蛋白质芯片技术简述与应用前景

蛋白质芯片技术简述与应用前景
蛋白质芯片技术简述与应用前景

蛋白质芯片技术简述与应用前景

生物芯片技术是生物工程学的一项革命性的新技术,具体是指是指通过微加工技术和微电子技术在固相基质表面构建的微型生物化学分析系统,以实现对生命机体的组织、细胞、蛋白质、核酸、糖类以及其他生物组分的准确、快速与大信息量的检测。自1998年美国宣布正式启动基因芯片计划以来。生物芯片技术的理论研究与实际应用在国内外迅速发展,已经成为人们获取相关信息的重要手段之一。生物芯片技术是生命科学研究中继基因克隆技术、基因自动测序技术、PCR 技术后的又一次革命性技术突破,在生物、医学、食品、环境科学等领域具有十分广阔的应用前景。

生物芯片种类繁多,就目前为止有基因芯片,蛋白质芯片,组织芯片,细胞芯片,微路流芯片,糖芯片等。本文将以蛋白质芯片为重点简述其发展及应用前景。

蛋白质芯片是一种新型的生物芯片,是由固定于不同种类支持介质上的蛋白微阵列组成,阵列中固定分子的位置及组成是已知的,用未经标记或标记(荧光物质、酶或化学发光物质等标记)的生物分子与芯片上的探针进行反应,然后通过特定的扫描装置进行检测,结果由计算机分析处理.蛋白质芯片具有以下特点:

1)特异性强.这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的;

2)敏感性高.可以检测出样品中微量蛋白的存在,检测水平已达ng级;

3)通量高.在一次实验中对上千种目标蛋白同时进行检测,效率极高;4)重复性好.不同次实验间相同两点之间差异很小;

5)应用性强.样品的前处理简单,只需对少量实际标本进行沉降分离和标记后,即可加于芯片上进行分析和检测;

6)适用范围广.适用于包括组织、细胞系、体液在内的多种生物样品.

目前,蛋白质芯片已经应用到生命研究、临床等多个领域,较有代表性的有:1在病毒学研究上的应用

常规的病毒感染的检测主要依靠病原学、免疫学和分子生物学的方法。方法包括形态染色、分离培养、血清学鉴定及PCR技术等[9]。与这些方法相比,蛋白质芯片技术可在短时间内对微量蛋白大信息量的检测,并在许多病毒的感染检测中得到了广泛的应用。Perrin等[10]将基因工程重组的P24蛋白和甲基乙烯基醚/马来酸酐合成为共聚物,用非接触式点样仪将共聚物点样到96孔反应板上,以碱性磷酸酶标记的羊抗人抗体作为信号分子,检测抗HIV P24抗体,结果表明蛋白质芯片的敏感性和特异性和ELISA法相似。Zhu[11]将纯化的冠状病毒蛋白点样到FAST载玻片上,以Cy3荧光标记的抗人IgG和Cy5荧光标记的抗人IgM作为信号分子,制备成抗冠状病毒抗体检测蛋白质芯片,使用软件对信号进行处理。对流行期间400例加拿大病人的血清样本和206例中国发热病人的血清样本进行检测,表明该蛋白质芯片可以敏感、高效、大规模地检测引起SARS的病原体。这种方法还可用于检测其他类型的冠状病毒。张文等[12]将基因工程表达的HCV 分片段抗原,点样到醛基化处理的载玻片上,制成芯片,以Cy3荧光标记的兔抗人IgG作为信号分子,用激光共聚焦扫描仪扫描成像,对来自3家临床单位采用ELISA试剂检测并经过临床验证的905份血清标本进行分析,结果表明蛋白质芯片检测敏感性和特异性高于ELISA法。对其中北京市红十字血液中心提供的290份经ELISA法检测弱阳性的血清样本,分别用蛋白质芯片法和酶免疫分析法进行检测,结果高度一致表明蛋白质芯片法具有操作简便,费用低廉的特点。蛋白质

芯片技术不仅能够用来检测单一的病毒感染,在同步检测多种病毒感染方面也发挥着重要作用[13]。对于同步检测多种病毒感染,目前主要集中在常见的、对人类危害较大的病毒感染(HIV、HBV、HCV)的同步检测。Burgess等[14]将纯化的HIV、HCV和HBV抗原点样到胶体金处理的载玻片上,以Cy3荧光标记的鼠抗人IgG作为信号分子,用激光共聚焦扫描仪扫描成像,这一系统具有敏感、平行、快速的优点,并可同时进行三种病毒的检测。Zhang等[15]利用抗原-抗体特异性反应原理,建立抗体蛋白质芯片,进行了血清中弓形虫、巨细胞病毒、风疹病毒、单纯疱疹病毒感染的集成检测尝试。实验结果验证了和经典的ELISA检测具有良好的吻合性。蛋白质芯片技术由于其检测样品的微量消耗和高通量分析等特点使其在病毒感染检测方面得到了较大发展。但目前实验研究检测的病毒感染种类有限,主要是由于特异性病毒蛋白分子纯化技术的发展滞后,同时高通量检测时病毒抗原间的交叉反应,还需要大量的实验研究筛选敏感的交叉反应较少的抗原检测片段。2在动物源性食品安全监测上的应用

蛋白质芯片技术诞生以来,已在医学基础研究、临床诊断、药物筛选、测试与新药研发等方面得到广泛应用,但在动物源性产品中的应用鲜有报道。

2.1 动物源性产品中病原微生物的检测病原微生物是食品生物性污染的最主要因素,也是引发人体食源性疾病的主要原因。传统的检测方法是培养分离法,整个过程耗时费力,已不能满足目前食品质量与安全控制体系的要求。Howell等∞3采用俗称软蚀刻的微接触印刷技术(Mierocontact printing,灶CP)对抗体进行修饰以保持其生物活性,再将其物理吸附于硅烷化修饰的玻片上,通过高分辨率的扫描探针显微镜(ScanningProbe Microscopy,SPM)进行分析,制作了一种可用于检测大肠杆菌E.coli 01 57:H7和鲑肾杆菌(Renibacteriumsalmoninarum)的抗体微阵列“3。实验结果显示,该芯片与其他病原菌的交叉反应少,检出浓度为7×10 7cfu/ml,检测时间为40 min。由此说明蛋白质微阵列是一种很有效的微生物检测方法。

