诱变育种流程及紫外诱变育种的详细步骤

诱变育种流程及紫外诱变育种的详细步骤
诱变育种流程及紫外诱变育种的详细步骤

诱变育种的一般步骤:

1.首先是天然菌种的选育:

调查研究及查阅充分的资料

设计实验方案

↓确定采集样品的生态环境

采样

↓确定特定的增殖条件

增殖培养

确定特殊的选择培养基及可能的

定性或半定量快速检出法平板分离

原种斜面

↓确定发酵培养基础条件

筛选

初筛(1株1瓶)

复筛(1株3~5瓶)

↓结合初步工艺条件摸索

再复筛(1株3~5瓶)

3~5株

单株纯种分离

生产性能试验

→毒性试验

菌种鉴定

2.诱变菌种:

出发菌株----菌种纯化(出发菌株性能测定)----制备斜面孢子----制备单孢子悬液(悬液进行活菌计数)----诱变剂处理(存活菌数的测定并计算存活率)----平板分离(测定变异率)----挑取变异菌落并移植至斜面上----初筛(初筛数据分析,生产性状的粗测)----斜面传代----复筛(复筛数据分析,精确测定生产性状)----变异菌株(菌株参数分析)----小型或中型投产试验----大型投产试验。

诱变育种应把握的主要原则有以下几点:1)选择简便有效的诱变剂。在选用理化因素作诱变剂时,在同样效果下,应选用最简便的因素;在同样简便的条件下,应选用最高效的因素。2)挑选优良的出发菌株。最好采用生产上已发生自变的菌株,选用对诱变剂敏感的菌株,选取有利于进一步研究或应用性状的菌株。4)处理单细胞或孢子悬液。单细胞悬液应均匀而分散,孢子、芽孢等应稍加萌发。5)选用合适的诱变剂量。一般正变较多出现在低剂量中,负变较多地出现在高剂量中。6)选用高效的筛选方法。

紫外线诱变育种:

紫外线诱变一般采用15W紫外线杀菌灯,波长为253-265nm.灯与处理物的距离为30cm,照射时间依菌种而异,一般为几秒至几十分钟。一般我们常以细胞的死亡率表示,希望照射的剂量死亡率控制在70~80%为宜。

被照射的菌悬液细胞数,细菌为106个/ml左右,霉菌孢子和酵母细胞为106~107个/ml。由于紫外线穿透力不强,要求照射液不要

太深,约0.5~1.0cm厚,同时要用电磁搅拌器或手工进行搅拌,使照射均匀。

由于紫外线照射后有光复活效应,所以照射时和照射后的处理应在红灯下进行。

具体操作步骤

1.将细菌培养液以3000r/min离心5min,倾去上清液,将菌体打散加入无菌生理盐水再离心洗涤。

2.将菌悬液放入一已灭菌的,装有玻璃珠的三角瓶内用手摇动,以打散菌体。将菌液倒入有定性滤纸的漏斗内过滤,单细胞滤液装入试管内,一般处于浑浊态的细胞液含细胞数可达108个/ml左右,作为待处理菌悬液。

3.取2~4mL制备的菌液加到直径9cm培养皿内,放入一无菌磁力搅拌子,然后置磁力搅拌器上、15W紫外线下30cm处。在正式照射前,应先开紫外线10min,让紫外灯预热,然后开启皿盖正式在搅拌下照射10~50s。操作均应在红灯下进行,或用黑纸包住,避免白炽光。

4.取未照射的制备菌液和照射菌液各0.5ml进行稀释分离,计数活菌细胞数。

5.取照射菌液2ml于液体培养基中(300ml三角瓶内装30ml培养液),120r/min振荡培养4~6h。

6.取中间培养液稀释分离、培养。

7.挑取菌落进行筛选。

诱变育种技术

诱变育种技术 诱变育种是利用物理、化学因子,促使育种的原始材料的遗传性发生变异,从而选出优良品种的一种育种方法。它包括物理的辐射诱变和化学诱变两种。 辐射诱变是指利用γ-射线、X-射线、β-射线、中子、无线电微波、激光、紫外线等物理因子,照射植物的种子、植株和其他器官,使它们的遗传物质发生变化,产生各种各样的变异,通常称为突变,然后选择符合人们需要的植株进行培育,从而获得新品种。化学诱变则是利用一些化学药品,来浸泡和处理植物的种子或其他器官,促使突变的发生,从而选育出新的品种。 诱变育种是相对于利用自然突变选种(穗选、株选)而言的,植物在自然条件下生长发育,由于受到各种自然条件的作用,它们的遗传物质也会发生变异。但由于自然条件下的各种引起变异的因子的强度较缓和,自然突变的频率较低,发生的变异数往往满足不了育种选择的需要,所以现代育种中往往采取较强的诱变强度,让突变的发生数大大增加,从而加快育种进程。 诱变育种的优点在于: 能大幅度提高植物的变异牢,扩大变异范围:自然突变率一般在十万分之几到百万分之几,而诱变处理后的突变频率可高达 1/30左右,比自然突变高1000~10000倍,同时引起的变异类型多、范围广。如印度用γ-射线处理蓖麻,获得了生育期由270天缩短到120天的特大变异株系。

能改良品种的第一性状,而保持其他优良性状不变:对于一个具有多种优良性状而只希望改进某一两个性状的品种,采用诱变育种最为有效,它较之利用杂交育种方法相比,容易收到满意的效果。如通过辐射,把燕麦的抗锈病特性和对叶枯病易感性分离开来,培育出了抗锈病又不易感染叶枯病的新品种。 引起的变异稳定快,育种年限短;诱变处理后的子代分离少、稳定快,一般在第三代就可稳定,而杂交育种的某个性状的稳定往往要在第五到第七代。对于一年只能生长一季的农作物来说,意味着缩短育种时间2~4年。 能改变作物的育性,有利于杂种优势的发挥:在常规的杂交育种中,往往要用较多的时间和人力去除掉母本的雄蕊,避免自交现象的发生。用诱变处理母本的种子,可以选育出雄性不育的植株,形成雄性不育系,供杂交育种时使用。由于杂交后的第一代往往表现出杂种优势,发挥了父、母本的各自的优良品质,用它们的子一代作种子来生产,其产量及其他性状往往很好。所以我国现在大面积推广的杂交水稻、杂交玉米、杂交小麦,都取得了明显的经济效益和社会效益,为解决我国广大农民的温饱问题作出了巨大贡献。 诱变育种的中心是利用各种诱变剂提高作物的突变率。但是诱变剂的剂量是一个首先要注意的问题,并非剂量越大越好,要明白诱变剂的处理是建立在对原有细胞中的遗传物质的损伤基础上来加大突变率的,它们的处理对细胞是有伤害的。选择一定的诱变剂量很重要,诱变育种中有相应的三个名词或俗语,那就是“致死剂量”、

