616 数论综合三(学生版)

616 数论综合三(学生版)
616 数论综合三(学生版)

学科培优数学

“数论综合三”

学生姓名授课日期

教师姓名授课时长

知识定位

数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

知识梳理

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.

例题精讲

【试题来源】

【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。请问最后这个数从个位起向左数、可以连续地数到几个0?

【试题来源】

【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?

【试题来源】

【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.

【试题来源】

【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?

【试题来源】

【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【试题来源】

【题目】一个自然数与自身相乘的结果称为完全平方数。已知一个完全平方数是四位

数,且各位数字均小于7。如果把组成它的数字都加上3,便得到另外一个完全平方数,

求原来的四位数。

【试题来源】

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?

习题演练

【试题来源】

【题目】A telephone number has the from ABC-DEF-GHIJ,where each letter represents a different digit . The digits in ench part of the number are in decreasing order;that is,ABC,DEF,and GHIJ,Further more,D,E,and F are consecutive even digits;G,H,I,and J are consecutive odd digits ;and A+B+C=9. What is A ?

【试题来源】

【题目】在给定的圆周上有2000个点.任取一点标上数1;按顺时针方向从标有1的点往后数2个点,在第2个点上标上数2;从标有2的点再往后数3个点,在第3个点上标上数3;……;依此类推,直至在圆周上标出1993.对于圆周上的这些点,有的点可能标上多个数,有的点可能没有被标数.问标有数1993的那个点上标的最小数是多少?

【试题来源】

【题目】设1,3,9,27,81,243是6个给定的数,从这6个数中取出若干个数,每个数

至多取一次,然后将取出的数相加得到一个和数,这样共可得到63个不同的数.把这些数从小到大排列起来依次是1,3,4,9,10,12,…,那么其中第39个数多少?

【试题来源】

【题目】证明:形如11,111,1111,11111,…的数中没有完全平方数.

【试题来源】

【题目】有10个整数克的砝码(允许砝码重量相同),将其中一个或几个放在天平的右边,待称的物品放在天平的左边,能称出1,2,3,…,200的所有整数克的物品来;那么,这10个砝码中第二重的砝码最少是克。

【试题来源】

【题目】是否存在一个六位数A,使得A,2A,3A,…,500000A中任意一个数的末尾6个数码不全相同?

【试题来源】

【题目】将某个17位数各位数字的排列顺序颠倒,再将得到的新数与原来的数相加.试说明,所得的和中至少有一个数字是偶数.

【试题来源】

【题目】对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?

【试题来源】

【题目】甲、乙两人进行下面的游戏:两人先约定一个自然数N,然后由甲开始,轮流把0,1,2,3,4,5,6,7,8,9这10个数字中的一个填入图28-1的某个方格中,每一方格只能填一个数字,但各方格所填的数字可以重复.当6个方格都填有数字后,就形成一个六位数.如果这个六位数能被N整除,那么乙获胜;如果这个六位数不能被N整除,那么甲获胜.设N小于15,问当N取哪几个数时.乙能取胜?

【试题来源】

【题目】已知m,n,k为自然数,m ≥ n ≥k,n2m+2n-2k是100的倍数,求m + n - k 后的最小值.

【试题来源】

【题目】任意选取9个连续的正整数,即它们的乘积为P,最小公倍数为Q.我们知道,P 除以Q所得到的商必定是自然数,那么这个商的最大可能值是多少?

【试题来源】

【题目】对于n个奇质数,如果其中任意奇数个数的和仍是质数,那么称这些数构成“奇妙数组”,而n就是这个数组的“阶数”.例如11,13,17就是“奇妙数组”,因为11,13,17和11+13+17=41都是质数.

(1)证明:“奇妙数组”的“阶数”最大值为4;

(2)对于“阶数”为4的“奇妙数组”,求这4个质数的乘积的最小值.

