论文:大数定律及其应用

论文:大数定律及其应用
论文:大数定律及其应用

大数定律及其应用

学生姓名:徐转学号:20110401266

数学与计算机科学系数学与应用数学专业

指导教师:任园园职称:讲师

摘要:本文介绍了几个常见的大数定律及其在生活中应用,具体包括在数学分析中定积分以及在保险业中等方面的应用,进一步说明了大数定律在各分支学科中的重要作用和应用价值.

关键词:大数定律;保险;应用

Abstract : we introduce several common law of large numbers and often used in our daily life, including the integration and application of medium in the insurance industry in terms of mathematical analysis, we obvious the important function and application value on the law of large numbers in various branches.

Key Words:the law of large numbers;insurance;a ppl ication

前言

大数定律是概率历史上第一个极限定理.常见的大数定律有伯努利大数定律,切比雪夫大数定律,辛钦大数定律等.

一方面,大数定律是一种解决方案,一个新的双积分的收敛条件的思想,另一方面,大数定律在国内外的市场上都得到了很好的应用,尤其是在实际生活中的应用.很多研究者在这个领域都取得了很大的成果.所以继续研究大数定律是一个非常有价值的方向,通过这些问题的研究,不仅仅可以让人们更加的了解大数定律,而且很多数学问题以及生活问题都可以得到解决.

1.大数定律

1.1大数定律的发展史

1733年,德莫佛--拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限是正态分布.接着拉普拉斯改进了他的证明并把二项分布推广成了更一般的分布.1900年,李雅普诺夫也进一步促进他们的结论,并对特征函数法进行创造,把它命名为“中心极限定理”.20世纪初,主要探讨是中心极限定理

成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情况下的显著进展. 1.2 几个常见的大数定律

(伯努利大数定律) 如果n S 为n 重伯努利试验中的事件A 发生的次数,p 为每次试验中A 出现的频率,那么对任意的0>ε,有

???

?

??<-∞→εp n S P n n lim (切比雪夫大数定律) 如果{}n X 为一列两两不相关的随机变量序列,若每个

i X 的方差存在,且有共同的上界,即(),,2,1, =≤i c X Var i 则{}i X 服从大数定律,那

么对任意的0>ε,下式成立.

()111lim 11=???

? ??<-∑∑==∞→εn i n

i i i n X E n X n P (马尔科夫大数定律)有随机变量序列{}n X ,如果0112→???

??∑=n i i X Var n 成立,那

么{}n X 服从大数定律,所以对任意的0>ε,则

()111lim 11=???

? ??<-∑∑==∞→εn i n

i i i n X E n X n P 成立.

(辛钦大数定律) 如果{}n X 为一独立同分布的随机变量序列,假设i X 的数学期望存在,那么{}n X 服从大数定律,所以对任意的0>ε,有

()111lim 11=???

? ??<-∑∑==∞→εn i n

i i i n X E n X n P (泊松大数定律)如果n S 为n 次独立分布试验中的,事件A 出现的次数,而事件A 在第i 次试验时出现的概率为i p , ,,,2,1n i =,所以对任意的0>ε,有

11lim 1=???

?

??<-∑=∞→εn i i n n p n n S P

2.大数定律在数学分析中的一些应用

2.1大数定律在收敛问题中的应用

例1 设()x f 为区间[]b a ,上的连续函数,则存在多项式序列(){}x N n ,于[]b a ,上一致收敛于()x f .

证明 先从区间[]1,0上证明,也可以变量变换:()a t a b x +-=,可将[]b a ,化为

[]1,0,[].1,0∈t 令

()()

??

?

??-=-=∑n k f x x C x N k

n k

n

k k n n 10 显然有()()()(),11,00f N f N n n ==故当0=x 或1=x 时的收敛问题解决.现只考虑()1,0∈x 时的收敛问题.

设μ~()()1,0,1,,∈≥x n x n B 则

()()x N x x C n k f n f E n k

n k k n n k n =-???

? ??=????????? ??-=∑10μ 有

()()()()k

n k k n n

k n x x C x f n k f x f x N -=-??

????-??? ??=-∑10

所以

()()()()k n k

k n n

k n x x C x f n k f x f x N -=--??? ??≤-∑10

因为()x f 在上[]1,0连续,所以()x f 在[]1,0上有界,设()k x f ≤,且()x f 在[]1,0上一致连续,那么对任意的0>ε,存在0>δ,使得当

δ<-x n

k

时,就有

()2ε<-??

?

??x f n k f .

