第五章 淀粉的酶水解糖化要点

第五章 淀粉的酶水解糖化要点
第五章 淀粉的酶水解糖化要点

第五章淀粉的酶水解糖化

众所周知,以精制淀粉or其他原料为原料,应用酸水解法制葡萄糖(Glu,由于需要高温\高压和盐酸催化剂,因此在生产葡萄糖(Glu的同时,伴有葡萄糖(Glu的复合、分解反应,生产一些不可发酵性糖及其一系列有色物质,这不仅降低淀粉转化率,而且由于生产的糖液质量差,对后道精制带来不利影响,降低葡萄糖(Glu的收率。

40年代学术界已对酶水解理论取得共识。60年代末期,国外酶水解理论研究的新发展,促进淀粉酶水解取得重大突破。日本率先实现工业化生产,其他国家也相继采用这种先进的新工艺。采用酶糖化之前需要先使淀粉液化。液化是利用液化酶使糊化淀粉水解成糊精和低聚糖等,使粘度大为降低,流动性增高,所以工业上称为液化。酶液化和酶糖化工艺称为双酶法。双酶法生产Glu工艺,是以作用专一的酶制剂作为催化剂,反应条件温和,复合分解反应较少,因此采用双酶法生产Glu,提高了淀粉原料的转化率及糖液浓度,改善了糖液质量,是目前最为理想的制糖方法。

第一节液化

糖化使用的葡萄糖淀粉酶属于外切酶,水解作用从底物分子的非还原末端进行。为了增加糖化酶作用的机会,加快(因为液化淀粉转化成糊精、低聚糖等,底物分子数量增大,尾端增多糖化反应速度,必须用α-淀粉酶将大分子的淀粉水解成糊精和低聚糖。液化的目的是为糖化创造有利条件;淀粉糊黏度大,难于操作。但是淀粉颗粒的结晶性结构对于酶作用的抵抗力强。例如细菌α-淀粉酶水解淀粉颗粒和水解糊化淀粉的速度比约为1:20000。由于这种原因,不能使液化酶直接作用淀粉,需要先加热淀粉乳使淀粉颗粒吸水膨胀,糊化,破坏其结晶结构。

淀粉乳糊化是酶法工艺的第一必要步骤。淀粉乳糊化,黏度大,流动性差,搅拌困难,也影响传热,难获得均匀的糊化结果,特别是在较高浓度和大量物料的情况下操作有困难。α-淀粉酶对于糊化的淀粉具有很强的催化水解作用,能很快水解到糊精和低聚糖,黏度急剧降低,流动性增强.工业上生产将α-淀粉酶混入淀粉乳中,加热,淀粉糊化后立即液化。虽然淀粉乳浓度30-40%,液化后的流动性高,操作无困难。

一、液化酶

液化使用α-淀粉E,它水解淀粉和其他水解产物分子中的α-1,4糖苷键,使分子断裂,粘度下降,α-淀粉酶属内酶,水解从分子内部进行,不能水解支淀粉的α-1,6糖苷键,但能越过此键继续水解。

来源于枯草杆菌的α-淀粉酶最适pH6.0-7.0,在30-40%淀粉乳中,液化T:85-90℃,Ca++提高其稳定性,0.01mol/L。 Nacl调节Na+到0.02mol/L,也提高其稳定性。并有助于杂质凝聚,改善过滤性质。

地衣形杆菌的α-淀粉酶(Termamyl其耐温性高于枯草杆菌的α-淀粉酶约20℃。无须添加Ca++。

液化酶用量:8-10u/g干淀粉(or 1kg/吨干淀粉

二、液化程度

在液化过程中,淀粉糊化,水解成较小的分子,应当达到何种程度合适?因为葡萄糖淀粉酶属外酶,水解只能由底物分子的非还原尾端开始,底物分子越多,水解生成葡萄糖Glu的机会越多。但是,葡萄糖淀粉酶是先与底物分子生成络合结构,而后发生水解催化作用,这需要底物分子的大小具有一定的范围,有利于生成这种络合物,过大或过小都不适宜。根据生产实践,淀粉在E液化工序中水解到DE15~20范围合适,所以水解超过这程度,不利于糖化酶生成络合物,影响催化效率,糖化液的最终Glu值较低。若DE 在15以下,液化淀粉的凝沉性强。对于过滤有不利的影响。影响糖化速度,粘度大,难于操作。

三、不同淀粉的液化性质

不同品种的淀粉在酶液化性质方面存在差别。薯类淀粉较谷类和豆类淀粉容易液化。见图5-2和表5-2 P145-6。达到最低粘度的时间少,易液化,及最高粘度高也不易液化,最低粘度低,易液化。

因为不同品种淀粉的酶液化难易有差别,采用不同淀粉为原料时,有时需要改变液化工艺条件或液化

方法。不同液化方法应同于不同淀粉的情况见表5-3 P146

四、液化的方法与选择

液化有多种方法,效果不一,这里将逐一介绍并加以讨论。同时针对不同原料,不同的生产条件(如蒸汽压力高低,液化液不同的用途,推荐好的液化方法,以获得最佳液化效果和糖化结果。

1.液化方法

(1液化方法的分类液化分类方法很多,以水解动力不同可分为酸法、酸酶法、酶法及机械液化法;

以生产工艺不同可分为间歇式、半连续式和连续式;以设备不同可分为管式、罐式、喷射式;以加酶方式不同可分为一次加酶、二次加酶、三次加酶液化法; 以酶制剂耐温性不同可分为中温酶法、高温酶法、中温酶与高温酶混合法;以原料精粗分淀粉质原料直接液化法与精制淀粉液化法等。每一种方法又可分为几个类方法,并且各分类方法又存在交叉现象(见图3一1。

(2各种液化方法介绍

①酸液化法:这种液化方法的基本条件:淀粉乳浓度30%,pH1.8~2.0,在135℃时,加热l0min,液化DE 值l5%~18%。

此法优点:适合任何精制淀粉,所得到的糖化液过滤性好。

此法缺点:因为酸液化发生葡萄糖的复合分解反应,生成约有色物及复合糖类,降低了淀粉的转化率及糖液质量。另外,此法的液化液用来酶法糖化时,糖化最终会有微量醇不溶性糊精存在。

②酶法液化:1959年,日本葡萄糖生产厂家开始改用细菌淀粉酶进行液化,后来在推广过程中又找到了解决液化中出现不溶性淀粉颗粒的办法,1968年小牧(Komaki 和田治(TaJi提出了”两次加酶法(two一dose”工艺,完善了酶法工艺。生产实际中,酶法液化的方法繁多,现将主要方法介绍如下:

1间歇液化法(又称直接升温液化法:此为酶法液化中最简单的一种,具体工艺过程为:将30%浓度的淀粉乳调pH值为6.5,加入所需要的钙离子(0.01mol/L和液化酶,在剧烈的搅拌下加热到85~90℃,并维持30~60min,以达到所需的液化程度(DE值为15%~18%,碘试反应呈棕红色(或称碘液本色。若搅拌不足,则需要分段液化加热。如液化玉米淀粉,先加热到约72℃,粘度达到最高程度,保温约l5min,粘度下降,再继续加温至85~90℃。此法需要的设备简单,操作也容易,但与喷射液化相比液化效果差,经糖化后物料的过滤性差,糖的浓度也低(见表3一3。

为改进此法过滤性差的缺点,液化完成后加热煮沸l0min。谷类淀粉(如玉米液化较为困难,应加热到140℃,保持几分钟,虽然如此处理能改进过滤性质,但仍不及其他方法好。

2半连续液化法(又称高温液化法或称喷淋液化法:在液化桶内放入底水并加热到90℃,然后将调配好待液化的淀粉乳,用泵送经喷淋头引入液化桶内,并便桶内物料温度始终保持在(90土2℃。淀粉受热糊化、液化,由桶底流入保温桶中,在(90土2℃时,维持30~60min,达到所需的液化程度。对液化困难的玉米等谷物淀粉,液化后最好再加热处理(140℃加热3~5min,以凝聚蛋白质,改进过滤性能。