【试题来源】

【题目】已知A、B、C、D、E、F六个人分别看了5、5、6、8、8、10场演出,成人的票价是儿童票价的2倍,均为整数元,又知,门票共支出1026元;那么成人门票每张多少元?

【试题来源】

【题目】如图4×3的矩形框中,每行的数字和相等,每列的数字和也相等。(行和列的数字和不一定相等),那么在“?”处应填上的式子为。

2 4 5

3 b

a ?

【试题来源】

【题目】黑板上写着1至2010共2010个自然数,小明每次擦掉两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值与最小值的差是_____

【试题来源】

【题目】a、b、c为三个自然数,且a>b>c,它们除以13的余数分别是2,9,11,那么(a+b+c)(a-b)(b-c)除以13的余数是_______

【试题来源】

【题目】When 31513 and 34369 are such divided by a certain 3-digit number ,the remainders are equal . Find this remainder .

Answer: .

小升初重点中学真题之数论篇 数论篇一 1 (人大附中考题) 有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2 (101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。 3(人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 4 (人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 预测 1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?

预测 2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。2004年元旦三个网站同时更新,下一次同时更新是在____月____日? 预测 3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______. 数论篇二 1 (清华附中考题) 有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____. 2 (三帆中学考题) 140,225,293被某大于1的自然数除,所得余数都相同。2002除以这个自然数的余数是 . 3 (人大附中考题)

浙江师范大学《初等数论》考试卷(A1卷) (2004——2005学年第一学期) 考试类别使用学生数学专业**本科 考试时间120分钟表出卷时间*年*月*日 说明:考生应有将全部答案写在答题纸上,否则作无效处理。 一、填空(30分) 1、d(1000)= 。φ(1000)= 。()=______ 。 2、ax+bY=c有解的充要条件是。 3、被3除后余数为。 4、[X]=3,[Y]=4,[Z]=2,则[X—2Y+3Z]可能的值为。 5、φ(1)+φ(P)+…φ()=。 6、高斯互反律是。 7、两个素数的和为31,则这两个素数是。 8、带余除法定理是。 答案 1、16.2340,1 2、(a,b)|c 3、1 4、3,4,5,6,7,8,9,10,11 5、 6、,p,q为奇素数 7、2,29 8、a,b是两个整数,b>0,则存在两个惟一的整数q,r使得 二、解同余方程组(12分) 答案 解:因为(12,10)|6-(-2),(10,15)|6-1,(12,15)|1-(-2) 所以同余式组有解 原方程等价于方程 即 由孙子定理得 三、A、叙述威尔逊定理。 B.证明若,则m为素数(10分)

答案 A.(威尔逊定理)整数是素数,则 证:若m不是素数,则m=ab,,则,则有 不可能,所以m是素数。 四.解方程≡0(mod27)(10分) 答案 解:由≡0(mod3)得得x=1+3t代入 ≡0 (mod9)有有代入x=1+3t得 代入≡0 (mod27)有代入有 , 即 设2P+1为素数,试证(10分) 答案 证:因n=2P+1为素数,由威尔逊定理即有 即证 六、设P=4n+3是素数,证明当q=2p+1也是素数时,梅森数不是素数。(10分) 答案 证:因q=8n+7,由性质2是q=8n+7的平方剩余,即 所以梅森数不是素数。 七、证无正整数解。(8分) 答案 证:假设有解,设(x,y,z)是一组正整数解,则有x是3的倍数,设x=3x1,又得到y为3的倍数,设,又有,则有解且z>z1 这样可以一直进行下去,z>z1>z2> z3>z4>… 但是自然数无穷递降是不可能的,于是产生了矛盾 八、设n是大于2的整数,证明为偶数(10分) 答案 证:因为(-1,n)=1,由欧拉定理有 ,因为n大于2,只有为偶数。

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

数论考试题

————————————————————————————————作者:————————————————————————————————日期:

一、求同余式的解:111x 75(mod321)≡ 二、求高次同余式的解:)105(m od 0201132 ≡-+x x 。 三、求高次同余式的解: 27100x x ++≡(mod 13). 四、计算下列勒让德符号的值:105223-?? ???, 91563?? ??? 五、计算下列勒让德符号的值:)593438( ,)1847 365 ( 六、韩信点兵:有兵一队,若列成五行纵队,则末行一人;成六行纵队,则末行五人; 成七行纵队,则末行四人;成十一行纵队,则末行十人。求兵数。 七、设 b a ,是两个正整数,证明: b a ,的最大公因子00(,)a b ax by =+,其中00ax by + 是形如ax by +(,x y 是任意整数)的整数里的最小正数. 八、证明:存在无穷多个自然数n ,使得n 不能表示为 p a +2(a > 0是整数,p 为素数) 的形式。 九、证明: 若方程 1 1...0n n n x a x a -+++= (0,i n a > 是整数,1,...,i n =)有有理数解,则此 解必为整数. 十、证明: 若(,)1a b =, 则(,)12a b a b +-=或 十一、证明:设N ∈c b a ,,,c 无平方因子,c b a 22,证明:b a 。 十二、设p 是奇素数,1),(=p n , 证明: ??? ? ??≡-p n n p 2 1 (mod p ). 十三、设m > 1,模m 有原根,d 是)(m ?的任一个正因数,证明:在模m 的缩系中,恰有 )(d ? 个指数为d 的整数,并由此推出模m 的缩系中恰有))((m ??个原根。 十四、设g 是模m 的一个原根,证明:若γ通过模()m ?的最小非负完全剩余系, 则g γ 通过模m 的一个缩系。

第三讲数论专题 重点知识点: 一、整除性质 ①如果自然数a为M的倍数,则ka为M的倍数。(k为正整数) ②如果自然数a、b均为M的倍数,则a+b,a-b均为M的倍数。 ③如果a为M的倍数,p为M的约数,则a为p的倍数。 ④如果a为M的倍数,且a为N的倍数,则a为[M,N]的倍数。 二、整除特征 1.末位系列 (2,5)末位 (4,25)末两位 (8,125)末三位 2.数段和系列 3、9 各位数字之和——任意分段原则(无敌乱切法) 33,99 两位截断法——偶数位任意分段原则 3.数段差系列 11 整除判断:奇和与偶和之差 余数判断:奇和-偶和(不够减补十一,直到够减为止) 7、11、13—三位截断法:从右往左,三位一隔: 整除判断:奇段和与偶段和之差 余数判断:奇段和-偶段和(不够减则补,直到够减)三、整除技巧:

1.除数分拆:(互质分拆,要有特征) 2.除数合并:(结合试除,或有特征) 3.试除技巧:(末尾未知,除数较大) 4.同余划删:(从前往后,剩的纯粹) 5.断位技巧:(两不得罪,最小公倍) 四、约数三定律 约数个数定律:(指数+1)再连乘 约数和定律:(每个质因子不同次幂相加)再连乘约数积定律:自身n(n=约数个数÷2)

例题: 【例1】2025的百位数字为0,去掉0后是225,225×9=2025。这样的四位数称为“零巧数”,那么所有的零巧数是_____。 【巩固】某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么该校人数最多可以达到____人。 【例2】若两个自然数的平方和是637,最大公约数与最小公倍数的和为49,则这两个数是多少? 【巩固】两个两位数,它们的最大公约数是9,最小公倍数是360,这两个两位数分别是_______。【例3】一个两位数,数字和是质数。而且,这个两位数分别乘以3,5,7之后,得到的数的数字和都仍为质数。满足条件的两位数为_____。