由伯努里大数定律,得

x n

p

n

?→?μ,所以对0>δ,存在0>N ,使得当N n >时

就有k

x n P n 4ε

δμ

从而当N n >时,所以()1,0∈x 有

()()()()k n k

k n x n

k

n x x C x f n k f x f x N -<---??? ??≤

-∑

+

()()k n k k n x n

k

x x C x f n k f -≥---??

? ??∑

1δ <

()

k

n k x n

k

k n x x C k

-≥--+∑122

δε

=

εε

εδμε

=+

222x n kP n . 证毕.

2.2大数定律在定积分方面的应用

例2 有0()1f x ≤≤,求()x f 在区间[]1,0上的积分值.

=

J dx x f ?

1

)(

解 二维随机变量()Y X ,服从正方形{}10,10≤≤≤≤y x 上的均匀分布,则可知

X 服从[]1,0上的均匀分布,Y 也服从[]1,0上的均匀分布,且X 与Y 独立.又记事件

(){}X f Y A ≤=

则A 的概率为

()()X f Y P p ≤==?

?

1

0)

(0

x f dydx =dx x f ?1

)(=J

即定积分的值J 就是事件A 的概率p .即将()Y X ,看成是向正方形

{},10,10≤≤≤≤Y X 内的随机投的点,用随机点落在区域(){}x f y ≤中的频率作为定

积分的近似值.

下面用蒙特卡罗方法得到A 出现的频率:

(1)先用计算机产生[]1,0上均匀分布的n 2个随机数,组成n 对随机数

(),,1,2,,i i x y i n = ,这里的n 可以很大,譬如n =410,甚至510=n

.

图1:关于随机投点法的图

(2)n 对数据(i x ,i y ),1,2,,i n = 记录满足如下不等式i y ≤)(i x f 的次数,

这就是事件A 发生的频率

n S n ,则≈J n

S

n 譬如计算

dx

e x

π21

2

2

?

-,其精确值和在5410,10==n n 时的模拟值如下:

表1:关于模拟值的表

精确度 410=n 510=n 341344.0

340698.0

341355.0

注意,对于一般区间[]b a ,上的定积分

'J =dx

x g b

a ?)(

作线性变换)()(a b a x y --=,即可化成[]1,0,区间上的积分,进一步若

d x g c ≤≤)(,

]))(([1

)

(c y a b a g c

d y f --+- 则1)(0≤≤y f .此时有

1

00

'()()()b a

J g x dx S f y dy c b a ?=?+-??

其实))((0c d a b S --=.这说明以上用蒙特卡洛方法计算定积分方法带有普遍意义.

3.大数定律在实际中的应用

3.1大数定律在保险业中的应用

例3有一家保险公司有10000个同阶层的人参加人寿保险,每人每年付12元保险费,在一年内一个人死亡的概率为006.0,死亡时,家属可以向保险公司领1000元.试问:家庭的平均支付9.5元赔偿1.6元的概率?保险公司的概率有多大?损失钱吗?

解 如果用

=10000

1

i 表示保险公司给家属的赔偿金,那么,

()()16, 5.9641,2,,1000010000i i E X D X i ??=== ???

,诸i X 相互独立.

则∑==

10000

1

i i

X

X 表示保险公司赔给每家的钱

()()410964.5,5-?==X D X E

由中心定理,X ~()

20244.0,6N

{}

()99996.0109.420245.061.60245.069.51.69.5=-Φ=??

?

??-Φ-??? ??-Φ=<

保险公司亏本,也就是赔偿金额大于12万元左右,即死亡人数大于100人的概

率.设死亡人数为Y ,则Y ~()()()64.59,60,006.0,10000==Y D Y E B ,Y 近似服从正态分布()64,59.60N ,那么

{}{}()777.71201120

=Φ-=≤-=>Y P Y P 则

{}()9952.059.264.59608080=Φ=??

?

??-Φ=

在保险市场的竞争,一是减少5元的保险费,另一个是提高1000元的赔偿,对于保险公司来说,收益是一样的,采用提高赔偿金比例降低5元保险费更能吸引投保户.

3.2大数定律在产品中的应用

例 4 有一大批无线电元件,合格品占

6

1

,从中任意选择6000个,试问把误差限ε定为多少时,才能保证频率与概率之差的绝对值不大于ε的概率为99.0?

解 设6000个电器元件中合格品为μμ,~()p n B ,,其中6

5

,61,6000===q p n ,

有大数定律得

???

?

?

?<-<-=???? ??<-pq n npq

np

pq n P P εμεεμ61

6000 99.012=-???

?

??