该液化方法的设备和操作也简单,效果比直接升温法要好,但与喷射液化法相比有如下缺点:

a.由于喷淋液化在开口的容器内进行,故料液溅出而烫伤操作人员的事故时有发生,安全性差。

b.由于喷淋液化在开口容器内进行,故蒸汽用量大;与喷射液化相比多用煤15%。

c.因为喷淋液化是开口的,故液化温度无法达到耐高温α-淀粉酶作用的最佳温度(105℃。

因此,喷淋法与喷射法相比,液化效果差,糖化液过滤性能也差。

3喷射液化法:喷射液化技术的问世,逐步取代了其他液化技术。喷射液化技术的关键设备---- 喷射液化器,根据推动力不同,主要分为两大类。一类是以美国道尔·澳利沃公司(DorrOli.cerC.P为代表的高压蒸汽喷射液化器;一类是国内开发的低压蒸汽喷射液化器。由于国内蒸汽压力普遍偏低且不稳定,因此在本节所讲的喷射液化技术主要是指适合中国国情的低压蒸汽喷射液化技术(在以后章节中专门介绍低压蒸汽液化喷射技术。

耐高温α-淀粉酶相比中温α-淀粉酶,在高温下喷射液化,蛋白质絮凝效果好,不产生不溶性淀粉颗粒,不发生老化现象,液化液清亮、透明;并且在高温下喷射液化还可阻止小分子(如麦芽二糖、三糖等前

体物质的生成,有利于提高葡萄糖的收率,同时用耐高温α-淀粉酶,成本比用中温酶低。因此,我们下面将要讨论的喷射液化技术是指以耐高温α-淀粉酶为催化剂的低压蒸汽喷射液化技术。

根据加酶方式不同,喷射液化可分为:一次加酶法,二次加酶法,三次加酶法。

由于三次加酶法主要用于处理含高蛋白质的次级小麦淀粉,应用机会不多见,在此不加讨论。下面我们重点讨论一次加酶工艺及二次加酶工艺。

a.一次加酶喷射液化

a丹麦Novo公司提供的工艺(见图3一2

其工艺条件如下:

·浓度30% ·在管道保温5~8min

·pH6.5 ·闪冷至95℃并在隔板式罐保持1~2h

·喷射温度105℃

·耐高温α-淀粉酶用量0.1%(固形物

b美国Staley公司提供的工艺(见图3一3其工艺条件如下: ·浓度30%

·pH3一4(或pH自然

·喷射温度150~160℃

·管道维持4~8mi

·闪冷却至95℃

·调pH5.6~6.2,加入高温酶0.1(固形物

·在层流锥中维持1~2h

c丹麦DDS公司提供的工艺(见图3一4其工艺条件如下: ·浓度30%

·pH6.5

·耐高温酶用量0.1%(固形物

·喷射温度110℃

·真空闪冷至95℃

·在层流罐中维持1~2h

d其他公司提供的工艺(见图3一5其工艺条件控制如下:

·浓度30%

·pH6.5

·耐高温酶用量0.06%(固形物

·一次喷射温度95~97℃

·一次喷射温度保温60min

·二次喷射温度110℃

·高温维持5min

·真空闪冷至95℃

·在隔板式罐保持1~2h

b.两次加酶喷射液化

a淮海工学院生物技术研究中心提供的工艺(见图3一6其工艺条件如下: ·浓度30%

·pH6.5

·氯化钙0.15%(固形物

·一次酶用量0.03%(固形物

·一次喷射温度95~97℃,保温时间60min

·二次喷射温度145℃

·高温维持3~5min

·二次液化温度95~97℃

·二次酶用量0.02%(固形物,保温约30min

bDDS公司提供的工艺(见图3--7其工艺条件如下:

·浓度30%

·pH6.5

·一次酶用量005%(固形物

·一次喷射温度110℃,保温5min

·二次喷射温度136℃,保温5min

·二次液化温度95~97℃,二次酶用量0.05%(固形物,保温时间1~2h

③酸酶液化法:为了减少酸法液化中所产生的杂糖,可采取降低DE值的办法,但低DE值的液化液易老化(尤其是DE值低于10的各类淀粉,故又有了在DE值

5%~7%(有的为4%的酸液化物中添加α-淀粉酶,以分解易老化的成分,使DE值提高至15%~18%,这便是酸酶联合液化法。这种方法兼有酸法液化的过滤性能好和酶法液化的糖化程度高的优点。

此法的基本操作为:30%的淀粉乳,pH2.2,在140℃加热5min,葡萄糖值达到

5%~7%,中和pH至6.5,冷却至(90土2℃,加入液化酶,反应30min左右,达到需要的反应程度。

此法酶用量少,过滤性能也好。此法最好利用管道设备连续进行液化,以达到最佳液化效果。不过这种方法工艺过程较为复杂。

④机械液化法:此法不使用任何催化剂,使淀粉浆喷射入一个旋转的蒸汽加热器中,受热淀粉立即糊化,在强烈的机械剪力的作用下(喷射温度≥160℃,使淀粉分散。然后急剧冷却,以防淀粉重新结合。这样得到的糊精分子聚合度为200~300,较高于酶法,有利于葡萄糖淀粉酶结合,糖化后的过滤液DE值可达99%,而且此方法适用于

各类淀粉。但这种方法在工艺上还有待于完善。此外,在酒精生产企业,还采用淀粉膨化的办法。

2.液化方法的选择

(1淀粉液化效果好坏的标准

①液化要均匀。

②蛋白絮凝效果好。

③液化要彻底(在60℃时液化液要稳定,不出现老化现象,不含不溶性淀粉颗粒,液化液透明、清亮。

(2液化原料的特点液化所处理的原料,主要分为两大类:一类是薯类淀粉,如木薯、马铃薯及甘薯;另一类是谷物类淀粉,如玉米、大米、小麦、蚕豆等等。这两类淀粉组成及性质有如下区别:

①蛋白质含量:薯类淀粉含蛋白质量≤0.1%,而谷物类淀粉中的蛋白质含量一般≥0.3%,一般小型淀粉厂生产的淀粉中含蛋白质在0.6%~1.0%,次级小麦淀粉中的蛋白质含量更高。

②“不溶性淀粉颗粒”含量:酶法“不溶性淀粉颗粒”是直链淀粉与油脂形成的络合物,呈螺旋结构,组织紧密,在糖化过程中不能水解。它的样在不但降低了糖化率,而且造成过滤出难,滤液浑浊。

谷物类淀粉能产生约2%的“不溶性淀粉颗粒”(内含脂肪酸约0.4%~0.5%蛋白质0.2%~0.4%,其余为淀粉1.9%~1.5%。而薯类淀粉只会产生0.25肘的“不溶性淀粉颗粒”。

①淀粉老化产生凝胶体强度(见表3一2:谷物类淀粉产生的凝胶体强度大,特别是小麦淀粉,淀粉糊冷却时结成的凝胶体强度很强,而薯类淀粉的凝胶体强度很弱。

②淀粉颗粒大小与坚硬程度(见表3一1:谷物类淀粉颗粒小且坚硬,而薯类原料淀粉颗粒大且疏松。

(3液化液的用途

①用途之一是生产葡萄糖及果葡糖浆(产品。这种糖液希望葡萄糖含量高、色泽浅、透明度高。这种高DE值的酶法糖液过滤速度快。

②用途之二是生产中转化糖浆。这种糖浆的糖化液过滤性相对较差。

③用途之三也是生产葡萄糖,但是这种葡萄糖是作为发酵工业的碳源(如味精、甘油、青霉素等等来使用。这种糖液的粘度高低,直接决定后道提取的难易,因此这种葡萄糖液的过滤速度要求特别快。

(4生产条件的差异国内个别厂家蒸汽压力高,且稳定,但大多数生产厂家蒸汽压力不高,且不稳定。

(5液化方法的选择从国内各个厂生产条件来看,选用低压蒸汽喷射液化较为合适。低压蒸汽喷射液化工艺分为一次加酶工艺与两次加酶工艺。

前面我们已经就以上两种液化工艺进行了讨论,并提出了淀粉液化效果好坏的标准,现在我们就针对不同原料的特点,不同的液化液用途,推荐好的液化方法,以获得最佳液化效果和糖化结果。