2.2 动物源性产品中兽药残留的检测

兽药残留是兽药使用后残存于动物体内的微量兽药原体、有毒代谢物、降解物和杂质的总称。动物产品中兽药残留能造成对人体的潜在慢性危害。预防这种危害的最有效方法就是加强对动物产品中兽药残留检测的力度,因此检测动物源性产品中的兽药残留同样具有重要意义。目前研究较多的检测技术主要有活体检测法、化学检测法、酶抑制法和仪器分析法等,但它们无法在时间和成本上同时满足实际应用的需要。蛋白芯片检测兽药残留的方法具有简单、快速和高通量的特点,可以满足社会发展对食品安全检测产品的需要。该试剂盒可以实现对猪肉、猪肝、鸡肉、鸡肝和牛奶中磺胺总量、链霉素总量、恩诺沙星以及氯霉素的定量检测。除具有灵敏度高、特异性强、样品前处理简单、检测方便快速等优点,还可实现对上述多种兽药的同时并行检测,极大地节省了检测费用,缩短了检测时间,进而提高了检测效率。

2.3动物源性产品中转基因食品的检测

自1994年,美国第一个转基因植物产品——转基因番茄获得FDA的批准进入市场以来,转基因农作物在全球内飞速发展。转基因食品就是用转基因生物生产和加工的食品,也叫基因修饰食品(GMF),可以进一步分为转基因植物食品、动物食品和微生物食品∞3。由于转基因食品含有转基因技术导入的外源基因和外源基因在受体内的表达产物,所以对其安全问题争议很大。目前国际上还没有一份严肃的科学报告证实转基因食品是永久安全的。因此,对转基因食品进行检测和

标识已势在必行。基因芯片可以检测出食品中是否含有转基因,以及含有何种转基因。目前国际上转基因产品的检测还没有统一的方法和标准,常用的转基因作物检测方法有PCR检测法、化学组织检测法、酶联免疫吸附法、Southern杂交法、Northern杂交法、Western杂交法和生物测定检测法等。但这些方法只能对单个检测目标进行检测,并存在假阳性高或检测时间周期长等问题。而迅速发展起来的基因芯片技术通过设计不同探针阵列、使用特定分析方法可使该技术具有很高的应用价值,具有高通量、微型化、自动化和信息化的特点,是转基因食品检测方向,可弥补传统方法不足。转基因作物检测基因芯片是将目前通用报告基因、抗性基因、启动子和终止子特异片段固定于玻片上制成检测芯片,将从待检样品中提取DNA扩增、标记后与芯片进行杂交,杂交信号扫描后可经过软件进行分析判断。它选择检测的报告基因是具有明显区别于受体细胞遗传背景选择标记,通常是在离体条件下易于检测的酶或发光蛋白。它还可同时检测报告基因、抗性基因、启动子和终止子,非常适合于转基因作物及加工品检测,

使之具有广阔发展前景。

3蛋白质芯片技术在肿瘤检测中的应用

蛋白质芯片技术在肿瘤研究领域中进展最快。随着肿瘤细胞的发生,肿瘤患者体内某些蛋白质会发生上调或下调,或产生新的与肿瘤关联的异常蛋白,

而蛋白质芯片技术可以描绘出患者体液中所有蛋白质表达情况。根据正常与异常的蛋白质表达谱的差异,从而建立肿瘤的指纹谱,指纹谱的优点是不受任何单个肿瘤标志物的特异性灵敏度的限制,可以及早地反映肿瘤的发生、发展情况。对肿瘤的早期诊断、病情监测、疗效评估及预后均有重要意义。目前,蛋白质芯片用于肿瘤研究已经发现了包括与卵巢癌、前列腺癌、乳癌、膀胱癌、肺癌等相关的蛋白,并在肿瘤发病机理的研究领域亦取得了相当的进展。

3.1前列腺癌

前列腺癌是男性最常见的肿瘤,前列腺特异性抗原(PSA)是检测前列腺癌的主要标志物,但由于其特异性低,因此在前列腺癌早期诊断中的应用受到了限制。运用蛋白质芯片质谱技术能快速地从细胞裂解物、血浆、精液中鉴定出4种检测前列腺癌相关标志物:前列腺特异抗原,特异性酸性磷酸酶,特异膜抗原、前列腺特异肽。结合激光俘获微切技术,从获得的纯前列腺癌细胞裂解液中先后发现了3个上调蛋白质,用蛋白质芯片技术可以检出通过血清前列腺的特异性抗原检测不出的前列腺癌患者…。

3.2卵巢癌

卵巢癌常用的肿瘤标志物是CAl25。在80%晚期患者中CAl25升高,但在早期只有50%一60%增高,CAl25单独作为标志物的阳性预测值较小,因此需寻找特异性和灵敏度更高的标志物。用疏水性C16蛋白质芯片检测56例卵巢癌和66例非恶性肿瘤患者的血清,结果发现在质/荷比值为534、989、2111、2 251和2 465处的5个峰值同时变化,对于诊断具有重要意义。采用蛋白质谱结合生物信息学从卵巢癌患者血清中筛选出7个生物标志物,并纯化了其中3个标志物。结果显示,单个标志物的检测敏感性不如CAl25,但由4个标志物组成的蛋白质谱模型则远比CAl25敏感旧J。

3.3乳腺癌

x光透视是目前人群体检早期发现乳腺癌行之有效的方法,但当病变被检测出时已有许多患者发生了转移,从而失去了治疗时机。因此如何及早发现乳腺癌是科研医务工作者努力的目标。从乳腺癌患者的血清样品中检测出一种28.3KD的

蛋白质,而且它仅存在乳腺癌患者的血清中,研究人员设计出了NMP66试剂盒用其对可疑患者进行检测,结果发现这种蛋白质在乳腺的早期诊断上的特异性达到了100%。用标准生化法和免疫亲和层析法纯化乳腺珠蛋白复合物,用蛋白质芯片技术对其研究发现乳腺珠蛋白是一种有希望用于乳癌诊断的蛋白标志物。生物芯片作为生物技术的一个重要研究领域,具有潜在的经济和社会效益。但是生物芯片技术虽然经历了十多年的发展,许多技术问题仍有待发展和完善,如芯片检测的特异性、重复性、灵敏度、定量等。此外,芯片标准化也是一个亟待解决的问题,包括产品质量的标准化、数据处理及试验操作的标准化等。此外.还有一些关键性瓶颈问题:提高生物芯片的稳定性;增加信号检测的灵敏度;高度集成化样品制备、基因扩增、核酸标记及检测仪器的研制和开发等。

在短短的几年里.生物芯片技术已在生物学、医学、农业、环保和食品科学等领域取得了丰硕的成果。目前。生物芯片所涉及的生物、医学、化学、物理、微电子等领域都有了长足发展,在今后的一段时间里,生物芯片的研究将主要围绕提高芯片的特异性、简化性、准确性以及生物芯片的集成化、微型化、便携化等方面进行。在我国,生物芯片技术研究也紧跟国际前沿,并为我国生命科学研究、医学诊断、新药筛选以及人口素质、农业发展、环境保护等方面做出巨大的贡献。