微生物的诱变育种

微生物的诱变育种 作者:佚名来源:生物秀时间:2008-4-18 实验仪器大全实验试剂大全 一、实验目的和内容 目的:以紫外线诱变获得用于酱油生产的高产蛋白酶菌株为例,学习微生物诱变育种的基本操作方法。 内容:1.对米曲霉(Aspergills oryzae )出发菌株进行处理,制备孢子悬液。 2.用紫外线进行诱变处理。 3.用平板透明圈法进行两次初筛。 4.用摇瓶法进行复筛及酶活性测定。 二、实验材料和用具 米曲霉斜面菌种; 豆饼斜面培养基、酪素培养基、蒸馏水、0.5%酪蛋白; 三角瓶(300mL、500mL)、试管、培养皿(9cm)、恒温摇床、恒温培养箱、紫外照射箱、磁力搅拌器、脱脂棉、无菌漏斗、玻璃珠、移液管、涂布器、酒精灯。 三、操作步骤 (一)出发菌株的选择及菌悬液制备 1.出发菌株的选择可直接选用生产酱油的米曲霉菌株,或选用高产蛋白酶的米曲霉菌株。2. 菌悬液制备取出发菌株转接至豆饼斜面培养基中,30℃培养3~5d 活化。然后孢子洗至装有1mL 0.lmol/L pH6.0 的无菌磷酸缓冲液的三角瓶中(内装玻璃珠,装量以大致铺满瓶底为宜),30℃振荡30min,用垫有脱脂棉的灭菌漏斗过滤,制成把子悬液,调其浓度为106~108 个/mL,冷冻保藏备用。 (二)诱变处理 用物理方法或化学方法,所用诱变剂种类及剂量的选择可视具体情况决定,有时还可采用复合处理,可获得更好的结果。本实验学习用紫外线照射的诱变方法。 1.紫外线处理打开紫外灯(30W)预热20min。取5mL 菌悬液放在无菌的培养皿(9cm)中,同时制作5 份。逐一操作,将培养皿平放在离紫外灯30cm(垂直距离)处的磁力搅拌器上,照射l min 后打开培养皿盖,开始照射,与照射处理开始的同时打开磁力搅拌器进行搅拌,即时计算时间,照射时间分别为15 s、30 s、l min、2 min、5 min。照射后,诱变菌液在黑暗冷冻中保存1~2h 然后在红灯下稀释涂菌进行初筛。 2.稀释菌悬液按10 倍稀释至10-6,从10-5和10-6中各取出0.lmL 加入到酪素培养基平板中(每个稀释度均做3 个重复),然后涂菌并静置,待菌液渗入培养基后倒置,于30℃恒温培养2~3d。 (三)优良菌株的筛选 1. 初筛首先观察在菌落周围出现的透明圈大小,并测量其菌落直径与透明圈直径之比,选择其比值大且菌落直径也大的菌落40~50 个,作为复筛菌株。 2.平板复筛分别倒酪素培养基平板,在每个平皿的背面用红笔划线分区,从圆心划线至周边分成8 等份,1~7 份中点种初筛菌株,第8 份点种原始菌株,作为对照。培养48h 后即可见生长,若出现明显的透明圈,即可按初筛方法检测,获得数株二次优良菌株,进大摇瓶复筛阶段。3.摇瓶复筛将初筛出的菌株,接入米曲霉复筛培养基中进行培养,其方法是,称取麦秩85g,

几种常用的育种方法比较

几种常用的育种方法比较(总结整理) 一、诱变育种: 诱变育种是指利用人工诱变的方法获得生物新品种的育种方法 原理:基因突变 方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱发变异→选择育成新品种 优点:能提高变异频率,加速育种过程,可大幅度改良某些性状;变异范围广。 缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控制。改良数量性状效果较差。 二、杂交育种: 杂交育种是指利用具有不同基因组成的同种(或不同种)生物个体进行杂交,获得所需要的表现型类型的育种方法。其原理是基因重组。 方法:杂交→自交→选优 优点:能根据人的预见把位于两个生物体上的优良性状集于一身。 缺点:时间长,需及时发现优良性状。 三、单倍体育种: 单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其染色体加倍,从而获得所需要的纯系植株的育种方法。(主要是考虑到结合中学课本,经查阅相关资料无误。)其原理是染色体变异。优点是可大大缩短育种时间。 原理:染色体变异,组织培养 方法:选择亲本→有性杂交→F1产生的花粉离体培养获得单倍体植株→诱导染色体加倍获得可育纯合子→选择所需要的类型。 优点:明显缩短育种年限,加速育种进程。 缺点:技术较复杂,需与杂交育种结合,多限于植物。 四、多倍体育种: 原理:染色体变异(染色体加倍) 方法:秋水仙素处理萌发的种子或幼苗。 优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。缺点:只适于植物,结实率低。 五、细胞工程育种: 细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。 原理:细胞的全能性 方法:(1)植物:去细胞壁→细胞融合→组织培养 (2)动物克隆:核移植→胚胎移植 优点:能克服远缘杂交的不亲和性,有目的地培育优良品种。动物体细胞克隆,可用于保存濒危物种、保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等。