①如果液化液用来生产中转化糖浆,低压蒸汽喷射液化工艺就必须选用两次加酶法,以改善糖浆的过滤性能。

②如果生产的葡萄糖是作为中间产品,作为味精、甘油、青霉素等发酵工业的碳源,为了提高后道的提取收率,宜选用两次加酶法,以求降低糖液的粘度。

③如果生产葡萄糖及果葡糖浆产品。采用薯类原料宜采用一次加酶工艺。采用玉米、小麦淀粉,如果淀粉质量好(蛋白质含量低于0.3%,考虑到一次加酶工艺简单,节约蒸汽,糖液色泽浅,可以采用一次加酶工艺。如果玉米、小麦等淀粉质量差(蛋白

质含量大于0.6%~1.0%,加上此类淀粉易老化,易产生“不溶性淀粉颗粒”,因此选用两次加酶工艺更为可靠。

④如果采用谷物(如大米、玉米直接酶液化,由于原料中蛋白含量高,且原料颗粒大,必须采用两次加酶法,液化才能彻底。

由此可见,液化方法主要量以两次加酶为主。因此下面我们所提的液化方法是指以耐高温α-淀粉酶为催化剂,采用低压蒸汽喷射器,两次加酶的液化方法。

(三液化程度的控制

在液化过程中,淀粉糊化,水解成较小的分子。液化程度不能太低,因为:

(1液化程度低,粘度大,难于操作。

(2葡萄糖淀粉酶属于外酶,水解只能由底物分子的非还原末端开始,底物分子越少,水解机会越小,因此影响糖化速度。

(3液化程度低,易老化,不利于糖化,特别是糖化液过滤性相对较差。

液化程度也不能太高,因为葡萄糖淀粉酶是先与底物分子生成络合结构,而后发生水解催化作用。液化超过一定程度;不利于糖化酶生成络合结构,影响催化效率,糖化液的最终葡萄糖值低(见图3-8。

液化程度应该是:在碘试本色的前提下,液化液DE值越低越好。

液化方法

1.间歇液化法(或直接升温液化法

此法为酶法液化中最简单的一种。具体工艺过程为30—40%浓度的淀粉乳液PH6.0—6.5,加入CaCl2调节Ca离子浓度到0.01 mol/l, 加入适量的枯草杆菌——液化酶,再剧烈搅拌下,加热到85-90℃,并维持30-60min中,以达到所需液化程度。若搅

拌不足,则需分段加热。如液化玉米淀粉乳,先加热到72℃,粘度达到最高程度,约15分钟后,粘度开始下降,再继续加热到85-90℃。

此法需要设备和操作简单,但液化效果差,糖化液的过滤性质差。为了改进该缺点,液化完成后加热煮沸10分钟。谷类淀粉液化应加热到140℃,保持几分钟。但仍不如其他方法。

2.半连续液化法(or高温液化法,喷淋液化法

将淀粉乳调节好PH和Ca离子浓度,加入液化酶,用泵送经喷淋头引入液化桶中,液化桶内事先也放入90℃的热水。淀粉受热糊化液化,由桶底流入保温捅中,在90℃±2是维持30-60min达到所需要的液化程度。

对液化困难的玉米淀粉,液化后最好再加热处理(140℃,3-5min ,以凝聚蛋白质Pr,改进过滤性能。

此法的设备和操作简单,效果较直接升温法好,缺点:淀粉不是同时受热,液化欠均匀,酶的利用不完全。 3.喷射液化法逐步取代了其他方法。喷射液化技术的关键设备—--喷射液化器。结构图 5-3,P147。要点是蒸汽直接喷射入淀粉乳薄层,使糊化、液化。(因为蒸汽喷射产生的湍流使淀粉受热快而均匀,粘度降低也快。)先通蒸汽预热,使用蒸汽压力为 390-588Kpa。液化的淀粉乳由喷射器排出,引入保温桶中在 85-90℃保温约 40min,达到需要的液化程度。此法的优点是,液化效果好,蛋白质类杂质的凝结好,糖化液的过滤性质好,设备少,连续操作。为了改进液化效果和过滤性质,液化可分段进行,常用的一为一次、两次加酶液化法。(1)一次加酶喷射液化丹麦 DDS 公司提供的工艺E ↓ 调乳→ 泵→ 喷射液化→ 管道保温5~8min → 闪蒸罐→ 层流罐 30% ph6.5 (105~110℃) 95℃1~2h 耐高温α-淀粉酶 0.1%固形物 95℃(2)两次加酶 DDS 公司提供的工艺调乳→ 泵→ 喷射液化→ 维持罐→ 闪蒸罐→ 30%, ph6.5 110℃ 5min E :0.05%?E:0.05%?形物↓ 二次喷射液化→ 保温罐→ 闪蒸罐→ 层流罐 95~97℃ 1~2h 136℃ 5min 95~97℃耐热性液化酶(Termamyl)能在较高温度液化,效果好,工

艺也简单,应用液化较困难的谷类淀粉效果也好,液化液的过滤性质也好。补

充:①选择液化方法,淀粉糖品手册??P82-84 ②液化关键设备 P148?一、不溶淀粉颗粒用酸法液化或用 E 法液化所得的液化液中总存在有微量不溶物质,工业上称为“不溶淀粉颗粒” 。这种不溶淀粉颗粒在糖化工序中不能被糖化 E 水解,降低 Glu 产芽,也降低糖化液的过滤 v,对于 Glu 生产有不利的影响。玉米淀粉液化液中不溶—颗粒最多,适 2%(E 物)组成为淀粉,脂肪和 pr 酶法液化生产的不溶—粒系链淀粉与脂肪酸生成的络合物,呈螺旋结构,组织紧密,在糖化过程中很难溶解,不能称糖化 E 水解。酸法液化产生的?—粒系链淀粉通过 H-bend 结合,?于凝沉淀粉的结构,在糖化过程中几乎能全部被溶解。二、利用酶作用的专一性,能够用液化酶直接液化玉米、高粱、小麦和马铃薯、甘薯等。过滤除去渣得液化液,再径酶糖化,生产糖浆或 Glu,产品质量与用淀粉为原料生产的产品相似,这种工艺省掉了制淀粉的工序,原料价格便宜,生产成本大为降低。酸液化法却不能直接液化谷物,因为酸的催化作用没有专一性,不仅水解淀粉,还水解 pr 成AA,半纤维素成木糖等,这些副反应都是不利的。而液化酶法能是回界淀粉。应选用活量高的酶制剂,以避免其他 E 液杂水解不溶性杂质成水溶物。该法适合于小工厂采用生产结晶 Glu 和糖浆。生产如下:

用干磨法脱去玉米胚芽,磨成粉。用水调成乳,浓度 30%Ca2+=300-500mg/L 6-8v/L ph6.5 ,加入液化 E。加热到 60℃用膜式泵打径管道液化。保温 3h 喷射103-105℃层流罐保温 20-30 分 DE10?维持 5 分钟;过滤 DE28-30 加α -淀粉酶量11-13v/g 干淀粉保温 3h,Glu 值达到 28-30。调节 ph 到 4.8。过滤除去渣(纤维pr),得液化液。径酶糖化到 Glu 值为 98。脱色。离子交换树脂精制。生产结晶Glu。因为糖化中含有较高量水溶杂质,可能需要较强精制。生产糖浆则可将适量Glu 值为 98 的糖化液与 Glu 值为 28-30 的液化液混合得 Glu 值为 38or 其他 Glu 值的糖浆。液化 E 用量较用淀粉为原料的方法较多 30%,液化率达 97%。将玉米用热水调成乳状保持 60℃,抑制了乳酸发酵,并用利于玉米颗粒吸收水分。液化Glu 值为 28-30,过滤容易,滤液清澄透明,颜色浅;(液化到较低 DE 值,颜色较深,过滤也较困难。)玉米磨粉需要达到一定的细度,能得到较高的液化率和较高的过滤速度,适当的细度见表 5-8(因为低于140μm 细粒的比例增加,液化率较高,但液化液的过滤 v?高于60μm 粉粒的比例增加,过滤 v 增加,但液化率下