Φ≈pq n ε

即995.0=???

?

?

?Φpq n ε,找查表的0124.0,58.26

5616000==?=εεεpq n ,把

0124.0=ε代入上式得

???

? ??<-0124.061

6000μP =()4.741000<-μP

=()99.04.10746.925=<<μP 就是说相应合格品的个数落在962个与1074个之间. 3.3大数定律在学校中的应用

例5 一所学校的900名学生的“高等数学”课程的教师6人,假设每个学生完全随机选择教师和教师之间的选择,同学们都是相互独立的.那么上课教室应该有

多少个座位,才能让学生不因为没有座位离去的概率小于%1.

解 设教师设i X 个座位,那么 i X =101,2,,900.{i i = ,若第个学生选择教师甲,

,其他,

依题意,()(),6

5

0,611====i i X P X P 且900,,,i i X X X 相互独立同分布.选择教

师甲的学生总数为.900

1

∑==i i X X 为使学生不因缺少座位而离去,必须X M ≥,为此要

决定()()15155

,.0,1,2,,900,.666366

i i E X D X i σ===≠== 得

()()?????

?

??????-≤

?-=??? ??≤=≤∑∑==55150653069001

9001M X P M X P M X P i i

i i %.9955150≥???

??-Φ≈M

查标准正态分布表得

.05.1765533.2150,33.25

5150

=?+≥≥-M M 因此取177=M 即可.

每个教师的上课教室应该设有177个座位才可保证因缺少座位而使学生离去的概率小于%1.

3.4大数定律在货运中的应用

例6 在一个生产车间中要把产品成箱包装,每箱的重量随机.如果每箱平均重量kg 50,标准差为kg 5.用最大载重量为5吨汽车承载,那么每辆车最多可以装多少箱,才能保证不超载的概率大于977.0(().977.02=Φ其中()x Φ是标准正态分布函数).

解 设i X ()n i ,,2,1 =是转运的第i 箱的重量(单位:千克),n 是所求箱数.12,,,n X X X 可视为独立同分布随机变量,n 箱总量n n X X X T +++= 21,则

()()()().5,50,5,50n T D n T E X D X E i i i i ====

根据独立同分布定理得,n T 近似服从正态分布()n n N 25,50

()??? ??≤-=≤n n

n T P T P n n 550005505000

()2977.0101000Φ=>???

??-Φ≈n n

于是,

0199.98,2101000<>-n n

n

即最多可以装98箱. 4.小结

本文在理论上,我们介绍了几个常见的大数定律,利用大数定律在收敛和在定积分方面的应用,为我们以后在数学方面的研究提供了很好的参考;保险业等实际中的应用,更好的把数学应用到了生活中,合理的分配了数学与科学的区别,大数定律已经成了不可缺少的一部分.

在未来的社会发展中,大数定律将发挥不可替代的作用.甚至在航空航海方面都会得到很好的应用,它将大量促进人类社会和谐发展的规律,体现自己的价值.

参考文献

[1]茆诗松、程依明、濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,

2011.2(2012.5重印).

[2]茆诗松等.概率论与数理统计[M].中国统计出版社.2000.7.

[3]周概容.概率论与数理统计[M].北京:高等教育出版社.1984.

[4]何英凯.大数定律与保险财政稳定性研究[J].税务与经济.2007.4.

[5]王小胜.大数定律的几个应用[J].河北建筑科技学院学报.2005年3月第22卷第

1期.

[6]唐莉、李雁如.大数定律与中心极限定理的实际应用[J].广东技术师范学院学

报.2005年第6期.

[7]王东红.大数定律和中心极限定理在保险业中的重要应用[J].数学的实践和认

识.2005年10月第35卷第10期.

[8]王丙参、魏艳华、林朱.大数定律及中心极限定理在保险中的应用[J].通化师

范学院学报.2011年第12期.

[9]曹小玲.大数定律及其在保险业中的应用[J].天水师范学院学报.2010你那9月

第30卷第5期.

[10]封希媛.大数定律与中心极限定理在实际中的应用[J].青海师范大学学报(自

然科学版).2006年第2期.

[11]路庆华.几个著名的大数定律的证明及应用[J].石家庄职业技术学院学

报.2007年8月第19卷.

致谢词

四年的大学生活就快走到尾声,我们的校园生活就要画上句号,心中是无尽的难舍与眷恋..从这里走出去,对我的人生来说,就是她上一个新的征途,要把所学的知识应用到实际工作中去.