太空诱变育种

太空诱变育种 摘要:现在,越来越多的国家利用太空诱变来培育新品种,同时在这一方面取得了良好的成果,由此开辟了一条植物育种的新的途径 关键字:太空诱变特点安全性应用展望 太空育种.又称航天育种、空间诱变育种,是利用太空技术.通过高空气球、返回式卫星、飞船等航天器将作物的种子、组织、器官或生命个体等诱变材料搭载到200~400 km高空的宇宙空间,利用强辐射、微重力、高真空、弱磁场等宇宙空间特殊环境诱变因子的作用.使生物基因发生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。其核心内容是利用太空环境的综合物理因素对植物或生物遗传性的强烈动摇和诱变,在较短的时间内创造出目前地面诱变育种方法难以获得的罕见突变种质材料和基因资源,选育突破性新品种,由此而开辟一条植物育种的新途径。 太空诱变的主要因素 1.微重力 太空的重力环境明显不同于地面,未及地球上重力十分之一的微重力(10-3~10-6 g)是引起植物遗传变异的重要原因之一。许多实验证明,植物感受和转换微重力信号,是通过质膜调节细胞内Ca2+水平或磷脂/蛋白质排列顺序的变化等,引起ATP酶、蛋白质激酶、NAD氧化还原酶及光系统中许多酶类的活性变化等,从而在细胞分裂期微管的组装与去组装、染色体移动、微丝的构建、光系统的激活等方而起作用,进而影响细胞分裂、细胞运动、细胞间信息传递、光合作用和生长发育等生理生化过程,并出现细胞核酶变、分裂紊乱、浓缩染色体增加、核小体数目减少等。已有的研究结果还指出,微重力是通过增加植物对其它诱变因素的敏感性和干扰DNA损伤修复系统的正常运作,从而加剧生物变异,提高变异率。 2.空间辐射 空间辐射源包括来自地磁场俘获的银河宇宙射线和太阳磁暴的各种电子、质子、仅粒子、低能重离子和高能重离子等。它们能穿透宇宙飞行器的外壁,作用于太空飞行器中的生物。研究结果表明,空间诱变与地面辐射处理发生的变异情况有许多类似之处,辐射敏化剂预处理能增加生物损伤。DNA和生物膜是射线作用的靶子。空间辐射主要导致生物系统遗传物质的损伤,如突变、肿瘤形成、染色体畸变、细胞失活、发育异常等。重离子辐射生物学研究的结果表明,质子、高能重离子等能非常有效地引起细胞内遗传物质DNA分子的双链断裂和细胞膜结构改变,且其中非重接性断裂的比例较高,从而对细胞有更强的杀伤及致突变和致癌变能力嘲。对植物的研究证明,空间条件尤其是高能离子具有强烈的致变作用,导致细胞死亡、突变、恶性转化,而且在微重力条件下辐射的诱变作用将会加强门。 3.其它诱变因素 植物材料在空间飞行时。是受各种空间因素综合作用的,包括高真空、交变磁场、航天器发射过程中的强振、飞行舵内的温度和湿变条件及其他未知因素。一般认为.空间辐射和微重力的复合效应是主要的诱变因素。 太空育种的特点 1.诱变效率高 太空中的特殊条件对农作物种子具有强烈的诱变作用。可以产生较高的变异率,其变异幅度大、频率高、类型丰富.有利于加速育种进程。水稻自然变异的频率在二十万分之一.化学诱变的变异频率也在千分之几.而经空间处理的水稻变异频率可达百分之几。一般来说,太空育种变异率为5%-10%,最高的诱变率可超出10%以上,其中有益突变率为2%-3%。 2.变异方向不定。正负方向变异都有

诱变育种流程及紫外诱变育种的详细步骤

诱变育种流程及紫外诱变育 种的详细步骤 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

诱变育种的一般步骤: 1.首先是天然菌种的选育: 调查研究及查阅充分的资料 ↓ 设计实验方案 ↓确定采集样品的生态环境 采样 ↓确定特定的增殖条件 增殖培养 确定特殊的选择培养基及可能的 定性或半定量快速检出法 平板分离 ↓ 原种斜面 ↓确定发酵培养基础条件 筛选 ↓ 初筛(1株1瓶) ↓ 复筛(1株3~5瓶) ↓结合初步工艺条件摸索 再复筛(1株3~5瓶) ↓ 3~5株 ↓ 单株纯种分离 生产性能试验 →毒性试验 菌种鉴定 2.诱变菌种:

出发菌株----菌种纯化(出发菌株性能测定)----制备斜面孢子----制备单孢子悬液(悬液进行活菌计数)----诱变剂处理(存活菌数的测定并计算存活率)----平板分离(测定变异率)----挑取变异菌落并移植至斜面上----初筛(初筛数据分析,生产性状的粗测)----斜面传代----复筛(复筛数据分析,精确测定生产性状)----变异菌株(菌株参数分析)----小型或中型投产试验----大型投产试验。 诱变育种应把握的主要原则有以下几点:1)选择简便有效的诱变剂。在选用理化因素作诱变剂时,在同样效果下,应选用最简便的因素;在同样简便的条件下,应选用最高效的因素。2)挑选优良的出发菌株。最好采用生产上已发生自变的菌株,选用对诱变剂敏感的菌株,选取有利于进一步研究或应用性状的菌株。4)处理单细胞或孢子悬液。单细胞悬液应均匀而分散,孢子、芽孢等应稍加萌发。5)选用合适的诱变剂量。一般正变较多出现在低剂量中,负变较多地出现在高剂量中。6)选用高效的筛选方法。 紫外线诱变育种: 紫外线诱变一般采用15W紫外线杀菌灯,波长为253- 265nm.灯与处理物的距离为30cm,照射时间依菌种而异,一般为几秒至几十分钟。一般我们常以细胞的死亡率表示,希望照射的剂量死亡率控制在70~80%为宜。 被照射的菌悬液细胞数,细菌为106个/ml左右,霉菌孢子和酵母细胞为106~107个 /ml。由于紫外线穿透力不强,要求照射液不

菌种诱变方法

微生物诱变育种的方法 摘要:介绍了几种常用的物理诱变和化学诱变育种方法的原理、特点以及成功案例等,为微生物诱变育种提供了一个总体的方法框架。 关键词:诱变; 微生物育种 微生物与酿造工业、食品工业、生物制品工业等的关系非常密切,其菌株的优良与否直接关系到多种工业产品的好坏,甚至影响人们的日常生活质量,所以选育优质、高产的微生物菌株十分重要。微生物育种的目的就是要把生物合成的代谢途径朝人们所希望的方向加以引导,或者促使细胞内发生基因的重新组合优化遗传性状,人为地使某些代谢产物过量积累,获得所需要的高产、优质和低耗的菌种。作为育种途径之一的诱变育种一直被广泛应用。目前,国内微生物育种界主要采用的仍是常规的物理及化学因子等诱变方法。 1 物理诱变 1.1紫外照射 紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA和RNA的嘌呤和嘧啶最大的吸收峰260nm,因此在260nm的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。 马晓燕[3]等以紫外诱变原生质选育法筛选发酵乳清高产酒精菌株马克斯克 鲁维酵母菌株ZR-20,比优化前的酒精产率提高10.5%,较出发菌株提高了68%。顾蕾[4]等通过紫外诱变红酵母ns-1原生质体,获得类胡萝卜素产量明显提高的突变株,其生物量、色素产量分别为6.15g/L、6.41mg/L,分别比原始菌株提高了67.6%、54.1%。 紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。 1.2电离辐射 γ-射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖-磷酸相连接的化学键。其间接效应是能使