降。表 5-8 细?比例,液化率达 97%,过滤 v 也相当高)。可用α-淀粉 E 一中酶生产糖浆。因为在高温液化能减少 M。?染,也不用再冷却和重新调节 ph,比用糖化 E 的双 E 法操作简单,Glu 值可达 38,糖分组成见表 5-11 P157 用酶法直接液化破碎马铃薯。液化无困难,但液化有困难,最高只能达到 DE87,糖化液的精制也有困难。方法见 P157-8 直接液化甘薯干粉,补加液化 E 糖化到 DE39-40,得糖浆供使用。方法见 P158 第二节糖化在液化工序中,淀粉径α-淀粉 E 水成糊精和低聚糖范围较小分子产物。糖化是利用 Glu E 进一步将这些产物水解成 Glu。纯淀粉通过完全水解,因有水解增量,每 10000 份淀粉能生成 11111 份 Glu。从生产 Glu 的要求,希望能达到这种水平,双酶法工艺的现有水平为每 100 份淀粉生成 105~108 份 Glu,?值为水解不完全的剩余物和复合产物等。工业上用“葡萄糖值”表示淀粉的水解程度或糖化程度。糖化液中还原糖全写做 Glu,计算,占干物质的酚?为 Glu 值。 Glu 值?高于葡萄糖的实际含量。(因为还有少量的还原性低聚糖存在)。工艺流程:液化液→ 降温→ 调ph → E ↓ 糖化无酶(脱色)液化结束时,迅速将料液用酸将 ph 调 ph4.2-4.5 ,同时迅速降温至 60℃保温数小时,另用无水酒精检验无糊精存在时,放罐比加热 80℃,加?,脱色(此条件无灭酶)糖化工艺: Ph4.2-4.5 糖化 E 用量 150v/g 淀粉 T:60±2℃用热水循环保温搅拌糖化时间由 DE 定。双酶每生产 Glu,工艺的现在水平,糖化 2-3 天 Edu。值达到 95-98。在糖化的初阶段,速度快,第一天 DE 约达到 90 以上,以后的糖化 v 变快。Glu E 对α-1,6 糖苷键的水解 v?采用浓度为 30% 用能水解α-1,6 糖苷键的异淀粉 E 或?与糖化 E 合并糖化,能提高糖化程度,所得糖化液中含 Glu 值趋向降低,因为 Glu 发生复合反应。糖化液在 80℃受热 20min,酶活力全部消失,脱色过程达到这种目的。用酶量增加,糖化 v 快,但才好过一定限度,时间延长反含降低 Glu 产量。补充:双酶法制糖过滤问地的讨论 P97-101

高粱中直链淀粉和支链淀粉检测方法研究报告教材

高粱中直链淀粉和支链淀粉检测方法研究报告 【简述】淀粉是一种天然高分子化合物,按照结构可分为直链淀粉和支链淀粉两种。自然淀粉中支链淀粉比例较高,一般约占总淀粉的70%以上,糯高粱中支链淀粉含量尤其高,直链淀粉含量很低,且不同品种、生长时期的高粱其支链淀粉和直链淀粉含量也有差异。直链淀粉是D-葡萄糖基以a-(1,4)糖苷键连接的多糖链,具有抗润胀性,水溶性较差,不溶于脂肪;支链淀粉又称胶淀粉,分子相对较大,难溶于水。高粱是我公司主要的酿酒原料,高粱中直链淀粉和支链淀粉的含量对白酒的出酒率和白酒品质都有重要的影响,因此建立高粱中直链淀粉和支链淀粉的检测方法,对酿酒生产与白酒品质的提升均具有重要的指导意义。 根据公司年度计划的要求,检测中心以国家标准GB 7648-87《水稻、玉米、谷子粒直链淀粉测定法》为基础建立高粱中直链淀粉和支链淀粉的检测方法。 1 实验原理 淀粉与碘形成碘-淀粉复合物,并具有特殊的颜色反应,支链淀粉与碘生成棕红色复合物,直链淀粉与碘生成深蓝色复合物。在淀粉总量不变的条件下,直链淀粉和支链淀粉的物质波峰处对应的两个波长λ1和λ2,样品在这两个波长下均有吸收。由于吸光度值具有叠加性,测定样品在某一波长下的吸光度值时其结果为直链淀粉和支链淀粉在该波长下吸光度值的总和。由直链淀粉和支链淀粉的性质可知这两种物质与碘反应时互不干扰,故可根据直链淀粉和支链淀粉显色反应后在不同波长下的吸光度值进而将样品中单一组分的吸光度值计算出来,再从建立的回归曲线方程得到相应的含量。 2 仪器与试剂: 2.1试剂 实验中所用试剂均为分析纯,水为GB/T 6682 规定的三级水。 2.1.1 氢氧化钠溶液:1moL/L。 2.1.2盐酸(1+1)。 2.1.3 95%乙醇(分析纯)。 2.1.4 碘贮备溶液:称取2g碘和20g碘化钾用蒸馏水溶解至100mL。 2.1.5 碘试剂:取10mL碘贮备液稀释至100mL。 2.1.6 马铃薯直链淀粉标准品:纯度为97.0%,由黑龙江省农业科学院农产品研究所提供。

测定α淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

唾液淀粉酶活性的测定

影响唾液淀粉酶活性的研究 摘要:讨论了不同条件下唾液淀粉酶的活性差异,实验结果表明,影响唾液淀粉 酶活性的因素很多,必须在适宜的条件下,才能发挥最佳催化作用;淀粉酶具有 高度专一性,其活性受温度、pH值、激活剂及抑制剂、酶浓度以及作用时间等多 种因素的影响;每个人产生唾液淀粉酶的量不同,活性强弱也有差异。 关键词:淀粉酶;活性;温度;抑制剂;激活剂;专一性 2影响唾液淀粉酶的活性的因素 (一)实验目的 观察淀粉在水解过程中遇碘后溶液颜色的变化。观察温度、pH、激活剂与抑制剂对唾液淀粉酶活性的影响。 (二)实验原理 人唾液中淀粉酶为α-淀粉酶,在唾液腺细胞中合成。在唾液淀粉酶的作用下,淀粉水解,经过一系列被称为糊精的中间产物,最后生成麦芽糖和葡萄糖。变化过程如下: 淀粉→紫色糊精→红色糊精→麦芽糖、葡萄糖 淀粉、紫色糊精、红色糊精遇碘后分别呈蓝色、紫色与红色、麦芽糖和葡萄糖遇碘不变色。 淀粉与糊精无还原性,或还原性很弱,对班氏试剂呈阴性反应。麦芽糖与葡萄糖是还原性糖,与班氏试剂共热后生成红棕色氧化亚铜的沉淀。 唾液淀粉酶的最适温度为37-40°C,最适pH为6.8.偏离此最适环境时,酶的活性减弱。 低浓度的Cl-离子能增加淀粉酶的活性,是它的激活剂。Cu2+等金属离子能降低该酶的活性,是它的抑制剂。 (三)器材及试剂 1、器材:试管、酒精灯、烧杯、恒温水浴锅、量筒、冰浴、玻璃棒、试管夹、白磁板、试管架、铁三脚架、唾液淀粉酶 2、试剂:1%淀粉溶液、碘液、班氏试剂、0.4%HCl溶液、0.1%的乳酸溶液、1%NaCl溶液、1%CuSO4溶液、0.1%淀粉溶液 (四)操作步骤

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告 淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告 实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热 恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至 1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6

的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用 0.1mol/L氢氧化钠溶液调节pH值至 6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70?士0.5? 恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40?士 0.5? 恒温水浴中保温15min ,再向各管分别加入40?下预热的1,淀粉溶液 2m1,摇匀,立即放入40?恒温水浴准确计时保温 5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶 活动,准备测糖。