参考文献

[1].Alberto Pasquarelli. Biochips:Technologies and applications[J].Materials Science and

Engineering,2007.1-14

[2].生物芯片技术及其应用研究范金坪,2009.6-5

[3].蛋白质芯片技术的研究及应用现状孙平,张逢春,张影,2009.5-26

[4].蛋白质芯片技术及其在病毒学研究中的应用刘新生,王永录,2010.10-21

[5].蛋白质芯片技术及其在动物源性食品检测中的应用李贺,马保华,王旭荣,2013.8-26

[6].蛋白质芯片在肿瘤检测中的应用孟庆和,2009.4-30

蛋白质芯片的综述

蛋白质芯片的综述 摘要蛋白质芯片技术是一种高通量、微型化和自动化的蛋白质分析技术,已在多个领域得到应用,如蛋白质组学研究、新药的开发、酶与底物的相互作用和疾病检测等。论文详细介绍了蛋白质芯片技术的原理、芯片介质及蛋白质的固定技术,论述了蛋白质芯片在肿瘤研究,食品检验的应用以及传染病检测中的研究概况。分析了蛋白质芯片的问题以及应用前景。 关键词蛋白质芯片,肿瘤,食品检验,传染病检测,应用 蛋白质芯片的研究工作起始于20世纪80年代,到90年代技术日趋成熟。蛋白质芯片(protein chip)技术因具有高通量平行分析、信噪比较高、所需样品量少,以及可直接关联DNA序列和蛋白质信息等优点,自问世以来,已广泛应用于蛋白质组学、医学诊断学等领域研究,具有广阔的发展。 1.蛋白质芯片介绍 1.1 技术原理 蛋白质芯片是由固定于不同介质上的蛋白微阵列组成,这些蛋白包括抗原、抗体及标志蛋白,然后用标记的或未经标记的另外一个蛋白,如抗原、抗体或配体进行反应,有的需要经洗涤后再加入标记的二抗进行反应,从而达到放大抗原抗体反应的目的。所用的标记物有荧光物质,如Cy3(青色素,一种荧光染料)和Cy5等;酶,如辣根过氧化物酶,化学发光物质等;其他分子,如免疫金标记,然后再进行银染对反应结果显色。反应结果用扫描装置进行检测或用肉眼直接进行观察。 1.2 蛋白质芯片的介质 目前作为蛋白芯片的介质有滤膜类、凝胶类和玻璃片类,前2种介质的优点是能够保持所固定的蛋白的三维结构,但缺点是由于其质地较软,所以不能满足机械点样的强度,同时凝胶类的蛋白质芯片所点样品容易发生扩散。玻璃片的优点是成本低和性能稳定,可满足高强度的机械点样。此外,20世纪90年代中期发展的液相芯片技术使蛋白芯片技术得到进一步提高。其被喻为后基因组时代的芯片技术,也可称为灵活的多种被分析物质的检测 ( flexible multi-analyte profiling,xMAP)技术,xMAP技术是集流式技术、荧光微球、激光、数字信号处理和传统化学技术为一体的一种新型生物分子高通量检测技术,这种技术将流式检测与芯片技术有机地结合在一起,使生物芯片反应体系由固相反应改变为接近生物系统内部环境的完全液相反应体系,因此也被称为液相芯片技术[1]。 光学蛋白芯片也是新发展起来的一项技术,是将高分辨的椭偏生物传感器技术和集成化多元蛋白质芯片技术相结合发展形成的生物分子识别和检测技术。该技术的优点是无需标记待检样品,无需预处理直接检测非纯化分析物,样品用量少,检测时间短并且可以进行多元检测。 1.3 蛋白质的固定 将蛋白质固定于芯片上的方法很多,各方法的最终目的是在单位面积/体积上固定最大量的蛋白质并保持其天然构象,该环节成为蛋白质芯片技术的关键步骤之一。 蛋白质的固定可以分为两类:非专一性固定和专一性固定,非专一性固定即通过被动吸附的方式使蛋白质结合到相应的介质上,如硝酸纤维素膜和多聚赖氨酸包被的玻片通过被动吸附蛋白质的氨基或羧基来固定蛋白质,此方法产生的芯片背景值往往较高。 1. 4 蛋白质芯片的检测

网络推广前景分析

网络推广前景分析 随着科技的进步社会的发展早在前几年就有信息爆炸时代的说法,互联网技术的不断发展已经把人们的思维早早带入了21世纪的互联网时代,中国乃至全球都赫赫有名的阿里巴巴就是最具显著的标志之一,可以说阿里巴巴是引导人们思想由传统购物转变网络购物通道以及网络支付的桥梁之一。 在现今互联网狂飙式的发展其市场也愈来愈细分,据小编所知现在从事网络推广行业工作以及个人站长的很多,这也给很多IT培训机构看到了市场前景,导致目前市场上专培训网络推广以及SEM的教育机构迅速发展。 在小编从事网络推广行业以来很多站长特别是新手站长对未来网络推广的前景还处于朦胧状态,在今天小编就与各站长朋友一起来分享分享小编对网络推广行业前景的看法,在这些观点中仅仅只代表小编个人的思想,如有不合理之处欢迎指出大家再次一起来共同攀讨。 一.提高自身网络推广技术以及网络推广思想 小编一直认为不管从事什么行业都要掌握其该行业的核心,这样才能立于不败之地,特别是互联网行业,互联网大家都知道受是一项更新非常之快一个行业必须每时每刻都要对行业的关注和理解这样才能

跟得上其发展,才能时刻掌握其发展的动向,在此之前小编认为首先要有一种随时掌握行业动态的思想这点为其重要。 就如现在从事网络推广行业的各站长朋友们都知道要掌握各搜素引擎的算法规则之下才能谈优化策略,如果一个不懂或者对各搜素引擎算法规则不加以追踪了解其算法,很有可能所做的优化策略在执行过程中是个失败的策略,因为搜素引擎的算法是时刻在变化的,据小编所知谷歌算法一年的变化有500-600次《这其中也包括了算法的一些微调》,总之一般情况搜素引擎算法是有个这样的规律《其中也包括了百度》每天都有次微小的变动,每周有次再稍微大点的变动,每个月就来一次大的变动,搜素引擎就这样在不断的完善其搜索产品,所以在此基础上大家都要具有跟进变化的思想这样才能有更利于优化的策略方案,才能有更好的优化方向,才能避免触犯搜素引擎算法规则。 在有一个良好的网络推广思想下还需要有一个很好的网络推广技术,各站长朋友们都知道做一个站优化得对其结构进行优化,在对结构优化时就需要有个良好的网络推广技术,能够独立处理一些标签的优化以及对robots、nofollow等元素在网站中的应用优化、404、301、503等状态码页面的制作处理还有些小编就不在里一一提了,以上所说的是作为一个网络推广人员应具有最基本的技术处理。