紫外线诱变育种

紫外线诱变选育α-淀粉高产菌株 一、实验目的 1.学习菌种的物理因素诱变育种基本技术。 2.通过诱变技术筛选出高产ɑ-淀粉酶的菌株。 二、实验原理 紫外线是一种最常用有效的物理诱变因素,其诱变效应主要是由于它引起DNA结构的改变而形成突变型。紫外线诱变,一般采用15W或30W紫外线灯,照射距离为20-30cm,照射时间依菌种而异,一般为1-3min,死亡率控制在50%-80%为宜。被照射处理的细胞,必须呈均匀分散的单细胞悬浮液状态,以利于均匀接触诱变剂,并可减少不纯种的出现。同时,对于细菌细胞的生理状态则要求培养至对数期为最好。本实验以紫外线处理产淀粉酶的枯草杆菌,通过透明圈法初筛,选择淀粉酶活力高的生产菌株。 三、实验材料 1.菌种产淀粉酶枯草芽孢杆菌 2.器材装有15W或30W紫外灯的超净工作台、电磁力搅拌器(含转子)、低速离心机、培养皿、涂布器、10m L离心管、(1、5、10m L)吸管、250m L三角瓶、恒温摇床、培养箱、直尺、棉签、橡皮手套、洗耳球 3.培养基和试剂 ①无菌水、75%酒精 ②0.5%碘液碘片1g、碘化钾2g、蒸馏水200m L,先将碘化钾溶解在少量水中,再将碘片溶解在碘化钾溶液中,待碘片全部溶解后,加足水即可。 ③选择培养基可溶性淀粉2g,牛肉膏1g,N a C l0.5g,琼脂2g,蒸馏水100m L,p H6.8~ 7.0,121℃灭菌20m i n。 ④肉汤培养基牛肉膏0.5g,蛋白胨1g,N a C l0.5g,蒸馏水100m L,p H7.2~7.4,121℃灭菌20m i n。 四、实验步骤 1.菌体培养取枯草芽孢杆菌一环接种于盛有20m L肉汤培养基的250m L三角瓶中,于37℃振荡培养12h,即为对数期的菌种。 2.菌悬液的制备取5m L发酵液于10m L离心管中,以3000r/m i n离心10m i n,弃去上清液。加入无菌水9m L,振荡洗涤,离心10m i n,弃去上清液。加入无菌水9m L,振荡均匀。 3.诱变处理将菌悬液倾于无菌培养皿中(内放一个磁力搅拌棒),置电磁力搅拌器上于超净工作台紫外灯下(距离30c m)照射0.5-1m i n。 4.取0.1-0.2m L诱变后菌悬液于选择培养基平板上,用涂布器涂匀。置37℃暗箱培养48h。 5.在长出菌落的周围滴加碘液,观察并测定透明圈直径(C)和菌落直径(H),挑选C/H 值最大者接入斜面保藏。 五、注意事项 1.紫外线对人体的细胞,尤其是人的眼睛和皮肤有伤害,长时间与紫外线接触会造成灼伤。故操作时要戴防护眼镜,操作尽量控制在防护罩内。 2.空气在紫外灯照射下,会产生臭氧,臭氧也有杀菌作用。臭氧过高,会引起人不舒服,同时也会影响菌体的成活率。臭氧在空气中的含量不能超过0.1%-1%。 六、结果与讨论 1.利用紫外诱变育种,应注意哪些因素?

诱变育种的原理和操作过程12

诱变育种的原理和操作过程 考情分析 知识梳理 一、单倍体育种 1.原理 染色体数目以染色体组的形式成倍减少,然后经人工诱导使染色体数目加倍从而获得纯种. 2.过程与方法 单倍体育种包括花药离体培养和人工诱导染色体数目加倍两个关键步骤.育种中通过杂交把不同品种的优良性状集中到F1植物体上,然后利用F1个体产生的花粉进行离体培养,培育出单倍体幼苗,再诱导染色体数目加倍,进而获得目标品种,如下图所示:

3.优点与不足 (1)优点 单倍体育种和杂交育种相比而言,能明显缩短育种年限,一般只需要2年时间,便可以获得纯合新品种. (2)不足 技术性较强,并且必须和杂交技术以及诱导染色体加倍技术结合使用. 4.实例 现有高杆抗病小麦DDTT、矮杆易感病小麦ddtt,欲培育出矮杆抗病小麦ddTT,育种方案如下图: 二、多倍体育种 1.原理 染色体数目以染色体组的形式成倍增加. 2.过程与方法 多倍体育种目前最常用而且最有效的方法是利用秋水仙素直接处理萌发的种子或幼苗,已

获得优良性状的多倍体植株.三倍体无籽西瓜的培育就是一个典型案例,如下图所示: 3.优点与不足 (1)优点 经多倍体育种获得的植株和二倍体相比,茎秆粗壮,叶片、果实和种子都较大,糖类和蛋白质含量都有所增加,有些植物的抗寒性等抗逆能力增强. (2)不足 多倍体育种适用于植物,在动物方面难以开展,且多倍体植物往往发育迟缓,结实率低. 三、育种的综合考察 1.列表比较几种常见生物育种方式

2.有关育种的两点方案 (1)根据不同育种目标选择不同育种方案 (2)育种技术中的“四最”和“-明显” ①最简便的育种技术——杂交育种. ②最具预见性的育种技术——转基因技术或细胞工程育种. ③最盲目的育种——诱变育种. ④最能提高产量的育种——多倍体育种. ⑤可明显缩短育种年限的育种——单倍体育种. 3.几种育种方式的注意点 (1)单倍体育种与多倍体育种的操作对象不同.单倍体育种操作的对象是单倍体幼苗,多倍体育种操作的对象是正常萌发的种子或幼苗. (2)诱变育种:多用于植物和微生物,一般不用于动物的育种. (3)杂交育种:不一定需要连续自交.若选育显性优良纯种,需要连续自交筛选,直至性状不再发生分离;若选育隐性优良纯种,则只要出现该性状个体即可. 【易错提醒】 (1)单倍体并不一定是一倍体; (2)花药离体培养获得单倍体,虽然是植物组织培养的一种形式,但花粉粒是减数分裂产生的,因此属于有性生殖; (3)单倍体育种获得的一般是纯合子,但当多倍体的花粉经离体培养,秋水仙素处理后,可能产生杂合子; (4)单倍体绝大多数都是不育的,但当细胞内具有相同的染色体组,同源染色体之间可以联会,