实验七尿淀粉酶活性测定

实验七尿淀粉酶活性测定 淀粉酶(AMY或AMS在体内的主要作用是水解淀粉,它随机地作用于淀粉分子内的 a—1, 4糖苷键生成葡萄糖、麦芽糖、寡糖及糊精。血清中的淀粉酶主要有胰型(P型)和 唾液型(S型)及其亚型同工酶组成,P型淀粉酶主要来源于胰腺,S型淀粉酶主要来源于唾 液腺。正常淀粉酶因分子量小,故可从肾小球滤过而由尿中排出。 【目的】 1、验证淀粉酶的催化作用。 2、观察淀粉及其水解产物分别与碘反应呈现的颜色变化。 【原理】血清及尿中的淀粉酶来源于胰腺和唾液腺,正常血清与尿中有一定活性。 Winslow 氏法测定尿和血清中淀粉酶活性是将试样作等比稀释,观察一系列试样在规定的 37C、30分钟的条件下,恰好能将0.1%淀粉溶液1ml水解(指加入碘液后不再呈蓝色)的 酶量定为淀粉酶的一个活性单位,乘以尿的稀释倍数,即可得知每项ml 尿液中的淀粉酶活性。 【器材】 试管(10mn X 100mr)、试管架、电热恒温水浴箱、吸管、洗耳球、滴管。 【试剂】 1 、 9%NaCl 2、0.3%碘液 3、0.1%淀粉溶液 【操作】 1 、准备尿液(自备)。 2、取 10支试管,编号,用吸管向管中加入0.9%NaCl 1ml。 3、用1ml吸管(注意应用刻度到头的)向第一管加尿液1ml,混合,再将试管中的液 体吸起,然后任其流回试管,如此重复三次,以便全管混匀,并借此冲洗吸管内壁。吸出此混合液1ml 移入第二管中。 4、用同法处理第二管使之混匀,并取出1ml 置于第三管中。依此类推,如此继续稀释 至第九管后,吸出1ml混合液弃之,这样既可获得分别含原尿液为1/2ml,1/4ml,1/8ml, ... 1/512ml 的不同浓度的尿稀释液。第十管不加尿液作为对照管。 5、从第十管起依次向各管迅速准确加入0.1%淀粉液2ml,迅速摇匀(是否充分混匀往

151104大米中直链淀粉和支链淀粉的检测分光光度法

大米中直链淀粉和支链淀粉的检测分光光度法 企业标准(拟定稿) 倪天瑞2015年11月04日 1. 适用范围 大米中直链淀粉和支链淀粉含量的测定,不适用于熟制大米的检测; 2. 规范性引用文件 NY/T 2639-2014稻米直链淀粉的测定分光光度法 GB/T 15683-2008大米直链淀粉含量的测定 3. 原理 大米中淀粉与碘形成显色复合物,在波长620 nm处测定显色物的吸光度值,其吸光度与直链淀粉含量成正比; 大米中淀粉分为直链淀粉和支链淀粉,直链淀粉含量之外数值即为支链淀粉含量。 4. 试剂 使用试剂为分析纯试剂,水为三级水 4.1氢氧化钠溶液(1 mol/L):称取4 g氢氧化钠,溶于100 mL水中; 4.2乙酸溶液(1 mol/L):量取 5.78 mL冰乙酸,用水定容至100 mL ; 4.3碘液:0.2 g碘、2 g碘化钾,用水定容至100 mL; 4.4乙醇溶液(95%) 4.5空白校正液:氢氧化钠溶液(0.09 mol/L),量取4.5 mL 1 mol/L氢氧化钠溶液,定容至50 mL; 4.6直链淀粉标准品,购于上海将来试剂公司; 4.7支链淀粉标准品,购于上海将来试剂公司; 5. 仪器 分光光度计 分析天平,感量土 0.0001 g 水浴锅 烧杯 研钵 筛子(80 目) 6. 分析步骤 6.1样品处理:将样品混匀,称取约10 g,粉碎后,过80目筛子; 6.2前处理:准确称取样品50± 0.2 mg,置于50 mL容量瓶中,加入0.5 mL 95%乙醇溶液,冲洗容器壁上的粉末,再加入 4.5 mL氢氧化钠溶液,摇匀,沸水浴10 min,取出,冷却至室温,定容至50 mL。该溶液即为待测液。 6.3标准溶液: 6.3.1直链淀粉标准溶液(1 mg/mL) 称取50± 0.2 mg直链淀粉标准品,置于50 mL容量瓶中,加入0.5 mL 95%乙醇溶液,冲洗容器壁上的粉末,再加入4.5 mL氢氧化钠溶液,摇匀,沸水浴10 min,取出,冷却至室温,定容至50 mL。 6.3.2支链淀粉标准溶液(1 mg/mL) 称取50±0.2 mg支链淀粉标准品,制备方法同上

实验三、淀粉酶活性的测定实验报告

实验四、淀粉酶活性的测定 一、实验目的: 1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义; 2、学会比色法测定淀粉酶活性的原理及操作要点。 二、实验原理: 淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70℃ 15min 则被钝化。测定时,使其中一种酶失活,即可测出另一种酶的活性。 淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。 三、实验用具: 1、实验设备 研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热恒温水浴锅,离心机,电磁炉。 2、实验材料与试剂 (1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。 (2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6的柠檬酸缓冲液; (3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入; (4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中; (5)pH 6.8的磷酸缓冲液:取磷酸二氢钾6.8g,加水500ml使溶解,用0.1mol/L氢氧化钠溶液调节pH值至6.8,加水稀释至1000ml即得。 (6)0.4mol/L的NaOH溶液; (7)1%NaCl溶液。 (8)实验材料:萌发的谷物种子(芽长约1cm) 四、操作步骤 1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。取上清液1.0ml,用pH 为6.8的缓冲溶液稀释5倍,所得酶液。 2、a- 淀粉酶活力测定 (1) 取试管4支,标明2支为对照管,2支为测定管。 (2) 于每管中各加酶液lml ,在 70℃士0.5℃恒温水浴中准确加热15min ,取出后迅速用流水冷却。 (3) 在对照管中加入4m1 0.4mol/L氢氧化钠。 (4) 在4支试管中各加入1ml pH5.6的柠檬酸缓冲液。 (5) 将4支试管置另一个40℃士 0.5℃恒温水浴中保温15min ,再向各管分别加入40℃下预热的1%淀粉溶液2m1,摇匀,立即放入40℃恒温水浴准确计时保温5min。取出后向测定管迅速加入4ml 0.4mol/L氢氧化钠,终止酶

影响淀粉酶酶活性的因素

影响淀粉酶酶活性的因素 一、目的 了解淀粉在水解过程中遇碘后溶液颜色的变化。观察温度、pH、激活剂与抑制剂对淀粉酶活性的影响。 二、原理 人唾液中淀粉酶为α—淀粉,在唾液腺细胞中合成。在唾液淀粉酶的作用下,淀粉水解,经过一系列被称为糊精的中间产物,最后生成麦芽糖和葡萄糖。 淀粉→紫色糊精→红色糊精→麦芽糖、葡萄糖 淀粉、紫色糊精、红色糊精遇碘后分别呈蓝色、紫色与红色,麦芽糖、葡萄糖遇碘不变色。 唾液淀粉酶的最适温度为37-40℃,最适pH为。偏离此最适环境时,酶的活性减弱。 低浓度的氯离子能增加淀粉酶的活性,是它的激活剂。铜离子等金属离子能降低该酶的活性,是它的抑制剂。 三、试剂和仪器 1.碘液:称取2g碘化钾溶于5ml蒸馏水中,再加1g碘。待碘完全溶解后,加蒸馏水295ml,混合均匀后贮存于棕色瓶内。 2.1%淀粉溶液:称取1克可溶性淀粉放入小烧杯中,加少量蒸馏水做成悬浮液。然后在搅拌下注入沸腾的蒸馏水中,继续煮沸1分钟,冷后再加蒸馏水定容至100ml。 3.%的盐酸溶液 4.%的乳酸溶液。 5.1%的碳酸钠溶液。 6.%的氯化钠溶液。 7.%的硫酸铜溶液。 8.仪器:试管试管架吸管玻璃棒白磁板烧杯漏斗恒温水浴量筒冰浴四、操作步骤 1.淀粉酶液的制备:实验者先用蒸馏水嗽口,然后含一口蒸馏水于口中,轻嗽一、二