纳米技术的应用与前景展望

纳米技术的应用与前景展望 【摘要】纳米技术是二十一世纪最具潜力的学科分支,有可能成为下一世纪前二十年的主导技术。本文概述了纳米技术在陶瓷、电器、医学等方面的应用,并对纳米技术的发展进行了展望。 【关键词】纳米技术;应用;发展前景 0.引言 纳米技术是上世纪末出现的高技术,有科学家预言,在21世纪纳米材料将是“最有前途的材料”,纳米技术甚至会超过计算机和基因学,成为“决定性技术”.1990年,第一届国际纳米科学技术会议在美国巴尔的摩召开,《纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世.从此一个崭新的科学技术领域—纳米科技开始得到科技界的广泛关注。[1] 1.纳米技术 1.1纳米技术的发展现状 二十世纪90年代以后,纳米技术飞速发展。自首届国际纳米科学技术会议召开以后,世界各国的纳米技术研究风起云涌,各种形式的研究机构像雨后春笋遍布世界各地,纳米技术研究所涉及的科学领域及应用范围在不断扩大,各个领域都取得了可喜的进展,纳米技术研究获得了空前的快速发展。纳米材料是纳米技术的重要组成部分,在纳米材料领域,人们研究出了纳米金属、合金、陶瓷和有机高分子等复合型材料并在实际中应用,取得了明显的效果。[2] 1.2发展纳米技术的重要性 纳米技术的研究开发可能在精密机械工程、材料科学、微电子技术、计算机技术、光学、化工、生物和生命技术以及生态农业等方面产生新的突破。世界各国都给予极大的重视,美国国家关键技术委员会将纳米技术列为政府重点支持的22项关键技术之一,制定了投资2亿美元进行大规模开发纳米技术的10年计划。英国成立了纳米技术战略委员会,国家纳米技术计划已开始实施。科学家们认为,纳米技术的深远意义可与18世纪的工业革命相媲美,它的重要性非常大,表现在技术和科学方面,主要有以下几点: (1)纳米技术是一项交叉领域学科,对它的基础研究和应用研究是能否拥有国际竞争力的先决条件。 (2)由于它的交叉学科性能,决定了它不仅应用于一种技术领域,它为许多学科的发展奠定基础并起到推动的作用。

蛋白质工程的现状发展及展望

蛋白质工程的现状发展及展望 摘要: 蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词: 蛋白质工程;定点诱变; 定向进化 20世纪70年代以来, 对蛋白质的分子改造渐渐进入研究领域, 通过对蛋白质分子进行突变, 得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1.理性进化 理性进化主要是利用定点诱变技术, 通过在已知DNA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。Markus Roth通过同源性比对和定点突变技术, 对EcoR DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键, Caho通过定点突变研究, 发现将五个氨基酸残基置换之后的酶, 由6- 16 : 0- ACP脱氢酶变成9- 18 : 0- ACP脱氢酶。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacillus stear other mophilus分离出来的嗜热菌蛋白酶突变, 得到的突变体稳定性提高了8倍, 100 在变性剂存在的情况下还能发挥作用,但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构, 从而造成很大的影响, 所以在定点突变的基础上又出现了许多新的技术, 用于改造蛋白质分子。[1] 2.非理性进化 非理性蛋白质进化, 又称定向进化或者体外分子进化,在实验室中模拟自然进化过程, 利用分子生物学手段在分子水平增加分子多样性, 结合高通量筛选技术, 使在自然界中需要千百万年才能完成的进化过程大大缩短,在短期内得到理想的变异。这种方法不用事先了解蛋白质结构、催化位点等性质, 而是人为地制造进化条件, 在体外对酶的编码基因进行改造, 定向筛选, 获得具有预期特征的改良酶, 在一定程度上弥补了定点诱变技术的不足, 具有很大的实际应用价值。一个比较成功应用定向进化的例子是对红色荧光蛋白的改造。绿色荧光蛋白由于

推广应用前景与措施

推广应用前景与措施 整体适形挡铅技术是恶性肿瘤放疗的前期基础技术的一项革新。这项技术的应用可以避免传统挡铅技术的弊病,使肿瘤受到更高剂量的照射,提高肿瘤的控制率,同时又可以使周围正常组织少受或免受照射,减轻放射反应,有效地提高治疗增益比。 目前整体适形挡铅技术已在国内及省内开始应用,但研究报道并不多。我们于1999年底开始进行这项技术的研究准备工作,课题负责人及主要工作人员分别到北京、上海、广州等地有关医院学习考察,捡索资料、进行可行性研究。2000年1月开始试行整体适形铅块的制作。2000年8月,在路局科委、医院领导、院科教科的大力支持下,在江西省率先开展了《恶性肿瘤放射治疗整体适形挡铅临床疗效研究》这一课题。研究中我们改装并调整了机器,进行了技术攻关,改善了铅块的制作工艺,保证了整体适形铅块的准确性和精确性。临床方面,通过80例恶性肿瘤患者放疗中采用两种挡铅方法的对照比较,结果说明整体铅挡块技术的采用能在保持或增高肿瘤放疗效果的同时有效地保护肿瘤周围的正常组织,减少副反应,且能减少射线场所工作人员的劳动强度,又能产生一定的经济效益,为一种有效、安全、简便易行的技术。 恶性肿瘤放射治疗中采用整体适形挡铅现已成为我院肿瘤放疗治疗中的一个常用方法,为放疗临床广泛接受。该课题的成功进行,填补了省内空白,使我院乃至我省肿瘤放射治疗技术水平又上了一个新的台阶,必将取得良好的社会效益和经济效益。 在今后的肿瘤放射治疗临床工作中,我们将更进一步提高和完善整体铅挡块的制作工艺,配合头体部激光点式定位及头体部高分子记忆膜的引进使用,使放疗靶区更趋于适形、精确、准确,从而使放疗疗效进一步提高。