完全平方数 知识框架 一、完全平方数常用性质 1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。不可能是2,3,7,8。 2.在两个连续正整数的平方数之间不存在完全平方数。 3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。 4.若质数p整除完全平方数2a,则p能被a整除。 2.性质 性质1:完全平方数的末位数字只可能是0,1,4,5,6,9. 性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数. 性质3:自然数N为完全平方数?自然数N约数的个数为奇数.因为完全平方数的质因数分解中每个质 -,因数出现的次数都是偶数次,所以,如果p是质数,n是自然数,N是完全平方数,且21|n p N 则2|n p N. 性质4:完全平方数的个位是6?它的十位是奇数. 性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个. 性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数. 二、一些重要的推论 1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一 定不是完全平方数。 2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。 3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49, 69,89,16,36,56,76,96。 4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。 5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。 6.完全平方数的个位数字为6时,其十位数字必为奇数。

第二十一讲数论综合 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 基本公式 1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。 2.已知c|ab,(b,c)=1,则c|a。 3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即 n= p11a× p22a×...×p k k a(#) 其中p1

②约数:约数个数为奇数个的是完全平方数。约数个数为3的是质数的平方。 ③质因数分答案:把数字分答案,使他满足积是平方数。 ④立方和:A3+B3=(A+B)(A2-AB+B2)。 8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。 9.周期性数字:abab=ab×101 1.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。 2.牢记基本公式,并在解题中灵活运用公式。 例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。请求出这24个四位数中最大的一个。 例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数? 例3:由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少? 例4:从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米? 例5:一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米? 例6:某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

一. 质数与合数 1.基本概念 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数. 要特别记住:0和1不是质数,也不是合数. 考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点. ⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注 意. 2.部分特殊数字的分解 111337=?;100171113=??;1111141271=?;1000173137=?;199535719 =???; 1998233337=????;200733223=??;2008222251=???;10101371337=???. 3. 判断一个数是否为质数的方法 根据定义如果能够找到一个小于p 的质数q(均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数. 例如:149很接近1441212=?,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数. 二、约数与倍数 1.1求最大公约数的方法 ①分解质因数法:先分解质因数,然后把相同的因数连乘起来. 例如:2313711=??,22252 237=??,所以(231,252)3721=?=; ②短除法:先找出所有共有的约数,然后相乘.例如:21812 396,所以(12,18)236=?=; 知识框架 数论模块综合复习

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211 即n n a q a q a q 2211是m 的整数 2 证: )12)(1()12)(1( n n n n n n n )1()1()2)(1( n n n n n n )1()1/(6),2)(1(/6 n n n n n n )1()1()2)(1(/6 n n n n n n 从而可知 )12)(1(/6 n n n 3 证: b a , 不全为0 在整数集合 Z y x by ax S ,|中存在正整数,因而 有形如by ax 的最小整数00by ax Z y x ,,由带余除法有00000,)(by ax r r q by ax by ax 则 S b q y y a q x x r )()(00,由00by ax 是S 中的最小整数知0 r by ax by ax /00 下证8P 第二题 by ax by ax /00 (y x ,为任意整数) b by ax a by ax /,/0000 ).,/(00b a by ax 又有b b a a b a /),(,/),( 00/),(by ax b a 故),(00b a by ax 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b 则a 必在此序列的某两项之间

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(m od 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求 ??? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32 分) 1、证明对于任意整数n ,数6233 2n n n ++是整数. 2、证明相邻两个整数的立方之差不能被5整除. 3、证明形如14-n 的整数不能写成两个平方数的和.

数论综合 1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少? 2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么, (1)a+b的最小可能值是多少? (2)a+b的最大可能值是多少? 3.如果某整数同时具备如下3条性质: ①这个数与1的差是质数; ②这个数除以2所得的商也是质数; ③这个数除以9所得的余数是5.

那么我们称这个整数为幸运数.求出所有的两位幸运数. 4.在555555的约数中,最大的三位数是多少? 5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?

6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案. 7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?

8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?

9.设a与b是两个不相等的非零自然数. (1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值? (2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?