分钟,吐入小烧杯中,用脱脂棉过滤,除去稀释液中可能含有的食物残渣。最后将数人的稀释液混合在一起,再进行过滤,以避免个体差异。 2.pH对酶活性的影响 取4支试管,分别加入%盐酸(pH=1),%乳酸(pH=5),蒸馏水(pH=7),与1%碳酸钠(pH=9)各2毫升,再向以上四支试管中各加入2毫升淀粉溶液及淀粉酶液。混合摇匀后置于37℃水浴中保温。2分钟后,从蒸馏水试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待蒸馏水试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明pH对酶活性的影响。 3.温度对酶活性的影响 取3支试管各加入3毫升2%淀粉溶液,另取三支试管,各加入1毫升淀粉酶液。将6支试管分为三组,每组中盛放淀粉溶液与淀粉酶液的试管各1支。三组试管分别置于0℃、37℃、70℃的水浴中,5分钟后将各组中的淀粉溶液到入淀粉酶液中,继续保温。2分钟后从37℃试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待37℃试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明温度对酶活性的影响。 4.激活剂与抑制剂对酶活性的影响 取3支试管按下表的规定加入各种试剂。混匀后置于37℃的水浴中保温,1分钟后从1号试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待一号试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明激活剂与抑制剂对酶活性的影响。

唾液淀粉酶的实验

例题1:生物课外小组的同学,在探究“馒头在口腔中的变化”时,进行了如下处理: 1)将馒头碎屑与唾液放入1号试管中充分搅拌; 2)将馒头碎屑与清水放入2号试管中充分搅拌; 3)将馒头快与唾液放入3号试管中不搅拌; 4)将馒头碎屑与唾液放入4号试管中不搅拌;(以上试管中馒头碎屑与馒头块、唾液、清水均等量) 其中第1种处理是模拟口腔中的牙齿,舌和唾液的作用,第2.3.4种处理都是1的对照实验。回答问题: ①当以“舌的搅拌”为变量时,应选取___________两种处理进行对照实验。 ②1与2对照进行实验是为了探究__________________________的作用。 ③在以上三种对照实验中,哪种处理不妥,请指出__________________________________。 ④在设计此探究方案时,有的同学建议:“除了以上四种处理外,还要进行第五种处理, 即将馒头块与清水放入试管中不搅拌。”你认为这种处理有必要吗为什么______________________________________________________________。 例题2:下表表示某同学在进行“馒头在口腔中的变化”实验时,设计的部分实验,请根据他的实验设计和加碘液后应出现的现象,加以分析说明: (1)在1—4号试管中分别加入实验材料后,为使实验现象更加明显,应采取的操作方法是 __________________________________________________________________________; (2)表中C现象为______________________________,原因是 _______________________________________________________。 (3)表中A和B现象都可能____________________________,原因是

唾液淀粉酶实验(借鉴文章)

唾液淀粉酶最适pH值的测定实验 实验目的 1.掌握设计性实验的基本思路,并完成设计报告。 2.掌握唾液淀粉酶最适PH的测定原理和方法。 3.熟悉影响酶促反应速度的因素。 实验原理 1.酶促反应速度受到许多因素的影响,如温度、PH、激动剂和抑制剂等。上述诸因素对唾液淀粉酶催化淀粉水解反应速度的影响,可用定性或定量的反应来观察。利用碘与淀粉机器不同程度纾解产物反应的颜色,来衡量酶促反应的速度的快慢。蓝色—紫红色—黄色,颜色由蓝变黄,表示酶促反应速度由慢到快。此为定性观察。 2.进一步利用郎伯—比尔定律来判定溶液的吸光度与溶液的浓度符合一定的比例关系。由于在被水解的程度也不一样。当唾液淀粉酶不能将完全水解时,淀粉遇碘呈蓝色,吸收波长位于660nm处。不同PH环境中唾液淀粉酶与淀粉的反应程度不同,吸光度值也不同。因此,通过测量660nm处的吸光度值,可以了解PH对酶促反应的影响,吸光度最小的溶液其PH即为唾液淀粉酶的最适PH。

实验器材 仪器材料:方盘,试管架,中试管,毛刷,吸耳球,玻璃铅笔,小烧杯,白瓷板,坐标纸,漱口杯。0.1ml、0.5ml、1.0ml、2.0ml、5.0ml、10.0ml刻度吸管,胶头滴管,37 C恒温水浴箱,分光光度计,电磁炉。 试剂药品:0.02%淀粉溶液. 0.2mol/L磷酸二氢钠溶液、0.2mol/L 磷酸氢二钠溶液碘液;称取碘1g,碘酸钾2g,溶于300ml蒸馏水中。

实验步骤: 1、缓冲液的配置 pH 0.2mol/L 0.2mol/L NaH2PO4(ml) Na2HPO4(ml) 5.7 93.5 6.5 5.8 92.0 8.0 5.9 90.0 10.0 6.0 8 7.7 12.3 6.1 85.0 15.0 6.2 81.5 18.5 6.3 7 7.5 22.5 6.4 73.5 26.5 6.5 68.5 31.5 6.6 62.5 3 7.5 6.7 56.5 43.5 6.8 51.0 49.0

淀粉酶对淀粉和蔗糖的水解作用

淀粉酶对淀粉和蔗糖的水解作用 一、教学目的 l.初步学会探索酶催化特定化学反应的方法。 2.探索是否只能催化特定的化学反应。 二、教学建议 在本实验的教学中,教师应注意以下几点。 1.实验课前,教师应当布置学生预习实验指导。学生通过预习,可以理解实验原理,了解实验的目的要求和方法步骤,避免实验时边看书边做实验的情况发生。 2.实验过程中,教师应提醒学生注意以下几点。 (1)制备的可溶性淀粉溶液,必须完全冷却后才能使用,如果用刚煮沸的可溶性淀粉溶液进行实验,就会因温度过高而破坏淀粉酶的活性。 (2)两支试管保温时,应控制在60℃左右,低于50℃或高于75℃,都会降低化学反应的速度。 (3)如果2号试管也产生了砖红色沉淀,可以考虑以下原因。 ①蔗糖溶液放置的时间是否过长。因为蔗糖溶液放置时间过长,蔗糖容易被溶液中的微生物分解成还原性糖,影响实验的结果。这时应改用现配制的蔗糖溶液。 ②试管是否干净。如果上一个班的同学做完实验后未能将试管清洗干净,这次实验又接着用,就可能出现这种情况。为此,教师必须要求学生在实验结束后,一定要将试管洗刷干净,并倒置控干。教师在实验前应对试管统一进行检查,以杜绝上述情况的发生。 ③蔗糖本身是否纯净。如果蔗糖不纯,就可能出现产生砖红色沉淀的现象。为保证蔗糖纯净,实验前教师可先配制少量的蔗糖溶液,并用斐林试剂检验一下,确无砖红色沉淀产生,则为纯净蔗糖。 三、参考资料 淀粉溶液的配制取2g淀粉酶(粉剂),放入烧杯中,边搅拌边加入98mL蒸馏水,搅拌均匀后备用。