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

蛋白质组学及其在疾病研究中的应用

综述摘要 创新中药及其在我国的发展 邓文龙(四川省中药研究所,成都610041)本文就创新中药的定义、标准及创新中药在我国的发展进行了讨论。作者认为一流的临床疗效或独特的作用机理是创新中药的首要条件,按药物有效成分的有效剂量进行质量控制是创新中药的基础。 蛋白质组学及其在疾病研究中的应用 段春燕综述,何涛审校 (泸州医学院生物化学教研室,四川泸州646000) 目前人类基因组计划已进入后基因组时代,1994年Mac Wilkins与Keith Williams首先提出了蛋白质组学(prot eomics)的概念。依赖于二向电泳、质谱技术及生物信息学等多种手段的蛋白质组学分析在肿瘤、心血管系统、内分泌系统、神经系统及感染性疾病等的研究中得到了充分的应用,从整体的蛋白质水平上,在一个更深入、更贴切生命本质的层次上来探讨和发现生命活动的规律和重要生理、病理现象的本质。 蜂毒的现代药理研究及临床应用概况 夏隆江 (成都中医药大学药理教研室2004级博士生,成都610075)蜂毒是蜜蜂科昆虫中华蜜蜂Apis cerana F abricus等之工蜂尾部蛰刺毒腺和副腺分泌出的具有芳香气味的淡黄色透明毒液,是具有多种药理学和生物学活性的复杂混合物,主要由多种肽和酶类活性物质组成。它具有较广泛的药理作用:1、对心血管的作用:蜂毒有明显的降血压作用,其作用类似于组胺,是通过扩血管实现的;同时,蜂毒对心肌具有正性频率和负性肌力作用。2、对神经系统的作用:蜂毒有明显的镇痛作用和调节神经系统紧张度的作用。3、对血液的作用:蜂毒具有溶血、抗凝血和降低血栓素的作用。4、对呼吸系统的作用:蜂毒可使呼吸加快,大量的蜂毒可导致呼吸肌麻痹。5、对消化系统的作用:蜂毒有抗肝纤维化和吸收肝纤维化作用。6、对内分泌系统的作用:蜂毒对垂体、肾上腺皮质系统有明显的兴奋作用。7、对免疫系统的作用:蜂毒具有免疫抑制作用。8、抗炎镇痛作用:蜂毒肽对前列腺素合成酶的抑制作用是吲哚美辛的70倍,具有极强的抗炎镇痛效果。另外,蜂毒还具有抗肿瘤、抗辐射、抗菌等作用。在临床运用方面,临床上蜂毒被广泛地用于治疗风湿性、类风湿性疾病、多发性硬化病、艾滋病、高血压、哮喘、白塞病、寻常型银屑病等,具有较大的研究前景和临床运用价值。 瘦素的研究现状 龙中奇(四川省达州中医学校,达州635000)本文对瘦素的生物学性质及生理生化功能作一综述。 帕金森病的研究进展 唐宗琼(四川省达州中医学校,达州635000)多种因素导致帕金森病(PD)发病,归纳起来有以下几种学说:1遗传因素学说;环境因素学说;氧化应激学说;免疫学说;细胞凋亡学说;o对PD治疗的探索:细胞替代疗法(CRT)治疗PD是目前研究PD的热点,CRT治疗PD的目的是重建纹状体受损的多巴胺(D A)能神经支配,重建脑功能。根据供体的不同,PD的CRT治疗可分为:自体肾上腺髓质移植、同种异体胎脑移植、异种胎脑移植和干细胞移植。其中,自体肾上腺髓质移植经临床研究证实嗜铬细胞植入脑内后存活率极低,无肯定的治疗作用而已被淘汰。 胃肠肽类激素对摄食活动的调节 孙玉锦(雅安职业技术学院,雅安625000)摄食是复杂的行为,是一种精神活动,它包括觅食、食物的摄取、消化、吸收和利用,摄食是人类以及所有动物维持生命活动的最基本最重要的功能之一,摄入的食物经过消化和吸收过程为机体提供必须的能量和营养物质。虽然摄食作用作为一种本能生来即有,但实际上摄食活动是受体内复杂的神经和体液因素调节的,涉及到神经中枢、传入传出神经以及许多神经递质和激素。本文仅讨论胃肠肽类激素对摄食活动的调节。 将饱食大鼠的血液注入饿鼠血管内,可抑制饿鼠的摄食活动,这个事实提示血液中含有控制摄食的信息。这种信息是什么?推想饥饿使人或动物在短时间内大量进食,在食物未完全消化吸收之前,就因产生饱感而停止继续进食,究其原因很可能是食物与胃肠粘膜接触后,引起胃肠肽类激素释放,胃肠肽类激素通过血液循环,作用于下丘脑,兴奋饱中枢)下丘脑腹内侧核(VMH),抑制摄食中枢)下丘脑的外侧区(LHA),从而停止摄食。影响摄食活动的胃肠肽类激素较多,但其中只有少数胃肠肽类激素对摄食调节有生理意义,大多数胃肠肽类激素需要给予药理剂量才对摄食活动发生影响。本文介绍了体内多种胃肠肽类激素:胆囊收缩素、阿片肽、铃蟾肽、胰高糖素、胰岛素、酪神经肽、胃动素、甘丙素、生长抑素、雨蛙肽等对摄食有促进或抑制作用,目前对它们作用的许多环节还不完全清楚,但随着研究的不断深入,其与摄食有关的许多问题将会逐渐得到阐明。 实验研究摘要 松龄血脉康胶囊对自发性高血压 大鼠的降压作用及机制初探(摘要) 万莉红,熊文碧,朱玲,刘蓉,谢芬,刘嘉琴,周黎明*,李崇前1,张顺华1 (四川大学华西基础与法医学院药理教研室,四川成都610041;1成都康弘集团#博士后工作站,四川成都610036)目的:探讨中药松龄血脉康胶囊胶囊对自发性高血压大鼠是否具有降压作用,并初步探讨起作用的机制。方法:雄性自发性高血压大鼠(SHR)60只,随机分为高血压模型组、卡托普利组、Vc 组、松龄血脉康胶囊组四组,并设立正常血压大鼠(WKY)15只作为对照组,用BP26动物无创血压测试仪试验前测定各组动物的基础血压。(1)各组分别给予生理盐水、卡托普利12.5mg#kg-1、Vc50mg#kg-1、松龄血脉康胶囊胶囊750mg#kg-1灌胃,每日一 133 四川生理科学杂志2005;27(3)