10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳14 2 米,黄鼠狼每 次跳32 4米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔3 12 8 米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米? 11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)

1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n 1()1()2)(1(/6+-+++∴n n n n n n 从而可知 12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r ax by ax + +∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

名校真题测试卷10 (数论篇一) 1、(05年人大附中考题)有_____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。 2、(05年101中学考题) 如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数 是_____。 3 (05年首师附中考题) 1 21+ 202 2121 + 50513131313 21212121212121 =________。 4 (04年人大附中考题) 甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。 (02年人大附中考题) 下列数不是八进制数的是( ) A、125 B、126 C、127 D、128 【附答案】 1 【解】:6 2 【解】:设原来数为ab,这样后来的数为a0b,把数字展开我们可得:100a+b=9×(10a+b),所以我们可以知道5a=4b,所以a=4,b=5,所以原来的两位数为45。 3 【解】:周期性数字,每个数约分后为1 21 + 2 21 + 5 21 + 13 21 =1 4 【解】:题中要求丙与135的乘积为甲的平方数,而且是个偶数(乙+乙),这样我们分解135=5×3×3×3,所以丙最小应该是2×2×5×3,所以甲最小是:2×3×3×5=90。 5 【解】:八进制数是由除以8的余数得来的,不可能出现8,所以答案是D。 第十讲小升初专项训练数论篇(一) 一、小升初考试热点及命题方向 数论是历年小升初的考试难点,各学校都把数论当压轴题处理。由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。 二、2007年考点预测 2007年的小升初考试将继续以填空和大题形式考查数论,命题的方向可能偏向小题考察单方面的知识点,

数论余数部分练习题 【1】1013除以一个两位数得到的余数为12,这个两位数有 种可能的取值. 【分析】根据题意可知,这个两位数是1013121001-=的约数,而且大于12; 由于100171113=??,两位数约数有11、13、77、91,其中11不满足,所以这个两位数有3种可能的取值. 【2】(2009年第七届走美六年级初赛)1234567891011121314……20082009除以9,商的个位数字是 。 【分析】首先看这个多位数是否能为9整除,如果不能,它除以9的余数为多少。 由于任意连续的9个自然数的和能被9整除,所以它们的各位数字之和能被9整除,那么把这9个数连起来写,所得到的数也能被9整除。 由于200992232÷= ,所以1234567891011121314…20082009这个数除以9的余数等于20082009(或者12)除以9的余数,为3. 那么1234567891011121314…20082009除以9的商,等于这个数减去3后除以9的商, 即1234567891011121314…20082006除以9的商,那么很容易判断商的个位数字为4. 【3】(第六届小学“希望杯”全国数学邀请赛)有一列数:1,3,9,25,69,189,517,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么这列数中的第2008个数除以6,得到的余数是 . 【分析】这列数除以6的余数有以下规律:1,3,3,1,3,3,1,3,3,…,因为,所以第2008个数除以6余1. 【3】(2008年101中学考题)2008222008+除以7的余数是 . 【分析】328=除以7的余数为1,200836691=?+,所以200836691366922 (2)2?==?+,其除以7的余数为:669122?=;2008除以7的余数为6,则22008除以7的余数等于26除以7的余数,为1;所以2008222008+除以7的余数为:213+=. 【4】(第六届走美决赛六年级试题)M ,N 为非零自然数,且20072008M N +被7整除.M N +的最小值为 【分析】 20075(mod 7)≡ 200866691÷=

学科培优数学 “数论综合一” 学生姓名授课日期 教师姓名授课时长 知识定位 在近几年的重点中学小升初分班考试中,数论题目的分值大都超过了行程问题,占据了考试内容最显著的地位!数论题目灵活多变,能较充分考察你思维的开拓性、方法技巧的综合运用能力、创新及细心程度,易于分开学生层次。数论问题按知识体系大体可分为:整除问题、余数问题、奇偶问题、质数合数、约数倍数,这几大板块我们在之前的学习中已经都接触过了,但它们并不是数论的全部,细心的你会发现在数论这个大家族中还有一些“特别身影”,它们也是帮你解决数论问题的法宝。比如最大最小问题、关于取整运算、尾数问题、二进制应用、一些特殊变形问题等。 知识梳理 涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题. 例题精讲 【试题来源】 【题目】从1开始由小到大按顺序取自然数,第一次取一个数,第二次取两个数,第三次取三个数,以后继续按照每次取一个、两个、三个的方式重复进行,第()次取的数之和为573。 【试题来源】 【题目】小明写自然数从1到N,所写下的数字之和是28035,则N=?