回首四年,取得了一定的成就,生活中有快乐也有艰辛.生活中有许多困难,感谢老师四年来对我的孜孜不倦的教导,对我成长的关心和爱护.也感谢340号房的姐妹,四年的风风雨雨,我们走在一起,充满了爱,给我留下了值得珍藏的最美好的记忆.

在我的十几年求学历程里,离不开父母的鼓励和支持,是他们辛勤的劳作,无私的付出,为我创造良好的学习条件,我才能顺利完成完成学业,感激他们一直以来对我的抚养与培育.

最后,我要特别感谢任园园老师.是她在我毕业的最后关头给了我们巨大的帮助与鼓励,使我能够顺利完成毕业设计,在此表示衷心的感激.论文从课题选择、方案论证到具体设计和调试,无不凝聚着任老师的心血和汗水,任老师认真负责的工作态度,严谨的治学精神和深厚的理论水平都使我收益匪浅.可以说,没有任老师的帮助就没有今天的这篇论文,无论遇到哪些问题她始终给予我细心的指导和不懈的支持都给与我很大的帮助,使我得到不少的提高这对于我以后的工作和学习都有一种巨大的帮助.在此,向任老师表示我衷心的感谢.

热力学第一定律及其思考

热力学第一定律及其思考 摘要:在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械可以使系统不断的经历状态变化后又回到原来状态,而不消耗系统的内能,同时又不需要外界提供任何能量,但却可以不断地对外界做功。在热力学第一定律提出之前,人们经过无数次尝试后,所有的种种企图最后都以失败而告终。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 关键字:内能;热力学;效率;热机 1.热力学第一定律的产生 1.1历史渊源与科学背景 火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理学家克鲁克斯(M.Crookes,1832—1919),所做的风车叶轮旋转实验,证明了热的本质就是分子无规则运动的结论。热动说较好地解释了热质说无法解释的现象,如摩擦生热等。使人们对热的本质的认识大大地进了一步。戴维以冰块摩擦生热融化为例而写成的名为《论热、光及光的复合》的论文,为热功提供了有相当说服力的实例,激励着更多的人去探讨这一问题。 1.2热力学第一定律的建立过程 19世纪初,由于蒸汽机的进一步发展,迫切需要研究热和功的关系,对蒸汽机“出力”作出理论上的分析。所以热与机械功的相互转化得到了广泛的研究。1836年,俄国的赫斯:“不论用什么方式完成化合,由此发出的热总是恒定的”。1830年,法国萨迪·卡诺:“准确地说,它既不会创生也不会消灭,实际上,它只改变了它的形式”。这时能量转化与守恒思想的已经开始萌发,但卡诺的这一思想,在1878年才公开发表,此时热力学第一定律已建立了。 德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。迈尔在一次驶往印度尼西亚的航行中,给生病的船员做手术时,发现血的颜色比温带地区的新鲜红亮,这引起了迈尔的沉思。他认为,食物中含有的化学能,可转化为热能,在热带情况下,机体中燃烧过程减慢,因而留下了较多的氧。迈尔的结论是:“因此力(能量)是不灭的,而是可转化的,不可称量的客体”。并在1841年、1842年撰文发表了他的观点,在1845年的论文中,更明确写道:“无不能生有,有不能变无。”“在死的或活的自然界中,这个力(能)永远处于循环和转化之中。” 焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。1845年,焦耳为测定机械功和热之间的转换关系,设计了“热功当量实验仪”,并反复改进,反复实验。1849年发表《论热功当量》,1878年发表《热功当量的新测定》,最后得到的数值为423.85公斤·米/千卡,焦耳测热功当量用了三十多年,实验了400多次,

浅谈几个著名的大数定律及应用

2010.No34 4 摘 要 大数定律以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,是随机现象统计规律性的具体表现,本文介绍了几种常用的大数定律,并给出一些简单应用。 关键词 大数定律 随机变量 数学期望 概率 1 引言 “大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们就会发现,硬币向上的次数约占总次数的二分之一。偶然中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近.人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是大数要研究的问题。 2 几个大数定律 在介绍大数定律之前,先介绍几个相关定义。 定义1[1]设ξn (n=1,2,……)为概率空间(Ω,F,P)上定义的随机变量序列(简称随机序列),若存在随机变数ξ,使对任意ε>0,恒有: 则称随机序列 依概率收敛于随机变量ξ(ξ也可以是一个常数),并用下面的符号表示: 定义2[2]设 为一随机序列,数学期望E(ξn )存在,令 ,若 ,则称随机序列 服从大数定律,或者说大数法则成立。 切比雪夫不等式 设随机变量X的数学期望E(X)与方差D(X)存在,则对于任意正数ε,不等式 都成立。不等式(1)和(2)称为切比雪夫不等式。切比雪夫不等式给出了在随机变量X的分布未知的情况下,只利用J的数学期望和方差即可对J的概率分布进行估值的方法,这就是切比雪夫不等式的重要性所在。 大数定律形式很多,我们仅介绍几种最常用的大数定律。定理1[1] (切比雪夫大数定律) 设随机变量ξ1,ξ2,…ξn 相互独立,它们的数学期望依次为a 1,a 2,…a n 方差依次为σ12,σ22,…σn 2而且存在正常数k,使得对一切i=1,2,…,有σi 2