淀粉酶简介本实验为定性实验,因此,不必使用纯的淀粉酶。淀粉酶在一般的化学试剂商店就可以买到,有的酿酒厂也有出售,买回后放在冰箱冷藏室中可保存几年。 替换材料容易购买到菊糖的学校,最好用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖。用菊糖与淀粉进行对比实验,更具有说服力。 1、实验目的 (1)初步学会探索酶催化特定化学反应的方法。 (2)探索淀粉酶是否只能催化特定的化学反应。 2、实验原理 淀粉和蔗糖都没有还原性,也就是都不能使斐林试剂还原,所以都不能与斐林试剂发生反应。唾液淀粉酶将淀粉水解成的麦芽糖则具有还原性,能够使斐林试剂还原,生成砖红色的沉淀。蔗糖水解产生的葡萄糖和果糖都具有还原性,但唾液淀粉酶不能将蔗糖水解。 试验中可以用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖,用菊糖与淀粉进行对比实验,更具有说服力。 3、实验材料 质量分数分别为3%的可溶性淀粉溶液和蔗糖溶液;质量分数为2%的新鲜淀粉酶(化学试剂商店有售)溶液。 4、试剂与仪器 斐林试剂(也可以用班氏试剂)试管、大烧杯、量筒、滴管、温度计、试管夹、三脚架、石棉网、酒精灯、火柴。 5、实验方法与步骤 (1)取两支洁净的试管,编上号,然后向1号注入2mL可溶性淀粉溶液和2mL新鲜淀粉酶溶液。向2号注入2mL蔗糖溶液和2mL新鲜淀粉酶溶液。 (2)轻轻振荡这两支试管,使试管内的液体混合均匀,然后将试管的下半部浸到60℃左右的热水中,保温5min。 (3)取出试管,各加入2mL斐林试剂(边加入斐林试剂,边轻轻振荡这两支试管,以便使试管内的物质混合均匀)。 (4)将两支试管的下半部放进盛有热水的大烧杯中,用酒精灯加热,煮沸并保持1min。 (5)观察并记录两支试管内的变化。

从直链淀粉与支链淀粉看优质大米与普通大米的区别

我国的大米,无认是在生产上还是在消费上,都是世界上第一的大国,我国有着几千年的大米历史和文化,有60%以上的人口大米为主食。 大米淀粉是由葡萄糖组成的多糖高分子化合物,其中含有以分支结构为主的支键淀粉和以线性结构为主的直链淀粉。大量研究表明,两类淀粉的含量、分子量、空间结构及其相互关系是影响大米品质优劣的重要因素。它直接影响着大米在蒸煮过程中水分的吸收和体积扩张,以及米饭的粘稠与松散性。 碘蓝值实验是表示淀粉结合碘能力的一个指标,碘蓝值高,说明与碘结合力强。支链淀粉分支多,不与碘结合,碘染呈紫色,与热水作用膨胀成糊状。直链淀粉分支少,易于碘结合成深蓝色,能溶于水而不成糊状,所以说直链淀粉含量直接影响着米饭的韧性口感。 直链淀粉含量高,米细比较细长,韧性口感较低,弹性低,产于南方的籼稻就是高直链淀粉

含量的品种。反之,直链淀粉含量低,支链淀粉含量高,煮熟后的粘性也比较高,米饭韧性口感高,弹性高,产于北方的粳稻就是低直链淀粉含量的品种,口感较好。 中国北方水稻栽培专家许哲鹤先生是这样区别普通大米与优质大米的: 一是药物和污染残留,只要检测为阳性就不能确定为优质米。 二是蛋白质含量。以7%为限,小于7%即是优质米,口味就好,并且越低越好;大于7%口味就差,越高越差。 三是直链淀粉含量,以20%为限,越小,米饭的柔韧度、弹性越好,越高则越差。 根据国内外前沿农业科学研究分析,水稻的蛋白质积累和淀粉的积累排列方式,除了人为的施肥因素外,与其灌浆期的温度有着直接关系。在这个时期,只有满足平均气温在23至25度、昼夜温差大于10度的条件,蛋白质和直链淀粉的含量才能保证最低。

直链淀粉和支链淀粉

。 直链淀粉和支链淀粉配比与糊化温度的关系 作者石家源指导教师闫怀义 (忻州师范学院化学系0701班 034000) 摘要为了研究直链淀粉和支链淀粉配比与糊化温度的关系,以玉米淀粉为原料,采用正丁醇沉降法和温水浸出法提取出直链淀粉和支链淀粉,并比较了两种方法提取出产品的纯度,然后用分光光度法测定了不同配比的直、支链淀粉的糊化温度。结果表明:正丁醇沉降法过于复杂,且所需时间过长;温水浸出法操作简单,节省时间;正丁醇沉降法分离出的支链淀粉纯度比温水浸出法的高,但是相差不多;由温水浸出法分离出的直链淀粉纯度比正丁醇沉降法的高;所以在工业生产中完全可以用温水浸出法代替丁醇沉降法;用温水浸出法提取出的直链淀粉的糊化温度为80℃;支链淀粉的糊化温度为55℃。即直链淀粉含量越多,糊化温度越高;支链淀粉含量越多,糊化温度越低。 关键词直链淀粉;支链淀粉;提取;配比;糊化温度 引言 直链淀粉和支链淀粉是淀粉的两大组成成分,由于二者的分子结构、分子聚集状态不同,从而使得不同来源的淀粉有各自的用途。研究表明,淀粉中直链淀粉和支链淀粉的比例和含量对淀粉产品的加工、物化特性、糊化温度等有着直接的影响[1]。因此,对于不同比例直、支链淀粉的淀粉的研究具有重要的意义。 在淀粉的悬浊液中,淀粉微晶束溶融的过程叫做淀粉的糊化,即:水分子进入淀粉微晶束结构,拆散分子间的缔合状态。淀粉不溶于冷水,难被酶解,没有消化性。但淀粉糊化后形成的胶体糊,能被酶解、消化。糊化完全的淀粉可以100%被消化;干燥的糊化淀粉食品可以长期保藏且不变质;作为施胶剂或浆料,糊化后的淀粉才能成糊以供涂抹。因此,淀粉应用的前提是淀粉的糊化。糊化是淀粉的一大特性,评价糊化的基础是:粘度、结晶性、糊化温度、糊化度、润涨度、溶解度等。糊化温度是指淀粉发生糊化时的温度,通常用糊化开始和完成的温度来表示淀粉糊化温度的范围。糊化的方法有间接加热法、直接加热法、超高压糊化法及化学糊化法等。研究糊化温度一般采用差示扫描量热分析、定量差示热分析、分光光度法、激光光散射法以及核磁共振分析等方法[2]。 [ 洪雁用正丁醇沉降法提取了直链淀粉纯品,并通过蓝值、凝胶色谱、高效液相色谱法等方法对其纯度进行了鉴定。本文以玉米淀粉为原料分别用正丁醇沉降

淀粉酶活性测定实验报告

班级:植物092 姓名:徐炜佳学号:03 淀粉酶活性的测定 一、研究背景及目的 酶是高效催化有机体新陈代谢各步反应的活性蛋白,几乎所有的生化反应都离不开酶的催化,所以酶在生物体内扮演着极其重要的角色,因此对酶的研究有着非常重要的意义。酶的活力是酶的重要参数,反映的是酶的催化能力,因此测定酶活力是研究酶的基础。酶活力由酶活力单位表征,通过计算适宜条件下一定时间内一定量的酶催化生成产物的量得到淀粉酶是水解淀粉的糖苷键的一类酶的总称,按照其水解淀粉的作用方式,可分为α-淀粉酶和β-淀粉酶等。α-淀粉酶和β-淀粉酶是其中最主要的两种,存在于禾谷类的种子中。β-淀粉酶存在于休眠的种子中,而α-淀粉酶是在种子萌发过程中形成的。 α-淀粉酶活性是衡量小麦穗发芽的一个生理指标,α-淀粉酶活性低的品种抗穗发芽,反之则易穗发芽。目前,关于α-淀粉酶活性的测定方法很多种,活力单位的定义也各不相同,国内外测定α-淀粉酶活性的方法常用的有凝胶扩散法、3 ,5-二硝基水杨酸比色法和降落值法。这3 种方法所用的材料分别是新鲜种子、萌动种子和面粉,获得的α-淀粉酶活性应该分别是延迟(内 二、实验原理 萌发的种子中存在两种淀粉酶,分别是α-淀粉酶和β-淀粉酶,β-淀粉酶不耐热,在高温下易钝化,而α-淀粉酶不耐酸,在下则发生钝化。本实验的设计利用β-淀粉酶不耐热的特性,在高温下(70℃)下处理使得β-淀粉酶钝化而测定α-淀粉酶的酶活性。 酶活性的测定是通过测定一定量的酶在一定时间内催化得到的麦芽糖的量来实现的,淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定,由于麦芽糖能将后者还原生成硝基氨基水杨酸的显色基团,将其颜色的深浅与糖的含量成正比,故可求出麦芽糖的含量。常用单位时间内生成麦芽糖的毫克数表示淀粉酶活性的大小。然后利用同样的原理测得两种淀粉酶的总活性。实验中为了消除非酶促反应引起的麦芽糖的生成带来的误差,每组实验都做了相应的对照实验,在最终计算酶的活性时以测量组的值减去对照组的值加以校正。 在实验中要严格控制温度及时间,以减小误差。并且在酶的作用过程中,四支测定管及空白管不要混淆。