【试题来源】 【题目】从1到1001的所有自然数按格式排列,用一个正方形框子框出九个数,要使这九个数的和等于(1)1995,(2)2529,(3)1998问能否办到?若能办到,请你写出正方形框里的最大数和最小数。 【试题来源】 【题目】如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么, (1)a+b的最小可能值是多少? (2)a+b的最大可能值是多少? 【试题来源】 【题目】如果某整数同时具备如下3条性质: ①这个数与1的差是质数; ②这个数除以2所得的商也是质数; ③这个数除以9所得的余数是5. 那么我们称这个整数为幸运数.求出所有的两位幸运数.

数论测试卷 1、如图5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正 方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中,若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE= . 2、把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位 的数字是它前面的连个数字的差(大数减去小数);(2)无重复数字,例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”,那么最大“幸运数”从左往右的第二位数字是。 3、一个由某些非零自然数所组成的数组具有以下的性质: (1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除。 (2)对于任意非零自然数n,若此数组中包含有2n、3n、5n中的一个,则次数组中必同时包含有n、2n、3n和5n。 如果次数组中数的个数在300和400之间,那么次数组包含个数。

4、 已知一个五位回文数等于45与一个四位回文数的乘积(即deed abcba ?=45),那么这 个五位回文数最大的可能值是______; 5、 请从1、2、3、?、9、10中选出若干个数,使得1、2、3、?、19、20这20个数 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和。那么,至少需要选出______个数; 6、 用0~9这10个数字组成若干个合数,每个数字都恰好用依次,那么这些合数之和 的最小值是______; 7、 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小 值是______; 8、 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位 完全平方数.那么,其中的四位完全平方数最小是_______;

学科培优数学 “数论综合三” 学生姓名授课日期 教师姓名授课时长 知识定位 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 知识梳理 涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题. 例题精讲 【试题来源】 【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。请问最后这个数从个位起向左数、可以连续地数到几个0?

【试题来源】 【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少? 【试题来源】 【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是. 【试题来源】 【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个? 【试题来源】 【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。 【试题来源】 【题目】一个自然数与自身相乘的结果称为完全平方数。已知一个完全平方数是四位 数,且各位数字均小于7。如果把组成它的数字都加上3,便得到另外一个完全平方数, 求原来的四位数。

第2讲 数论专题 一、 整除 (一)整除的定义 若整数a 除以整数b ,除得的商为整数且没有余数,就说a 能被b 整除,或b 能整除a ,记作|b a . (二)整除的性质 (1)已知|a b 、|b c ,则()|a b c +,()|a b c -. (2)已知|ab ac ,则|b c . (3)已知|a bc 且(),1a b =,则|a c . (4)已知|a c 且|b c ,则[],|a b c . (三)常用判断法 1.尾数判断法 能被2或5整除的:个位数字可被2或5整除. 能被4或25整除的:末两位可被4或25整除. 能被8或125整除的:末三位数可被8或125整除. 2.数字和判断法 能被3或9整除的:各位数字之和能被3或9整除. 能被99整除的:从后往前,两位一段,各段之和是99的倍数. 3.奇偶位求差法 能被11整除的:“奇位和”与“偶位和”的差能被11整除. (注意:我们把一个数从右往左数的第1位、第3位、第5位、……统称为奇数位,把一个数从右往左数的第2位、第4位、第6位、……统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和”,把“偶数位上的数字之和”简称为“偶位和”) 4.三位截断法