热力学定律应用论文作业

热力学定律的应用 【摘要】本文主要是从热力学定律的本质为出发点,而后分别简要的介绍了三大热力学定律在各个学科领域内得到的广泛地应用。 【关键词】热力学定律、本质、应用 【Abstract】This article mainly from the nature of the second law of thermodynamics as a starting point, and then briefly introduces respectively the three laws of thermodynamics in various disciplines should be extensively 【Key words】second law of thermodynamics, nature ,application 【引言】 热力学定律是人们在生活实践,生产实践和科学实验的经验总结,它们既不涉及物质的微观结构,也不能用数学加以推导和证明。但它的正确性已被无数次的实验结果所证实。而且从热力学严格地导出的结论都是非常精确和可靠的。有关该定律的实质和应用是本文讨论的重点。热力学第一定律即能量守恒定律,利用它可解决各种变化过程中的能量守恒问题;热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律;而热力学第三定律的确立,可以由热性质计算物质在一定状态下的规定熵,实现了完全由热性质判断化学变化的方向。由于在生活实践中,自发过程的种类极多,热力学定律的应用非常广泛,诸如热能与机械能的传递和转换、流体扩散与混合、化学反应、燃烧、辐射、溶解、分离、生态等问题,本文将做相关介绍。 1. 热力学定律的实质 1.1、热力学第一定律的实质

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

(完整版)物理化学上热力学第一定律知识框架图总结

1 第一章, 热力学第一定律 各知识点架构纲目图如下: 及过程 溶解及混合 化学变化 相变化 热(Q ):系统与环境间由于温差而交换的能量。是物质分子无序运动的结果。是过程量。 功(W ):除热以外的,在系统与环境间交换的所有其它形式的能量。是物质分子有序运动的 结果,是过程量。 热力学能 (U ):又称为内能,是系统内部能量的总和。是状态函数,且为广度量,但绝对值 不知道。 热力学第一定律数学表达式:△U =Q +W ,在封闭系统,W 非=0,恒容条件下,△U =Q V 。 焓函数(H ):定义,H ≡U +pV , 是状态函数,且为广度量,但绝对值不知道。在封闭系统, W 非=0,恒压条件下,△H =Q p 。 热力学第 一定律及 焓函数 系统与环境 间交换能量 的计算(封闭 系统,W 非=0) 简单的pTV 变化 理想气体(IG)系统:2211 ,,;T T V m p m T T U n C dT H n C dT ?=?=?? 理想气体 恒温过程 焦尔实验:(1)结论:(?U /?V)T =0; (2)推论:U IG =f (T ); H IG =g (T ) △U =△H =0; W =-Q =2121ln /V V pdV nRT V V -=-? (可逆) 恒容过程:W =0;Q V =△U= 21 ,;T V m T n C dT ? 绝热过程:Q =0;△U = W 不可逆(恒外压):nC V ,m (T 2-T 1)=-p 2(V 2-V 1) 可逆: 11,21 11 2111()()1V m p V nC T T V V γ γγγ---=-- Q p =△H =2 1 ,;T p m T n C dT ?W =-p 外(V 2-V 1); △U =△H -p △V (常压下,凝聚相:W ≈0;△U ≈△H ) 恒压过程: 节流膨胀:Q =0;△H =0;μJ-T =(d T /d p )H =0 T 不变(例如理想气体) <0致热 >0 致冷 相变化 △U =△H -p △V Q p =△H ; W =-p △V ≈0,△U ≈△H (常压下凝聚态间相变化) =-nRT (气相视为IG) 相变焓与温度关系:21 21,()()T m m p m T H T H T C dT ββαα?=?+?? 化学变化 摩尔反应焓的定义:△r H m =△r H /△ξ 恒压反应热与恒容反应热的关系:△r H m =△r U m +∑νB (g)RT 标准摩尔反应焓的计算:1B ()(B,)r m f m H T H T ν?=∑?!! 反应进度定义、标准摩尔生成焓和标准摩尔燃烧焓的定义。 基希霍夫公式:21 ,21,();()()T r m p r p m r m r m r p m T H C H T H T C dT T ??=??=?+???! !! 系 统状态变化时,计算系统与环境间交换的能量