蛋白质工程及其应用研究进展

蛋白质工程及其应用研究进展 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

蛋白质组学及其应用研究

现代商贸工业 2019年第16期 79 一间不了解,往往会错过报名时间而与心仪的证书擦肩 而过.2.4一学生缺乏清晰的职业规划 据调查,大多数的学生对自己的所学专业并不是很了解.并认为自己在大学期间对本专业的学习比较浅显,缺乏实践.对自身未来就业感到十分迷茫,对自己专业的就业前景知之甚少.这种没有结合自身实际的职业规划,就会对学生考取证书的选择有较大的影响.2.5一学生的考证成本较大 大学生目前的考证方式主要有两种:自学和报班.报班的话,费用和时间成本会较高.且社会上的考证机构参差不齐,学生较难判断.自学的话,难度较大.时间成本会更高.学生考取证书所付出的精力会更多.这可能会影响学校的正常学习.可能会出现本末倒置的情况.且社会上考取证书的参考资料品质不一.学生难以判断选择最适合的考证资料. 3一考证问题相应的对策 3.1一学生角度对策 (1)理性考证,切忌盲目跟风,证书并不是越多越好,分析自己所在的专业,了解与自己专业相关的证书,合理的安排考证和学校课程的时间,千万不要忽略学校授予的专业知识.证书或许能为你找工作提供一定的帮助,但真正让你立足于社会的是自身的能力,保持理智,不可本末倒置. (2 )做好自己的职业生涯规划,让自己对未来有一个明确的目标,然后根据这个目标,去选择能帮助到自己的证书,同时观察市场行情和国家形势,选择恰当的目标和时机去考取证书. (3)在考取证书的时候,一定要去了解该证书的详细信息,如考证费用二难易程度等,考取好的二知名度高的证书往往代表着你要投入大量的时间二金钱和精力,结合自身的实际情况来选择证书,适合自己的才是最好的.在选择培训机构的适合,一定要选择权威的二正式的机构,切勿贪小便宜而因小失大.3.2一学校角度对策 (1 )应帮助同学们建立起正确的三观二就业观,如东南大学成贤学院就应设立相应的讲座和课堂,为同学们讲解关于以后踏入社会的相关知识,培养大家独立二理性解决问题的能力. (2 )在校内设立与考证相关的导师机构,为同学们考证排忧解难,给出建议,避免学生盲目跟风,为考证不顾学业.同时要适当的疏导同学,避免对学习和就业产生过多的压力. (3 )学校需要做好一个合理引导的角色,应当不断完善学生的就业指导与服务体系,帮助学生树立正确的就业观念与明确的职业规划,端正考证动机,摒弃不良的考证心态,妥善处理好在校学习与考证学习的关系,让学生明白只有扎实提高自身能力与素质才会使自己终生获益.3.3一社会角度对策 (1 )用人单位应该完善用人的标准和要求,不以证书的数量来衡量学生的能力,用人标准和要求应多注重大学生的综合素质和实践能力. (2 )国家对于各种证书的认证要严格,对于各种培训机构要进行认真清理,不合法的要坚决取缔,考证不能成为不良居心的人利用应试考试赚取钱财的手段.同时加强考场管理,坚决反对作弊等现象的发生,为考证提供一个可信的平台,树立证书的权威性. (3)政府要做好用人单位和学校之间的沟通与交流,建立合作平台,保证人尽其用.优秀的大学生是社会紧缺的人力资源,为了避免这一人力资源的浪费,搭建企业与学校直接对接的桥梁是必不可少的,可以在为企业寻找需求的人才的同时,给予大学生实践和学习的机会. 参考文献 [1 ]关化少.我国本科应用型创新人才培养之特点二价值与理论期待[J ].北京教育,2015,(05).[2]舒程. 考证热 背景下大学生创业与就业能力培养分析[J ]. 赤峰学院学报,2017,(02). [3]费芳.大学生 考证热 亟需正确引导[J ].湘声报,2015,(01). [4]李晓娜.大学生 考证热 现象的经济学分析[J ]. 经济研究导刊,2014,(24). 蛋白质组学及其应用研究 魏东阳 (宝鸡中学,陕西宝鸡721000 )摘一要:蛋白质组学的概念最早是由澳大利亚学者W i l k i n s 和W i l l i a m s 于1994年提出, 细胞二组织或者机体的基因组所表达的全部蛋白就称为蛋白质组学.蛋白质组学是一个研究蛋白质组及大范围蛋白质的分离二分析二应用的学科.它不同于传统的利用生物化学的方法研究单个蛋白质或某一类蛋白,而是在大规模水平上研究体系内全部蛋白质及其动态变化规律.随着学科的发展,蛋白质组学的研究范围也在不断完善和补充,通过查阅大量文献,总结蛋白质组学技术,并研究蛋白组学在生物医学二转基因技术二生物制药技术等领域的. 关键词:蛋白质组;蛋白质组学;蛋白质组学应用 中图分类号:F 24一一一一一文献标识码:A一一一一一一d o i :10.19311/j .c n k i .1672G3198.2019.16.034一一蛋白质组(P r o t e o m e )是由蛋白质(P r o t e i n )和基因组(g e n o m i c )两个词的组合而来,是指生命体(包括细胞二组织等)的一个基因组所表达的所有蛋白质.其主 要研究内容就是能在大规模水平上研究蛋白质的表 达二翻译后的修饰以及蛋白质与蛋白质之间的相互作用,从而来了解蛋白质参与细胞二人体代谢及其他生命

《蛋白质工程的应用》教案

《蛋白质工程的应用》教案 教学目标 1、举例说出蛋白质工程崛起的缘由。 2、简述蛋白质工程的原理。 3、尝试运用逆向思维分析和解决问题。 教学重难点 (1)为什么要开展蛋白质工程的研究? (2)蛋白质工程的原理。 课时数 本节教学建议用1课时。 教学过程 (1)采用“问题—探究—新问题—再探究”的教学模式。 本节内容是基因工程的延伸和发展。由于蛋白质工程刚刚起步,学习内容较少。如何学得充实,又让学生悟出些终身学习的道理,建议采用“问题—探究—新问题—再探究”的教学模式。 新课一开始,可以带领学生回忆原有知识:要想让一种生物的性状在另一种生物中表达,在种内可以用常规杂交育种的办法实现,但要使有生殖隔离的种间生物实现基因交流,就显得力不从心了。基因工程的诞生,为克服这一远缘杂交的障碍问题,带来了新的希望。于是取得了丰硕成果:大肠杆菌为人类生产出了胰岛素,牛的乳腺生物反应器为人类制造出了蛋白质类药物,烟草植物体内含有了某种药物蛋白……至此,人们也只是实现了世界上现有基因在转基因生物中的表达。但一个新问题出现了,生物产生的天然蛋白质是在长期进化过程中形成的,它的结构、性能不能完全满足人类生产和生活的需要。为了加深这一点的认识,可调动学生从书中找实例(干扰素例子、工业用酶的例子)加以佐证。于是要对现有蛋白质进行改造,制造出目前从天然蛋白质中找不到的蛋白质。这样人们又开始了新一轮的探索,蛋白质工程应运而生了。 (2)建议加强与已有知识的联系,用逆向思维的方法解决新问题。 学生在必修课中已学习过中心法则及蛋白质具有复杂的空间结构等知识。中心法则告诉我们遗传信息的流动方向如图1-4所示。 遗传信息的流动方向

