用更为普遍。用GST 融合表达系统表达外源基因时,对融合表达产物的检测和纯化非常重要,这里面就包括了GST标签抗体的应用。 GFP抗体-抗GFP标签抗体 常用的标签包括GFP、HA、Flag、His、GST等。其中绿色萤光蛋白(Green Fluorescent Protein),简称GFP,这种蛋白质最早是由下村脩等人在1962年在一种学名Aequorea victoria 的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。GFP或其突变体EGFP等被广泛用于基因表达效率的检测,以及和目的蛋白融合表达用于检测目的蛋白的表达和分布。一般来说,GFP抗体不仅可以检测GFP或其适当的突变体,也可以检测和GFP或其适当的突变体融合表达蛋白的表达、细胞内定位,以及纯化、定性或

蛋白质分离纯化的一般程序

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二) 蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。 (三)蛋白质粗制品的获得 选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1. 等电点沉淀法 不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2. 盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3. 有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化 用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品 纯化方案是由几种纯化方法组成的,一般选择的依据是从抽提液中有效成分和

总结生物药物分离纯化的方法

总结归纳本课程介绍的可用于物质分离纯化的方法,并说出每种方法的原理。 萃取分离法 溶剂萃取法原理: 利用物质在两种互不相溶的液相中分配特性不同而进行的分离 设法使一种溶解于液相的物质传递到另一液相的操作 pH影响分配系数-表观分配系数 双水相萃取原理:利用生物物质在互不相溶的两水相间分配系数的差异进行分离的过程 反胶束萃取原理:表面活性剂溶于非极性溶剂中,并使其浓度超过临界胶束浓度,便会在有机溶剂内形成聚集体,非极性基团在外,极性基团则排列在内,形成一个极性核,此极性核具有溶解极性物质的能力。当含有此种反胶束的有机溶剂与蛋白质的水溶液接触后,蛋白质及其他亲水性物质能够溶于极性核内部的水中,由于周围的水层和极性基团的保护,蛋白质不与有机溶剂接触,从而不会造成失活。 超临界萃取原理:当气体物质处于其临界温度(Tc)和临界压力(Pc)以上时,不会凝缩为液体,只是密度增大,具有许多特殊的物理化学性质:流体的密度接近于液体的密度,粘度接近于气体;在临界点附近,超临界流体的溶解度对温度和压力的变化非常敏感; 固相析出分离法 盐析法原理: 盐析法是利用各种生物分子在浓盐溶液中溶解度的差异,通过向溶液中引入一定数量的中性盐,使目的物或杂蛋白以沉淀析出,达到纯化目的的方法。 破坏双电层:在高盐溶液中,带大量电荷的盐离子能中和蛋白质表面的电荷,使蛋白质分子之间电排斥作用相互减弱而能相互聚集起来。 破坏水化层:中性盐的亲水性比蛋白质大,盐离子在水中发生水化而使蛋白质脱去了水化膜,暴露出疏水区域,由于疏水区域的相互作用,使其沉淀。 有机溶剂沉淀法原理: 1、降低了介质的介电常数,使溶质分子之间的静电引力增加,聚集形成沉淀。 2、水溶性有机溶剂本身的水合作用降低了自由水的浓度,压缩了亲水溶质分子表面原有水化层的厚度,降低了它的亲水性,导致脱水凝集。 等电点沉淀法原理: Pl时分子表面静电荷未零,双电层及水化膜的削弱或破坏,分子间引力增加,溶解度降低。常与盐析法、有机溶剂沉淀法或其他沉淀剂一起配合使用。主要:去除杂蛋白,而不用于沉淀目的物。 成盐沉淀法原理: 1.金属离子沉淀 所用的金属离子,包括Mn2+、Fe2+、Co2+、Ni2+、Zn2+、Ca2+、Ba2+、Mg2+等。 蛋白质和酶分子中因为含有羟基、氨基、咪唑基和硫氢基等,均可以和上述金属离子作用形成盐复合物。 分离沉淀→复合物分解→除金属离子(离子交换或金属螯合剂EDTA) 2.有机酸类复合盐 含氮有机酸如苦味酸、苦桐酸和鞣酸等能够与有机分子的碱性功能团形成复合物而沉析出。工业上用此法制备蛋白质时,需采取较温和的条件,有时还加入一定的稳定剂,以防止蛋白质变性。 亲和沉淀法原理:

HILIC色谱柱介绍

亲水作用(HILIC)是近年来色谱领域研究的热点之一。本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的进行了总结。 1. HILIC的概念 亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。2. HILIC的分离机制 HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。 影响保留的主要因素 普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。 影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显着增加样品的保留因子。在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显着的亲水作用。如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。 Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid. 4. HILIC与RP-HPLC的比较 传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。 HILIC正好可以解决这些问题,它提供了一种与传统RPLC互补的保留方式,能够使在RPLC 上保留较弱或没有保留的物质在HILIC柱上提供合适的保留,如图2所示: Figure 2: Chromatograms comparing the retention of allantoin on Atlantis HILIC Silica and Atlantis dC18 columns. (a) Column: 50 mm×4.6 mm, 3-μm dp Atlantis dC18; mobile phase: 10 mM ammonium formate, pH 3; Shows no retention (k =0) of allantoin. (b) Column: 50 mm×4.6 mm, 3-μm dp Atlantis HILIC Silica; mobile phase: 95:5 (v/v) acetonitrile–water containing 10 mM ammonium formate, pH 3; Shows retention (k =1) of allantoin. 另外,HILIC柱上的洗脱顺序与RPLC柱上的正好相反,极性较小的物质先出峰,极性较大的物质后出峰。如图3所示:

相关文档
最新文档