蛋白酶产生菌的紫外诱变育种

蛋白酶产生菌的紫外诱变育种 xxxx大学生命科学学院生物工程第一组 前言: 因为自发突变率小,以微生物的自然变易作为基础的筛选菌种的机率并不很高。为了加大突变频率,可采用物理或化学的因素进行诱发突变。物理因素中目前使用得最方便且十分有效是紫外,紫外诱变一般采用15w的紫外灭菌灯,其光谱比较集中在253.7nm处,这与DNA的吸收波长一致,可引起DNA分子结构发生变化,特别是嘧啶间形成胸腺嘧啶二聚体,从而引起菌种的遗传特性发生变易。 本次实验通过比较对照组和紫外诱变1min、5min、10min的实验组菌落的生长情况和水解圈的情况,可以很好的了解紫外诱变的效果。初步的说明诱变育种为筛选高效,稳定的菌种提供了有效可能的方法。 1 实验材料与方法 1.1 材料 1.1.1样品:老师提供的生长较好的菌液 1.1.2培养基及其配制 1)液体培养基:牛肉膏0.3g,蛋白胨1.0g,NaCl 1.0g,pH7.0~7.5,H2O 定容至100ml。配好50ml/三角瓶,分装两瓶每瓶50ml.包扎112℃,灭菌30min。 2)固体培养基(300ml):牛肉膏0.9g,蛋白胨3g,NaCl 3g,H2O 定容300ml,pH值7.0。配好后,按100ml/瓶分装三瓶, 分别称取1.5g琼脂条塞入三角瓶,包扎,112℃,灭菌30min。 取牛奶粉25g用250ml水溶解,包扎,116℃,灭菌15min。按10%分别加入上述3个三角瓶中,每个三角瓶10ml。混匀后,倒平板。 1.1.3生理盐水:取Nacl 1.8g 溶解在200ml的水中,即配制0.9%的生理盐水。 1)每支试管中加入4.5ml蒸馏水,塞上试管塞,22支试管分4组分别包扎; 2)剩下的生理盐水装入三角瓶包扎; 112℃灭菌30min。 1.1.4器材 血球计数板,显微镜,紫外诱变箱,红灯泡, 移液管,涂布棒,含有7颗玻璃珠的空三角瓶等,112℃灭菌30min。 1.2 方法 1.2.1 菌株的培养 从老师给的菌悬液各取50ul接入2个液体培养基,37°C,220rpm,震荡培养过夜。 1.2.2出发菌株菌悬液的制备 1)取出发酵培养基,从生长良好的一瓶取20ml倒入50ml离心管中5000转离心5分钟,弃上清,倒扣离心管于滤纸上吸干残留培养基; 2)加30ml无菌生理盐水,重新震荡悬浮菌体,再离心,弃去上清;重复一次; 3)重复上述步骤加入5ml生理盐水恢复成菌悬液,用血球计数板在显微镜下直接计数,逐步添加生理盐水调整细胞浓度为108/mL; 4) 将上述菌悬液倒入装有小玻璃珠的无菌三角瓶内,振荡10~20min,以打散细胞; 5)取0.5ml 菌悬液进行10-1——10-7稀释分离,取10-5、10-6、10-7三个稀释度,每一梯度取100ul

实验三 紫外线的诱变育种

实验三紫外线的诱变育种(学时:4) 一、目的要求 通过实验,观察紫外线对枯草芽孢杆菌的诱变效应,并学习物理因素诱变育种的方法。 二、基本原理 紫外线对微生物有诱变作用,主要引起的是DNA分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。 三、菌种与仪器 菌种:枯草芽孢杆菌; 仪器:血球计数板,显微镜,紫外线灯(15W),电磁搅拌器,离心机 四、操作步骤 1.菌悬液的制备 A、取培养48小时的枯草芽孢杆菌的斜面4—5支,用无菌生理盐水将菌苔洗下,并倒入盛有玻璃珠的小三角烧瓶中,振荡30分钟,以打碎菌块。 B、将上述菌液离心(3000r/min,离心15分钟),弃去上清液,将菌体用无菌生理盐水洗涤2—3次,最后制成菌悬液。 C、用显微镜直接计数法计数,调整细胞浓度为每毫升108个。 2.平板制作将淀粉琼脂培养基溶化后,冷至55℃左右时倒平板,凝固后待用。 3.紫外线处理 A、将紫外线灯开关打开预热约20分钟。 B、取直径9cm无菌平皿2套,分别加入上述菌悬液5ml,并放入无菌搅拌棒于平皿中。 C、将盛有菌悬液的2平皿置于磁力搅拌器上,在距离为30cm,功率为15W的紫外线灯下分别搅拌照射1分钟及3分钟。 4.稀释在红灯下,将上述经诱变处理的菌悬液以10倍稀释法稀释成10-1-10-6(具体可按估计的存活率进行稀释)。 5.涂平板取10-4、10-5、10-6三个稀释度涂平板,每个稀释度涂平板3只,每只平板加稀释菌液0.1ml,用无菌玻璃刮棒涂匀。以同样操作,取未经紫外线处理的菌稀释液涂平板作对照。 6.培养 将上述涂匀的平板,用黑布(或黑纸)包好,置37℃培养48小时。注意每个平皿背面要标明处理时间和稀释度。 7.计数将培养48小时后的平板取出进行细菌计数,根据对照平板上菌落数,计算出每毫升菌液中的活菌数。同样计算出紫外线处理1分钟、3分钟后的存活细胞数及其致死率。 8.观察诱变效应

我国辐射诱变育种的现状分析

我国辐射诱变育种的现状分析 王志东 (中国农业科学院原子能利用研究所, 北京100094) 我国自二十世纪五十年代后期开始进行植物辐射诱变育种技术的研究, 到六十年代后期, 我国的育种专家在农作物析品种选育上获得成功; 从七十年代后期开始, 大批农作物新品种被陆续育成, 并在农业生产中得到大面积推广应用, 其中比较具有代表性的品种, 如: 水稻原丰早, 水稻浙辐802, 小麦山农辐63, 小麦扬辐6号, 大豆铁丰18, 棉花鲁棉一号等都曾分别获得国家科技进步一等奖, 特别是水稻浙辐802曾连续9年居全国水稻种植面积第一位. 利用辐射诱变育种技术育成新品种的年播种面织达到900万公顷, 约占全国粮食播种面积的10%. 在新疆, 利用辐射诱变育种技术育成的春小麦品种长期占全疆春小麦播种面积的三分之二以上. 植物辐射诱变育种技术以其独特的优势, 迅速发展为作物育种的重要方法之一. 与我国核农学的其他研究领域相比, 诱变育种研究所产生的科研成果最多, 产生的经济效益最大, 对增加农民收入的促进作用最直接. 与世界各国相比, 中国自二十世纪八十年代以来, 在植物突变品种的育成数量, 突变品种的种植物面积和产生的经济效益等方面, 均以较大优势领先于世界其他国家. 根据国际原子能机构的统计数据, 在全世界利用辐射诱变育种技术育成的2316个作物新品种当中, 中国科学家育成的新品种达到625个, 约占世界总量的27%. 一. 发展现状 近5年来, 在科技部和中国同位素与辐射行业协会的支持下, 辐射诱变育种技术的研究与应用得到继续发展. 我国的诱变育种专家在提高农作物新品种的品质和产量,深入开展诱变育种机理研究以提高辐射诱变育种的诱变效率等方面, 继续做出不懈努力并取得一系列研究成果. 在辐射诱变育种的诱变效率等方面, 育成一批高产, 优质, 多抗, 综合性状优良, 适应当前国内各个不同生态区域农业生产需求的农作物新品种;5年间, 仅国家攻关项目内育成新品种的推广面积就超过1亿亩; 与此同时, 创制出二千多份优异突变新种质, 新材料, 经过对其利用价值进行评价鉴定, 已有相当一部分作为育种资源被育种学家作为原始材料用于新品种选育, 并获得了良好的育种效果;通过对新诱变因素的诱变效果及其诱变育种方法的研究, 推动了诱变育种方法研究在深度和广度的进步; 突变体鉴定技术得到改进, 鉴定效率得到提高; 利用空间环境进行的诱变育种研究也已取得重要进展并显示出良好的应用前景; 更为突出的是我国的农业科学家研制开发出属国内外首创的新方法和育种工具材料. 主要进展如下: 中国农业科学院原子能利用研究所利用辐射诱变技术育成国内第一个粮饲兼用玉米新品种中原单32号. 该品种产量高, 品质好, 绿杆成熟, 适于青储, 氨化和微生物发酵处理. 中原单32号玉米不仅籽粒蛋白含量较高,