纳米技术医学运用前景

纳米技术医学运用前景 一、在诊断技术方面的应用 扫描探针显微镜,其探针可以沿样品表面逐点扫描,针尖能随样品的高低起伏作上下运动,用光学方法测量针尖的运动,就可以得到分子的图像。目前已经用于人体多种正常组织和细胞的超微形态学观察,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结 构改变,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具———光学相干层析术(OCT)已研制成功,OCT的分辨率可达纳米级,较CT 和核磁共振的精密度高出上千倍。它不会像X线、CT、磁共振那样杀 死活细胞。通过应用纳米技术,在DNA检测时,可免去传统的PCR扩增 步骤,快速、准确。美国NASAAmesCen-terforNanotechnology与中南 大学卫生部纳米生物技术重点实验室合作,将碳纳米管用于基因芯片, 可以在单位面积上连接更多的更高,样本需要量低于1000个NDA分子(传统DNA检测的样本需要量超过106个DNA分子);需要的样品量更少,可以免去传统的PCR扩增步骤;结果可靠,重复性好;操作简单,易实现 检测自动化。其基本原理是:连接在碳纳米管上的DNA探针通过杂交 捕获特异性的靶DNA或RNA,靶DNA或RNA中的尿嘧啶将电荷转到碳纳米管电极,电荷的转移通过金属离子媒介的氧化作用变成信号并放大。国外在80年代末开始着手研究超顺磁性氧化铁超微颗粒的研究,90年代把这种造影剂应用于临床。 其技术要点是:制备出高顺磁性氧化铁纳米颗粒,在其表面耦连肝癌 组织靶向性物质(如肝肿瘤特异性单克隆抗体、肝肿瘤细胞表面特异性受体的配体)制成特异性的MRI造影剂。我国科学家也成功开发了应用超顺磁氧化铁脂质体纳米粒进行肝癌诊断的技术,可以发现直径3mm以下的肝肿瘤,还能发现更小的肝转移癌病灶。目前不加造影剂的磁共振检查能发现直径1.0cm的肝癌病灶,因此该成果大大提升了肝癌早期诊断的敏感性。国家863资助课题“纳米复合包裹生物微系统制备、超 声造影和控制释药”,研制了纳米包膜微米微泡超声造影剂与包裹药物和气体的微球,造影后对比效果明显增强,有利于疾病的早期诊断和鉴

蛋白质工程在农业或医药方面的应用[精品文档]

蛋白质工程的研究进展及其农业医药应用展望 摘要:蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术,是生物 工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。随着社会和技术的不断发展,蛋白质工程技术在农业和医药方面的作用越来越突出,必将为社会的发展和许多重大社会问题的解决提供极大的支持。 关键词:蛋白质工程特点;研究内容;农业应用;医药应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1 概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功能,常对已知的其他蛋白质进行模式分析或采取分子进化等手段。 2 蛋白质工程基本途径

蛋白质芯片技术的研究与发展

生物与环境工程学院课程论文 蛋白质芯片技术的研究与发展 学生姓名: 学号: 课程名称: 指导教师: 浙江树人大学生物与环境工程学院 2011年5月

蛋白质芯片技术的研究与发展 XXX (浙江树人大学生物与环境工程学院081班浙江杭州310015) 摘要:蛋白质芯片是一种研究蛋白质组学的新技术,是高通量、微型化和自动化的蛋白质分析技术,目前这一技术已经被广泛应用到生命科学研究的多个领域,如蛋白质组学研究,新药的开发以及疾病的临床诊断等,具体为用于构建蛋白质表达谱,进行受体一配体检测,靶目标和靶向药物筛选,蛋白质相互作用研究,肿瘤诊断等。本文从蛋白质芯片的概念、基本原理、制备及检测方法、蛋白质芯片的应用及展望方面对其进行综述。 关键词:蛋白质芯片;制备;应用;发展前景 生物芯片技术是20世纪80年代末才发展起来的,是一项融电子学、生命科学、物理学于一体的崭新技术,可分为DNA芯片、蛋白质芯片以及芯片实验室三类。伴随着人类基因组计划(HGP)的顺利实施,业已产生的大量DNA序列数据刺激人们去发掘湮没于其间的“珍宝”——功能基因组数据。因此,以生命活动的执行者和体现者——蛋白质为研究对象的蛋白质组学越来越显得重要。 蛋白质芯片的发展将会为蛋白质组学研究提供强有力的工具,从而推动疾病诊断、药物筛选、个性化药物的的生产和应用等发生重大革新。因此,利用蛋白质芯片分析蛋白质功能就必然是一种趋势。蛋白质芯片具有传统蛋白质检测技术所欠缺的优势,为蛋白质检测及蛋白质组学研究等方面开创了新的方式,对蛋白质检测及蛋白质组学研究等的发展期了推动作用。虽然蛋白质芯片技术为人们的研究提供可很大的便利,但其本身还有一些不足的地方,所以对其本身的研究还有很大的发展空间,是继基因芯片后的又一种用于生命科学研究的技术平台。 1 蛋白质芯片的概况 1.1 蛋白质芯片的概念 现在的蛋白质芯片[1]是指在固相支持物(载体)表面固定大量蛋白探针(可以