α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。 α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。 目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。 α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。 在焙烤工业中的应用: α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期 在啤酒酿造中的应用: 啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。在酒精工业中的应用: 在玉米为原料生产酒精中添加α-淀粉酶低温蒸煮的新工艺,每生产1t酒精可节煤 224.42kg。又可减少冷却用水,提高出酒率8.8%,酒精成品质量也有显著提高。酒精生产应用耐高温α-淀粉酶。采用中温95℃~105℃蒸煮,既可有效地杀死原料中带来的杂菌,降低入池酸度和染菌机率,又可保护原材料中的淀粉组织不被破坏,形成焦糖或其它物质而损失,从而提高原料利用率 在造纸工业中的应用: 当代造纸工业中,造纸用化学品在提高纸品质量、增加纸品功能、提高生产效率和降低生产成本等方面发挥着极为重要的作用。由于淀粉与造纸用植物纤维素结构相近,相互间有良好的亲和作用,资源广泛,廉价易得,尤其是经变性处理的淀粉,能赋予纸张优异的性能,因此各类变性淀粉在造纸中广泛用于湿部添加、层间喷雾、表面施胶和涂布粘合。α-淀粉酶可以生产涂布粘合用变性淀粉

探索淀粉酶对淀粉和蔗糖的水解作用

探究淀粉酶对淀粉和蔗糖的水解作用 1、实验目的 (1)初步学会探索酶催化特定化学反应的方法。 (2)探索淀粉酶是否只能催化特定的化学反应。 2、实验原理 淀粉和蔗糖都没有还原性,也就是都不能使斐林试剂还原,所以都不能与斐林试剂发生反应。唾液淀粉酶将淀粉水解成的麦芽糖则具有还原性,能够使斐林试剂还原,生成砖红色的沉淀。蔗糖水解产生的葡萄糖和果糖都具有还原性,但唾液淀粉酶不能将蔗糖水解。 试验中可以用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖,用菊糖与淀粉进行对比实验,更具有说服力。 3、实验材料 质量分数分别为3%的可溶性淀粉溶液和蔗糖溶液;质量分数为2%的新鲜淀粉酶(化学试剂商店有售)溶液。 4、试剂与仪器 斐林试剂(也可以用班氏试剂)试管、大烧杯、量筒、滴管、温度计、试管夹、三脚架、石棉网、酒精灯、火柴。 5、实验方法与步骤 (1)取两支洁净的试管,编上号,然后向1号注入2mL可溶性淀粉溶液和2mL新鲜淀粉酶溶液。向2号注入2mL蔗糖溶液和2mL新鲜淀粉酶溶液。 (2)轻轻振荡这两支试管,使试管内的液体混合均匀,然后将试管的下半部浸到60℃左右的热水中,保温5min。 (3)取出试管,各加入2mL斐林试剂(边加入斐林试剂,边轻轻振荡这两支试管,以便使试管内的物质混合均匀)。 (4)将两支试管的下半部放进盛有热水的大烧杯中,用酒精灯加热,煮沸并保持1min。 (5)观察并记录两支试管内的变化 6、注意事项 ①做好本实验的关键是蔗糖的纯度和新鲜程度。这是因为蔗糖是非还原性糖,如果其中混有少量的葡萄糖或果糖,或蔗糖放置久了受细菌作用部分分解成单糖,则与斐林试剂共热时能生成砖红色沉淀,使人产生错觉。为了确保实验的成功,实验之前应检验一下纯度。普通的细粒蔗糖往往是由于部分水解而具有一些还原糖。可用市售大块冰糖,水洗去其表面葡萄糖得到纯净的蔗糖。 ②实验中要将试管的下半部浸到37℃的温水中,因为淀粉酶在适宜的温度条件下催化能力最强。 ③在实验中,质量分数为3%的蔗糖溶液要现配现用(以免被细菌污染变质),取唾液时一不定期要用清漱口,以免食物残渣进入唾液中。 ④制备的可溶性淀粉溶液,一定要完全冷却后才能使用,因为温度过高会使酶活性降低,甚至失去催化能力。 ⑤实验中如果2号试管也产生了砖红色沉淀,可能的原因是: 蔗糖溶液放置的时间过长,蔗糖被溶液中的微生物分解成还原性的糖,从而影响实验效果。这时应临时配制蔗糖溶液。另一个可能的原因是试管不干净,所以实验之前应将试管用清水再清洗一次,试管编号要醒目。

探究唾液淀粉酶对淀粉的消化作用

《探究唾液对淀粉的消化作用》实验教学设计 时间:2017年3月 地点:生物实验室 教师:穆小军 一、教学目标 1.认知目标: (1)了解消化、物理性消化、化学性消化的含义;(2)探究唾液对淀粉有无消化作用 2. 能力目标: (1)初步训练学生独立完成实验探究的能力。如:试着发现问题、提出假设、制订计划、实施计划、得出结论、表达和交流等能力;(2)通过学生参与发现问题、提出假设、设计并实施实验方案、对实验结果的交流、表达等活动,训练学生的观察能力、描述能力、实验能力、发散性思维能力、创新能力。 3.情感目标: (1)通过小组的探究活动,培养学生的互相协作意识; (2)通过学生如实记录、分析实验结论,培养他们认真、求实的科学态度及一定的探索精神和创新意识。 二、教学重点:科学实验方法的训练。 三、教学难点:教师如何有效地组织、引导整个探究过程,并抓住时机训练学生的能力,培养学生正确的学习态度和观念。 四、教学过程 教学程序主要是围绕淀粉遇碘液变蓝色这个原理进行探究式学习展

开的。学生可根据教师提供的材料,自己设计试验方案,如果觉得自己的试验方案不如课本中的好,也可采用课本中的。 1 提出探究性问题 先创设一个实验情景:分发给每位学生一小块馒头让他们细嚼慢咽,同时思考问题:馒头在口腔里“吃的过程中”主要有哪些器官参与?在这些器官参与下,馒头发生了什么变化?在学生答出馒头块在牙齿的咀嚼、舌头的搅拌作用下由块状变为糜状时,引出物理性消化的含义;紧接着在问学生,细细嚼馒头时,还有什么感觉?在学生答出“有点甜”时,引出探究性问题:馒头里的营养成分主要是淀粉,淀粉本身是一种高分子有机化合物,没有甜味,那为什么在口腔里充分与唾液混合后就感觉到了甜味呢?难道是在唾液的作用下,淀粉这种成分发生了什么变化?这是学生在吃馒头的过程中,亲自感悟到的问题,所以积极性非常高,众说纷云。 2 提出假设 要解决上述问题,只有通过实验进行证明,那么可以先假设淀粉在唾液的作用下成分是发生了变化,然后用“淀粉遇碘液变蓝色”这一原理进行实验证明:淀粉在与唾液充分混合后,再加入碘液,如果颜色不变蓝,说明假设成立;如果颜色变成了蓝色,说明假设不成立。 3 设计并实施实验方案 如何进行实验来说明问题呢?这是整个探究式学习的一个核心,同时也是开阔学生思维、培养学生发散性思维的关键。这个时候,教师的点拨及实验材料的充分准备非常关键。我除了将课本上提及的有关材

相关文档
最新文档