常规育种方法

一、诱变育种: 诱变育种是指利用人工诱变的方法获得生物新品种的育种方法 原理:基因突变 方法:辐射诱变,激光、化学物质诱变,太空(辐射、失重)诱 发变异→选择育成新品种 优点:能提高变异频率,加速育种过程,可大幅度改良某些性状; 变异范围广。 缺点:有利变异少,须大量处理材料;诱变的方向和性质不能控 制。改良数量性状效果较差。 二、杂交育种: 杂交育种是指利用具有不同基因组成的同种(或不同种)生物个 体进行杂交,获得所需要的表现型类型的育种方法。其原理是基 因重组。 方法:杂交→自交→选优 优点:能根据人的预见把位于两个生物体上的优良性状集于一 身。 缺点:时间长,需及时发现优良性状。 三、单倍体育种: 单倍体育种是利用花药离体培养技术获得单倍体植株,再诱导其 染色体加倍,从而获得所需要的纯系植株的育种方法。(主要是 考虑到结合中学课本,经查阅相关资料无误。)其原理是染色体 变异。优点是可大大缩短育种时间。 原理:染色体变异,组织培养 方法:选择亲本→有性杂交→F1产生的花粉离体培养获得单倍体 植株→诱导染色体加倍获得可育纯合子→选择所需要的类型。 优点:明显缩短育种年限,加速育种进程。 缺点:技术较复杂,需与杂交育种结合,多限于植物。 四、多倍体育种:

原理:染色体变异(染色体加倍) 方法:秋水仙素处理萌发的种子或幼苗。 优点:可培育出自然界中没有的新品种,且培育出的植物器官大,产量高,营养丰富。 缺点:只适于植物,结实率低。 五、细胞工程育种: 细胞工程育种是指用细胞融合的方法获得杂种细胞,利用细胞的全能性,用组织培养的方法培育杂种植株的方法。 原理:细胞的全能性 方法:(1)植物:去细胞壁→细胞融合→组织培养 (2)动物克隆:核移植→胚胎移植 优点:能克服远缘杂交的不亲和性,有目的地培育优良品种。动物体细胞克隆,可用于保存濒危物种、保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等。 缺点:技术复杂,难度大;它将对生物多样性提出挑战,有性繁殖是形成生物多样性的重要基础,而“克隆动物”则会导致生物品系减少,个体生存能力下降。 六、基因工程育种: 物质基础是:所有生物的DNA均由四种脱氧核苷酸组成。其结构基础是:所有生物的DNA均为双螺旋结构。一种生物的DNA上的基因之所以能在其他生物体内得以进行相同的表达,是因为它们共用一套遗传密码。在该育种方法中需两种工具酶(限制性内切酶、DNA连接酶)和运载体(质粒),质粒上必须有相应的识别基因,便于基因检测。如人的胰岛素基因移接到大肠杆菌的DNA上后,可在大肠杆菌的细胞内指导合成人的胰岛素;抗虫棉植株的培育;将固氮菌的固氮酶基因移接到植物DNA分子上去,培育出固氮植物。固氮基因的表达方式为: 原理:基因重组(或异源DNA重组)。 方法:提取目的基因→装入载体→导入受体细胞→基因表达→筛选出符合要求的新品种。

实验十一 紫外诱变技术及抗药性突变菌株的筛选

实验十一紫外诱变技术及抗药性突变菌株的筛选 Ⅰ、紫外诱变技术 一实验目的 以紫外线处理细菌细胞为例,学习微生物诱变育种的基本技术。了解紫外线对细菌细胞的作用。 二实验材料与用具 菌株:大肠杆菌(Escherichia coli) 培养基:营养肉汤(nutrient broth)固体与液体培养基 生理盐水等 器皿:10ml及1ml的移液管,无菌试管,无菌培养皿,无菌三角瓶(内有无菌的玻璃珠20~40粒),无菌漏斗(内有两层擦镜纸),无菌离心管,离心机,紫外诱变箱等。 三实验原理 以微生物的自然变易作为基础的筛选菌种的机率并不很高。因为自发突变率小,一个基因的自发突变率仅为10-6~10-10左右。为了加大突变频率,可采用物理或化学的因素进行诱发突变。物理因素中目前使用得最方便且十分有效就是UV,UV诱变一般采用15w的紫外灭菌灯,其光谱比较集中在253、7nm处,这与DNA的吸收波长一致,可引起DNA分子结构发生变化,特别就是嘧啶间形成胸腺嘧啶二聚体,从而引起菌种的遗传特性发生变易。在生产与科研中可利用此法获得突变株。 四实验内容 1、对出发菌株进行处理,制备单细胞悬液; 2、紫外线进行处理; 3、用平板菌落计数法测定致死率;