蛋白质芯片技术及其应用

蛋白质芯片技术及其应用 发表时间:2016-05-24T14:14:25.390Z 来源:《医师在线》2016年1月第2期作者:布威海丽且姆·阿巴拜科日奥布力喀斯木·图尔荪[导读] 新疆维吾尔医学专科学校蛋白质芯片技术是研究蛋白质组的新技术,是高通量、微型化和自动化的蛋白质分析技术。 (新疆维吾尔医学专科学校新疆维吾尔 848000) 摘要:蛋白质芯片技术是研究蛋白质组的新技术,是高通量、微型化和自动化的蛋白质分析技术。该技术在对基因表达、抗原抗体检测、药物开发、疾病诊断等研究方面显示出快速、高效、高通量处理信息的能力。它不仅是蛋白质组学研究中强有力的工具,也是临床应用中疾病早期诊断、预后和治疗效果评测的新手段,其研究成果拓展了与人类健康更加贴近的应用领域。本文主要讲述了蛋白质芯片技术的原理和分类、制作、蛋白质芯片检测、及其在研究中的应用及前景进行了阐述。 关键词:蛋白质芯片、疾病诊断、应用。 1 蛋白质芯片技术 蛋白质芯片又称蛋白质阵列或蛋白质微阵列,它是将大量的蛋白质、蛋白质检测试剂或检测探针作为配基以预先设计的方式固定在玻片、硅片或纤维膜等固定载体上组成密集的阵列,能够高通量地测定蛋白质的生物活性、蛋白质与大分子和小分子的相互作用,或者用于高通量定性和定量检测蛋白质。 2 蛋白质芯片的分类及检测方法 蛋白质芯片是一种高通量、微型化、自动化的蛋白质分析技术,根据其结合被测蛋白的介质不同,可以大致分为两大类:化学型蛋白质芯片和生物化学型蛋白质芯片[1]。 2.1 化学型蛋白质芯片该类芯片的构想来源于经典色谱的介质,芯片上所铺的介质可通过疏水力、静电力、共价键等结合被测样品中的蛋白质,然后用特定的洗脱液去除杂质蛋白而保留感兴趣者。其缺点是特异性较差,但目前仍占已商品化并得到广泛应用的蛋白质芯片中的大部分。这一方法具有样品用量小、操作简便、灵敏度高、高通量等优点。 2.2 生物化学型蛋白质芯片该类芯片的基本原理是将已知的生物活性分子(如抗体、受体、配体、核酸等) 结合到芯片表面,来俘获样品中的靶蛋白。由于生物活性分子的多样性和高度特异性,所以其应用范围和前景都明显优于化学型蛋白质芯片。但由于蛋白质比DNA 难合成,更难于在固相支持物表面合成,且定位于固相载体表面的蛋白质容易因空间构象的改变而失活,造成了该类芯片的开发应用与商品化落后于化学型芯片。 2.3 蛋白质芯片的检测方法 目前在蛋白质芯片检测中应用最广的是荧光染料标记,原理较为简单、使用安全、敏感性高,且有很好的分辨率[2]。用荧光染料Cy3或Cy5直接标记待检测的蛋白质,或用荧光染料标记该蛋白质的二抗,和芯片上的蛋白质结合后,用激光扫描和CCD照相技术对激发的荧光信号检测,用计算机和相应的软件系统进行分析。对于低丰度的蛋白质样品来说,荧光和化学发光的检测方法的灵敏度低,近年来出现的滚环扩增方法对捕获的蛋白质的检测达到了飞摩尔的量级,有望改善荧光检测的灵敏度。蛋白质芯片联合表面加强激光解吸/电离-飞行质谱检测法。表面加强激光解吸/电离-飞行质谱仪具有分析速度快、简便易行、样品用量少和高通量等特点,可直接检测各种体液如尿液、血液、脑脊液、关节腔滑液、支气管洗脱液、细胞裂解液和各种分泌物等。 3.蛋白质芯片的应用 近来在蛋白质的固定、反应和检测等方面的研究进展为蛋白质芯片的走向成熟铺平了道路,许多研究者已经采用蛋白质芯片作为他们研究的工具。目前,蛋白质芯片被研究人员应用到生命研究的各个领域,如利用蛋白芯片发现新的蛋白并且阐明其功能;寻找与疾病有关或直接引发疾病的新蛋白;发现新的药物靶标和肿瘤标记物。 3.1 蛋白质芯片与疾病的诊断 微阵列的ELISAs在疾病的诊断中有广泛的应用前景,可以同时检测生物样本中的多个指标,敏感度高且需要的样本量少,试剂的消耗量少。在聚苯乙烯的96孔板上固定细胞因子抗体,在5~50ul样本中可一次检测9种细胞因子,检测的灵敏度达到1~10pg/ml,目前已有类似的细胞因子抗体芯片出现,一次可以检测50种细胞因子的表达,可以用于观测用药后病人对治疗药物的反应。抗原和抗体的相互作用可以用来发现食物中的变应原,将已知的多种变应原制成芯片,然后用病人的血清和芯片反应,可以及时找到变应原。通过和正常人血清反应芯片的比较,还可以更进一步研究过敏反应的机理,以及为什么不同个体对同种变应原有不同的反应。 3.2 肿瘤标志物的筛选与检测 近几年来,肿瘤的诊断与治疗虽然已经取得了巨大的进步,但是与人们的期望仍有距离,利用蛋白质芯片的高通量优点,可以使肿瘤标记物的发现和确认速度大大加快。Roboz等采用SELDI-TOSMS技术,分析了大肠癌患者与正常对照之间的血清蛋白图谱之间的差异,其中大肠癌患者高表达8.9kD蛋白,而9.3kD的蛋白呈低表达,正常对照组上述两个蛋白的表达情况与患者组正好相反。实验过程中用胰岛素作为内标参照。根据质谱检测结果患者组8.9kD表达量为正常对照组的3倍。实验结果表明8.9kD和9.3kD蛋白可作为检测大肠癌的肿瘤标记物。Rosty等通过对胰腺分泌液的分析发现,67%(10/15)的胰腺癌患者和17%(1/7)的其它胰腺病患者出现16.57kD蛋白的高表达,免疫分析证实为肝癌-肠-胰腺/胰腺炎联合蛋白。该蛋白≥20mg/ml时,患者患胰腺癌的可能性增大。 4 存在的问题和发展前景 蛋白质芯片将为生物化学和分子生物学提供强有力的工具,相对于DNA芯片研究的进展速度,蛋白质芯片的研究进展显得相对滞后,主要有以下问题待解决:(1)寻找材料表面的修饰方法;(2)简化样品制备和标记操作;(3)增加信号检测的灵敏度,如低拷贝蛋白质的检测和难溶蛋白质的检测;(4)高度集成化样品的制备及检测仪器的研制和开发。这些问题不仅为蛋白质芯片技术增加了难度,同时也是蛋白质芯片能否从实验室推向临床应用的关键所在。 随着研究的不断深人和技术的更加完善,如表面化学修饰技术的进步,可以做到在载体上固定多种活性蛋白质;蛋白质工程可获得大量重组高特异性蛋白质用于芯片制作;纳米技术标记的引人可提高芯片检测的灵敏度。蛋白质芯片技术可以对成千上万的蛋白质的活性、功能、相互作用进行分析,并且使检测系统小型化,大大节约了样本和试剂的用量,缩短了检测时间,提高了敏感性,使成本效益比大大降低。蛋白质芯片技术作为一项有着广泛前途的新型技术,一旦投入实际应用,将在21世纪医学中的临床诊断、药物研究、环境检测、食

相关文档
最新文档