被7或11或13整除. 5.形如abcabc 的数可以被7、11、13整除,在多位数的判断中可以将这样的六位数“去掉”再判断. 6.对于没有整除特性的数,可以利用列竖式的方式找到能被这个数整除的数. 二、 质数与合数 (一)质数与合数的定义 质数是只能被1和自身整除的数;合数是除了1和它自身外,还能被其他数整除的数. (二)分解质因数 分解质因数是指把一个数写成质因数相乘的形式.例如,3280=257?? 三、 约数、倍数 (一)基本概念 (1)如果a 能被b 整除(|b a ),则b 是a 的约数(因数),a 是b 的倍数. (2)约数具有“配对”性质:大约数对应小约数. (二)约数个数 (1)分解质因数,指数加1再相乘. (2)平方数有奇数个约数,非平方数有偶数个约数. 【例】有2012盏灯,分别对应编号1~2014的共2014个开关.现在有编号1~2014的2014个人来按动这些开关.已知第一个人按的开关是1的倍数,第二个人按的开关是2的倍数,第三个人按的开关3的倍数……以此类推,第2014个人按的开关是2014的倍数.如果,一开始灯全是亮着的,那么这2014个人全都按完后,还有多少盏灯是亮的? 【解】如果一个灯一开始为亮,最后还亮,那么它被按了偶数次,说明它有偶数个约数,是一个非完全平方数.所以平方谁编号的灯都灭了.从1~2014中,共44个平方数,所以有的44盏灭了,最后还有2014441970-=盏灯亮着. (三)约数和公式 (1)设一个数的质因数分解式为12 12n a a a n p p p ??? ,这这个数的约数和为 ()()() 111 1212 1 1 1222111n n a a a a a a n n n p p p p p p p p p ---++++?++++??++++ . 【例】若某数的质因数分解式为2a b c ??,则约数和为()()() 2111a b c c +?+?++

第1章 第 1 节 1. 证明定理1。 2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。 3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。 4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。 5. 证明:存在无穷多个自然数n ,使得n 不能表示为 a 2 + p (a > 0是整数,p 为素数) 的形式。 第 2 节 1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。 2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。 3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。 4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。 5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数? 6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。 第 3 节 1. 证明定理1中的结论(ⅰ)—(ⅳ)。 2. 证明定理2的推论1, 推论2和推论3。 3. 证明定理4的推论1和推论3。 4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。 5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。 6. 设n 是正整数,求1 223212C ,,C ,C -n n n n 的最大公约数。 第 4 节 1. 证明定理1。 2. 证明定理3的推论。 3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。 4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。 5. 设a ,b ,c 是正整数,证明: ) ,)(,)(,(),,(],][,][,[],,[2 2a c c b b a c b a a c c b b a c b a =。 6. 设k 是正奇数,证明:1 + 2 + + 9∣1k + 2k + + 9k 。 第 5 节 1. 说明例1证明中所用到的四个事实的依据。 2. 用辗转相除法求整数x ,y ,使得1387x - 162y = (1387, 162)。 3. 计算:(27090, 21672, 11352)。 4. 使用引理1中的记号,证明:(F n + 1, F n ) = 1。 5. 若四个整数2836,4582,5164,6522被同一个大于1的整数除所得的余数相同,且不等于零,求除数和余数各是多少?

数的整除 知识框架 一、整除的定义: 当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a 叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a. 二、常见数字的整除判定方法 1.一个数的末位能被2或5整除,这个数就能被2或5整除; 一个数的末两位能被4或25整除,这个数就能被4或25整除; 一个数的末三位能被8或125整除,这个数就能被8或125整除; 2.一个位数数字和能被3整除,这个数就能被3整除; 一个数各位数数字和能被9整除,这个数就能被9整除; 3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整 除; 4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、 11或13整除; 5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除; 6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有 两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。 7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被 7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。 8.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被 13整除。如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」

相关文档
最新文档