五 操作步骤 (一)出发菌株菌悬液的制备 1. 出发菌株移接新鲜斜面培养基,37℃培养16~24h; 2. 将活化后的菌株接种于液体培养基,37℃ 110rpm 振荡培养过夜(约16h),第二天,以 20~30%接种量转接新鲜的营养肉汤培养基,继续培养2~4h; 3. 取4ml 培养液与5ml 离心管中,10000rpm 离心3~5min,弃去上清液,加4ml 无菌生理 盐水,重新悬浮菌体,再离心,弃去上清,重复上述步骤用生理盐水恢复成菌悬液; 4. 将上述菌悬液倒入装有小玻璃珠的无菌三角瓶内,振荡20~30min,以打散细胞; 5. 取诱变前的0、5ml 菌悬液进行适当稀释分离,取三个合适的稀释度倾注肉汤平板, 每一梯度倾注两皿,每皿加1ml 菌液,37℃倒置培养24~36h,进行平板菌落计数。 (二)UV 诱变 1. 将紫外灯打开,预热30min; 2. 取直径6cm 的无菌培养皿(含转子),加入菌悬液5ml,控制细胞密度为107~108个/ml; 3. 将待处理的培养皿置于诱变箱内的磁力搅拌仪上,静止1分钟后开启磁力搅拌仪旋 纽进行搅拌,然后打开皿盖,分别处理5s 、10s 、15s 、30s 、45s,照射完毕后先盖上皿盖,再关闭搅拌与紫外灯; 4. 取0、5ml 处理后的菌液进行适当稀释分离,取三个合适的稀释度倾注肉汤平板进 行计数(避光培养)。 六 实验结果 对平板菌落进行计数,并计算死亡率。 %100///?-=ml ml ml 照射前活菌数照射后活菌数照射前活菌数死亡率

紫外线诱变育种高产纤维素菌实验方案

紫外线诱变育种高产纤维素菌 实验方案 诱变方案:纤维素酶活力较高菌株→紫外线诱变→初筛→复筛→稳定性试验. 实验目的:对有一定能力产纤维素酶的菌种进行紫外线诱变,诱变出高产纤维素酶的菌种。 实验原理:紫外线诱变处理的有效波长为200~300×10nm,最适为254nm(此为核酸的吸收高峰)。DNA和RNA的嘌呤和嘧啶吸收紫外光后,DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失,即是所谓的诱变。 材料和器皿: (1)菌种:木霉单孢子 (2)培养基:牛肉膏蛋白胨培养基(液体和固体),生理盐水。 (3)器皿:无菌培养皿,无菌试管,无菌移液管(5ml,1ml),150ml三角瓶(内装有玻璃珠),无菌离心管等。 (4)仪器:紫外灯(装在无菌操作箱内),磁力搅拌器等。 实验步骤: 紫外线诱变育种 单孢子悬液制备:用生理盐水洗下出发菌株的斜面孢子摇床上震荡分散30min,4 层无菌擦镜纸过滤,制备单孢子悬液。

稀释对照菌液(未照射菌液) 将未经照射的菌液稀释成10-1~10-6,然后从10-5,10-6两管中各吸取0.1ml菌液于牛肉膏蛋白胨平板上(每个稀释度做三个皿),用无菌涂布棒土布均匀后,倒置于32度条件下培养过夜,第二天取出,计算菌落数,将记得的结果记录于表格中。 UV 诱变:取单孢子悬液5mL 于直径9cm 的培养皿内, 同时放入无菌搅拌子,在磁力搅拌器 .....的搅拌下置于15W 紫外线灭菌灯下30cm 处分别处理0s.30s、1min、2min、3min、5min、7min、9min、11min。在红灯下稀释适当倍数,0.1mL 涂PDA 平板,30℃避光培养过夜。诱变致死率检测:分别取等量的不同诱变时间的菌液和未诱变菌液涂布于PDA 平板,30℃培养72h。以未诱变菌液培养后的菌落数为基准计算 不同诱变时间的致死率,选择致死率较高的诱变菌液继续检测其产纤维素酶的能力。致死率(%)=(对照皿的菌落总数-诱变处理后的菌落总数)/对照皿的菌落总数×100 筛选培养基的选择 ........:.挑取孢子接种到PDA 斜面培养基上活化,28℃ 培养72h。通过点样法分别接种于平板筛选培养基1和培养基2 上,28℃培养72h。观察不同培养基上纤维素酶生产菌的透明圈大小,以确定合适的选择培养基,为进一步筛选做准备. 最佳筛选培养基的确定(对比) 经观察,如果发现平板筛选培养基1 中透明圈较小,平板筛选培养基2(改良培养基)中菌落周围透明圈较明显,因此选择平

杂交育种和诱变育种

6-1杂交育种和诱变育种 【学习目标】 1、简述杂交育种的概念,举例说明杂交育种方法的优点和不足。 2、举例说出诱变育种在生产中的应用。 3、讨论遗传和变异规律在生产实践中的应用。 【新知预习】 一、杂交育种 1、古代人们利用__________________,通过长期选择,汰劣留良,培育出许多优良品种,这种选择育种不仅_____________,而且_________________________。 2、杂交育种是将__________或__________品种的_____________,通过__________集中在一起,在经过___________和___________。获得________________的方法。 3、在农业生产中,杂交育种是___________________的常规方法。杂交育种的方法也用于 _____________________的育种。 二、诱变育种 1、诱变育种的原理是_________________________________。 2、诱变育种是指利用_______________________________,使生物____________________的方法。 3、诱变育种的优点的________________________________________________。 4、诱变育种取得的成就: (1)培育__________________________________; (2)在___________________方面也发挥了重要作用,如:_____________________________。【知识细目表】 一、杂交育种 1、概念:是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。 2、原理:基因重组 3、应用:在改良农作物品种、培育家畜新品种等方面广泛应用。 4、一般步骤:①两亲本杂交,获得F1;②F1自交,获得F2;③在F2中选出符合要求的性状并进行多次自交获得较纯的新品种。 5、优点:操作简单 6、缺点:育种时间长、工作量大、只能利用已有的基因杂交,不能产生新的基因、只能进行本物种或亲缘关系比较近的物种之间杂交,不能克服远缘杂交不亲和障碍等。 二、诱变育种