毕业论文大数定律在经济学中的应用

学校代码:10206 学生学号:051074204 白城师范学院 毕业论文(设计) 大数定律在经济学中的应用Law of large numbers in economics 学生姓名:安琦 指导教师:邬伟三讲师 学科专业:数学与应用数学 所在单位:数学系 2011年6月

摘要 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一。 有些随机事件无规律可循,但不少却是有规律的,这些“有规律的随机事件”中在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。 通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。这种情况下,偶然中包含着必然。必然的规律与特性在大量的样本中得以体现。 大数定律是概率论中的重要内容,它以严格的数学形式表达了随机现象最根本的性质——平均结果的稳定性,它是随机现象统计规律性的具体表现,在数学应用及经济生活中有着较为重要的作用,较多文献给出了不同条件下存在的大数定律,并利用大数定律和中心极限定理得到较多模型的收敛性,但对于它们的适用范围及在实际生活中的应用涉及较少。本文就大数定律做了具体的分析,介绍了几种较为常见的大数定律,并结合它们存在的条件的不同,分析了它们各种适用的数学模型的特征,列举了它们在经济生活领域的应用,将理论具体化, ,以使得枯燥的数学理论与实际想结合,使大家对大数定律在实际生活中的应用价值有了更深的认识。 关键词:大数定律特征函数保险银行贷款

Abstract A history of probability limit theorem is Bernoulli, later known as the "law of large numbers." Probability random variables discussed in the arithmetic mean law of convergence to the constant. Probability theory and mathematical statistics one of the basic laws. Some random events without a pattern, but many are regular, these "regular random incident," a large number of recurring conditions, often showing statistics of almost inevitable, this rule is the law of large numbers. In layman's terms, this theorem is that under the same conditions in the test, repeat testing several times, the frequency of random events similar to it probability. In this case, includes the inevitable accident. The regularity and characteristics of the inevitable large number of samples to be reflected. Law of large numbers is an important part of probability theory, its rigorous mathematical form, the most fundamental expression of the random nature of the phenomenon - an average of the stability of results, it is the statistical regularity of random phenomena of specific performance, application and economic life in mathematics has a more important role, more literature exists under different conditions are given law of large numbers, and using law of large numbers and central limit theorem, the convergence of many models, but their scope of application and in real life The applications involve small. This paper made a law of large numbers of specific analysis, introduces some of the more common law of large numbers, combined with their existing conditions, the analysis of their mathematical model for a variety of features, listed them in the field of economic life the application of the theory specific, in order to make the boring mathematical theory and practice was integrated so that peop le in the law of large numbers of applications in real life have a deeper understanding of the value. Keywords:Law of Large Numbers Characteristic function Insurance Bank loans

热力学第一定律及其思考论文.

热力学第一定律及其思考 指导老师:李成波 姓名:杜学科 学号:201205010060 院系:化学与环境工程 班级:化学工程与工艺1班

摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的理论。 十九世纪以来热之唯动说渐渐地为更多的人们所注意。特别是英国化学家和物理

大数据技术原理与应用-林子雨版-课后习题答案复习进程

大数据技术原理与应用-林子雨版-课后习 题答案

第一章 1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。 3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。

8.举例说明大数据的基本应用 9.举例说明大数据的关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。 11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。

大数定律及其应用( 刘胜举200702014001)

本科生毕业论文(设计) 题 目:大数定律及其应用 姓 名:刘胜举 学 号:200702014001 系 别:数学与计算机科学系 年 级:2007级 专 业:数学与应用数学 指导教师 熊国敏 职称: 教授 指导教师 王海英 职称: 讲师 2011年 4 月 28 日

目录 摘要............................................................ I 第一章绪论. (1) 第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (10) 结论 (18) 参考文献 (19) 致谢 (20)

摘要 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:大数定律,概率分布,保险业 Abstract:The law of large numbers describles the most fundamental of the random nature in rigorous mathematical formation—the stability of the average results .It is a very important law, and its applications are very wide. This article describes several common law of large numbers, and analyzes their theoretical and practical applications. Key words: law of large numbers, probability distribution, insurance

物理化学论文,热力学

物理化学论文 系别: 专业: 姓名: 学号: 班级:

热力学定律论文 论文摘要:本论文就物理化学的热力学三大定律的具体内容展开思考、总结论述。同时,也就物理化学的热力学三大定律的生活、科技等方面的应用进行深入探讨。正文: 一、热力学第一定律: 热力学第一定律就是宏观体系的能量守恒与转化定律。“IUPAC”推荐使用‘热力学能’,从深层次告诫人们不要再去没完没了的去探求内能是系统内部的什么东西”,中国物理大师严济慈早在1966年就已指出这点。第一定律是1842年前后根据焦耳等人进行的“功”和“热”的转换实验发现的。它表明物质的运动在量的方面保持不变,在质的方面可以相互转化。但是,没有多久,人们就发现能量守恒定律与1824年卡诺定理之间存在“矛盾”。能量守恒定律说明了功可以全部转变为热:但卡诺定理却说热不能全部转变为功。1845年后的几年里,物理学证明能量守恒定律和卡诺定理都是正确的。那么问题出在哪呢?由此导致一门新的科学--热力学的出现。 自然界的一切物质都具有能量,能量有各种不同形式,能够从一种形式转化为另一种形式,在转化中,能量的总量不变。其数学描述为:Q=△E+W,其中的Q和W分别表示在状态变化过程中系统与外界交换的热量以及系统对外界所做的功,△E表示能量的增量。 一般来说,自然界实际发生的热力学过程,往往同时存在两种相互作用,即系统与外界之间既通过做功交换能量,又通过传热交换能量。热力学第一定律表明:当热力学系统由某一状态经过任意过程到达另一状态时,系统内能的增量等于在这个过程中外界对系统所作的功和系统所吸收的热量的总和。或者说:系统在任一过程中所吸收的热量等于系统内能的增量和系统对外界所作的功之和。热力学第一定律表达了内能、热量和功三者之间的数量关系,它适用于自然界中在平衡态之间发生的任何过程。在应用时,只要求初态和终态是平衡的,至于变化过程中所经历的各个状态,则并不要求是平衡态好或无限接近于平衡态。因为内能是状态函数,内能的增量只由初态和终态唯一确定,所以不管经历怎样的过程,只要初、终两态固定,那么在这些过程中系统内能的增量、外界对系统所作的功和系统所吸收的热量的之和必定都是相同的。热力学第一定律是能量转化和守恒定律在射击热现象的过程中的具体形式。因为它所说的状态是指系统的热力学状态,它所说的能量是指系统的内能。如果考察的是所有形式的能量(机械能、内能、电磁能等),热力学第一定律就推广为能量守恒定律。这个定律指出:自然界中各种不同形式的能量都能从一种形式转化为另一种形式,由一个系统传递给另一个系统,在转化和传递中总能量守恒。能量守恒定律是自然界中各种形态的运动相互转化时所遵从的普遍法则。自从它建立起来以后,直到今天,不但没有发现任何违反这一定律的事实,相反地,大量新的实践不断证明着这一定律的正确性,丰富着它所概括的内容。能量守恒定律的确立,是生产实践和科学实验长期发展的结果,在长期的实践中,人们很早以来就逐步形成了这样一个概念,即自然界的一切物质在运动和变化的过程中,存在着某种物理量,它在数量上始终保持恒定。能量守恒定律的实质,不仅在于说明了物质运动在量上的守恒,更重要的还在于它揭示了运动从一种形态向另一形态的质的转化,所以,只有当各

大数据技术与应用专业详细解读

大数据技术与应用专业详细解读 大数据技术与应用专业是新兴的“互联网+”专业,大数据技术与应用专业将大数据分析挖掘与处理、移动开发与架构、人软件开发、云计算等前沿技术相结合,并引入企业真实项目演练,依托产学界的雄厚师资,旨在培养适应新形势,具有最新思维和技能的“高层次、实用型、国际化”的复合型大数据专业人才。 专业背景 近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。当下,大数据从业人员的两个主要趋势是:1、大数据领域从业人员的薪资将继续增长;2、大数据人才供不应求。 图示说明:2012-2020年全球数据产生量预测 专业发展现状 填补大数据技术与应用专业人才巨大缺口的最有效办法无疑还需要依托众多的高等院校来培养输送,但互联网发展一日千里,大数据技术、手段日新月异,企业所需要的非常接地气的人才培养对于传统以培养学术型、科研型人才为主要使命的高校来说还真有些难度。幸好这个问题已经被全社会关注,政府更是一再提倡产教融合、校企合作来创办新型前沿几