一种简单高效的水稻体细胞诱变育种新方法

龙源期刊网 https://www.360docs.net/doc/ec10738221.html, 一种简单高效的水稻体细胞诱变育种新方法作者:林建中杨远柱周波符辰建杜长青胡小淳 来源:《湖南大学学报·自然科学版》2013年第09期 摘要:多样化种质资源的利用对于培育高产和理想农艺性状水稻品种显得非常重要.在本研究中,通过研究继代时间、2,4D浓度和不同外植体对诱变和分化频率的影响,建立了幼穗为外植体、继代培养时间为3个周期(约75 d)以及2,4D的最佳诱变浓度为4.0 mg/L的体细胞诱变育种方法.然后利用该方法诱变杂交水稻亲本株1S和中9B,分别成功选育了优良矮 化突变株系SV14S和SV9B,为后续的杂交育种提供了优质种质资源.这些育种成果的取得进 一步证实了该水稻体细胞诱变育种方法是一种简单高效的新型育种方法. 关键词:突变;水稻(Oryza sativa L.);组织培养; 2,4D;育种 中图分类号:S336 文献标识码:A 水稻(Oryza sativa L.)是世界上重要的经济谷类作物,有超过一半的世界人口以大米作为主食.然而,随着人口的不断增长和耕地的减少,据估计到2030年大米的需求将比现在提高40%[1].因此,很有必要通过各种育种方法以提高水稻产量. 育种是一个从大量株系中筛选出理想表型株系的过程,这些大量的株系一般来源于自然和人工突变以及杂交重组.因突变可能产生的优良种质是育种的一个重要来源.多样化的种质资源对水稻育种非常重要,如提高产量以及其他农艺性状的改良等[2-3].然而,优良品种的筛选需要大量原始育种材料,因而采用新的方法来获得大量多样化的候选株系就显得非常重要.体细胞无性系变异作为一个新的变异来源,引起了遗传学家和育种学家的大量关注[4].许多作物包括玉米和水稻[5]等已被用于组织培养和体细胞无性系变异研究[5-7],为作物育种提供了一种新的诱变途径.体细胞的诱导突变能够获得相当丰富的遗传变异,又因其容易应用和推广而具有很高的实用价值[8-9].突变体因染色体数目改变、点突变、结构性染色体重排等原因而引起表型改变,而且该表型还可以稳定遗传.因此,以此为基础可以培育新的作物优良品种. 体外培养诱导突变所涉及的因素包括培养基的成分(各种盐类、激素和有机物质等)和培养条件(温度、光照和培养时间等)[10].诱变造成组织培养细胞的突变可能是一个或多个诱变因素.迄今,在水稻诱变育种方面还未见以高浓度2,4D为诱变剂的诱变育种方法的报道.在本研究中,我们分别研究了继代培养时间、2,4D浓度和不同外植体对突变频率的影响,建立了一种以幼穗为外植体和4.0 mg/ L 2,4D诱变处理的水稻体细胞无性系诱变育种方法.同时,利用该诱变方法从水稻品种株1S和中9B中分别成功选育了2个稳定的优良矮秆突变株系 SV14S 和 SV9B,并进一步证实了该水稻体细胞诱变育种方法的有效性. 1材料与方法

大肠杆菌紫外诱变实验

大肠杆菌紫外诱变实验 【实验目的】初步掌握诱变方案的设计和紫外诱变的实验手段。理解自发突变和紫外诱变的机理,分析不同诱变目的、诱变手段和诱变筛选在诱变应用中的关系。了解诱变育种在微生物工业中的作用。 【实验原理】微生物菌种质量优劣对发酵工业具有至关重要的作用,由于自然界中的菌种一般在生产上都有不同程度的缺陷,而且自然突变频率低,突变幅度小,单纯依靠自然界中微生物群体来进行的自然选择有很大的局限性,往往不能满足实际生产的需要。因此现在的微生物发酵生产菌种绝大多数都是经过人工改造的,而菌种改造有诱变改造和基因改造两方面。虽然现在基因工程菌已经成为越来越重要的菌种改造方式,但通过物理化学诱变对菌种品质进行改造仍然是工业生产菌重要的来源。 诱变分为物理诱变和化学诱变。物理诱变采用紫外光、X射线、射线、射线、射线、快中子和超声波等,其中紫外光诱变因其效果好、实验设备简单等优点而成为应用最广泛的物理诱变剂。 而化学诱变则是采用一些可以和DNA起作用,改变其分子结构,最终引起遗传改变的化学物质对诱变对象进行处理,得到诱变菌种的方法。实验室中常用的有亚硝酸、硫酸二乙酯、亚硝酸胍等(这3种诱变剂诱变效果依次增加,毒性也依次增大)。 物理诱变往往被分为电离辐射和非电离辐射,常用的电离辐射有X射线、射线、射线、快中子等。电离辐射的特点是穿透力强,对生物作用分为直接作用和间接作用。辐射的直接作用是指辐射所产生的直接物理损伤,是由于能量量子直接与染色体作用而造成的原始损伤,是一种物理作用;而辐射的间接作用则是一种化学作用,是由于生物细胞中的水分子受到辐射作用产生各种自由基,这些自由基和溶质分子或直接和染色体发生作用产生遗传损伤。 由于不同作用的时效差别,辐射的作用过程大体可分为物理、物理化学、化学和生物学效应等4个阶段,时效发生可以从10-12s到几年。辐射中常采用的剂量单位为伦琴(R)。一个伦琴相当于在00C及101325Pa(760mmHg)下,每立方厘米干燥空气中能产生个离子对的电离剂量。 此外还有拉德(rad)、尔格(erg)、居里(Ci)等单位。其换算关系如下: 1rad=100erg/g=10- 次衰变/秒 非电离辐射最典型的就是紫外线,其电磁波谱位置为40~390nm。而由于DNA分子的紫外吸收峰位于260 nm。因而波长在200~300 nm之间的紫外线被用于紫外诱变。紫外诱变时的剂量与所用紫外灯管的功率以及照射距离和照射时间相关,实验中往往采用改变照射时间来改变照射剂量。由于照射致死率在95%~99%的时候回复突变株出现率最高,因而实践中多用70%~80%的致死率进行诱变。 化学诱变和物理诱变相比主要的差别是诱变的特异性强,往往专一作用于DNA分子的特定结构。化学诱变主要分为4大类:碱基类似物、烷化剂、移码突变剂和其他类。 由于不同的化学诱变剂性能差别很大,在使用前必须对影响其效果的温度、PH值、光照、溶剂等做清楚的分析,同时对其半衰期、毒性及防护也要充分了解,这样才能保证使用的有效性和人体安全性。化学诱变的剂量是由使用浓度和处理时间决定的,操作中可以根据需要选择高浓度短时间处理或是低浓度长时间处理。 在诱变中制定好诱变方案是很重要的,诱变育种包括诱变和筛选两步。首先制定一个明确的筛选目标,因为诱变是不定向的,我们必须采用定向的筛选方法将我们所需要的菌株从原始菌和突变株中分离出来,同时还应考虑选出的菌种在生长速度、温度适应、产孢子等方面不能产生过多不适应生产的变化。 在充分考虑了实验的工作量要求后结合本实验室的人力、物力和时间要求提出诱变和筛选方案。在筛选方法选择中要考虑到兼顾筛选色工作量和可信度。当筛选方法可信度高时,往往检测方法是比较繁琐的(尤其是涉及一些蛋白质或氨基酸含量变化的突变类型)。这时为了提高筛选工作量往往降低筛选的可信度,减少筛选的繁琐程度,而在复筛中进一步加以确定。根据筛选目的和实验室条件选用合适的诱变剂。筛选方案确定后,不要经常改变,保持工作的稳定性,这样有利于总结提高。 本实验以大肠杆菌为材料,选择紫外线为诱变剂,进行诱变处理:筛选青霉素抗性菌,绘制致死曲线并计算诱变率。

相关文档
最新文档