乎以及“互联网+”专业方向,也已经有一些企业大胆开始了这方面的创新步伐。据我了解,慧科教育就是一家最早尝试高校校企合作的企业,其率先联合各大高校最早开设了互联网营销,这也是它们的优势专业,后来慧科教育集团又先后和北京航空航天大学、对外经济贸易大学、贵州大学、华南理工大学、宜春学院、广东开放大学等高校在硕、本、专各个层次开设了大数据专业方向,在课程体系研发、教学授课及实训实习环节均有来自BAT以及各大行业企业一线的技术大拿参与,所培养人才能够很好地满足企业用人需求。 专业示例 笔者在对慧科教育的大数据技术与应用专业做了专门研究,共享一些主要特色给大家参考: 1.培养模式 采用校企联合模式,校企双方(即慧科教育集团和合作校方)发挥各自优势,在最大限度保证院校办学特色及专业课程设置的前提下,植入相应前沿科技及特色人才岗位需求的企业课程。 2.课程体系 笔者对慧科教育的大数据技术与应用做了专门研究,现分享一下慧科专业共建的课程给大家参考。慧科教育集团的专业课程重在培养学生的理论知识和动手实践能力,学生在完成每个学期的理论学习后,至少有两个企业项目实战跟进,让学生在项目中应用各类大数据技术,训练大数据思路和实践步骤,做到理论与实践的充分结合。 大数据专业的课程体系包括专业基础课、专业核心课、大数据架构设计、企业综合实训等四个部分。

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理 一、内容提要 (一)切贝谢夫不等式 1. 切贝谢夫不等式的内容 设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。 (){}() (){}() . 1, 2 2 εεεεX D X E X P X D X E X P - ≤-≤ ≥-π 2. 切贝谢夫不等式的意义 (1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){} ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。 (2)不足之处为要计算(){} ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。另外,利用本不等式估值时精确性也不够。 (3)当X 的方差D (X )越小时,(){} ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。 (二)依概率收敛 如果对于任何ε>0,事件{} επa X n -的概率当n →∞时,趋于1,即 {}1lim =-∞ →επa X P n n , 则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。 (三)大数定律 1. 大数定律的内容 (1)大数定律的一般提法 若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有 11lim 1=? ?? ???-∑=∞ →επn i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。 (2)切贝谢夫大数定律 设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即 ()().,,,2,1,ΛΛn i C X D i =≤

大数据技术原理与应用 林子雨版 课后习题答案(精编文档).doc

【最新整理,下载后即可编辑】 第一章 1.试述信息技术发展史上的3次信息化浪潮及具体内容。 2.试述数据产生方式经历的几个阶段 答:运营式系统阶段,用户原创内容阶段,感知式系统阶段。

3.试述大数据的4个基本特征 答:数据量大、数据类型繁多、处理速度快和价值密度低。 4.试述大数据时代的“数据爆炸”的特性 答:大数据时代的“数据爆炸”的特性是,人类社会产生的数据一致都以每年50%的速度增长,也就是说,每两年增加一倍。 5.数据研究经历了哪4个阶段? 答:人类自古以来在科学研究上先后历经了实验、理论、计算、和数据四种范式。 6.试述大数据对思维方式的重要影响 答:大数据时代对思维方式的重要影响是三种思维的转变:全样而非抽样,效率而非精确,相关而非因果。 7.大数据决策与传统的基于数据仓库的决策有什么区别 答:数据仓库具备批量和周期性的数据加载以及数据变化的实时探测、传播和加载能力,能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策和战术决策。 大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析。

8.举例说明大数据的基本应用 答: 9.举例说明大数据的关键技术 答:批处理计算,流计算,图计算,查询分析计算 10.大数据产业包含哪些关键技术。 答:IT基础设施层、数据源层、数据管理层、数据分析层、数据平台层、数据应用层。

11.定义并解释以下术语:云计算、物联网 答:云计算:云计算就是实现了通过网络提供可伸缩的、廉价的分布式计算机能力,用户只需要在具备网络接入条件的地方,就可以随时随地获得所需的各种IT资源。 物联网是物物相连的互联网,是互联网的延伸,它利用局部网络或互联网等通信技术把传感器、控制器、机器、人类和物等通过新的方式连在一起,形成人与物、物与物相连,实现信息化和远程管理控制。 12.详细阐述大数据、云计算和物联网三者之间的区别与联系。

概率论大数定律及其应用

概率论大数定律及其应 用 Revised as of 23 November 2020

概率论基础结课论文 题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是我们大数要研究的问题。

大学物理热力学论文

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

相关文档
最新文档