旭廷自聚焦透镜产品说明书

旭廷自聚焦透镜产品说明书
旭廷自聚焦透镜产品说明书

旭廷自聚焦透镜产品说

明书

标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

自聚焦透镜

产品说明书

北京旭廷科技开发有限公司

2004年8月

说明书目录

1.产品概述及参数列表 (1)

2.订货信息 (3)

3.使用注意事项 (5)

附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表

自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。

本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下:针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。

划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。

崩边:在中心区域的90%范围内不得有崩边。

主要应用参数如下表:

2.产品订货信息

本公司产品采用如下命名方法:

示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o并且双面镀膜。

根据客户要求,可对透镜进行的特殊工艺处理说明如下:

(1)端面角度化处理:此种处理可以有效减少回光反射。有两种形式的角度化处理可供选择,一种是单端面角度化处理:一端倾斜、而另一端垂直于光轴(见图1图2);另一种是双端面角度化处理:两端面相互平行并都倾斜于光轴(见图3)。

(2)镀防反射膜:在透镜端面增镀防反射膜,能有效减少光能量损失;同时有助于保护透镜表面,避免潮湿、化学反应和物理损伤。

镀层采用多层金属氧化物,客户可选择镀膜1-3层。各项指标如下:

(3)柱面金属化处理:柱面金属化处理既可以给透镜增加额外的保护,也可以在焊接时提供更为牢固的结合强度。订货时在订货信息后加-M表示需要进行这种处理。

例如:SL-X2-10-025-1310-AR2-3D-M,表示定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o并且需要双面镀膜、柱面金属化处理。

柱面金属化处理技术指标:

3.使用注意事项

(1)取放时应注意:打开透镜包装的盒盖时应特别小心,防止在打开盒盖时丢失透镜(因为在运输途中微小的自聚焦透镜可能会脱离包装槽而附着在盒盖上)。取放透镜时应用镊子夹住透镜的侧面,切勿夹持端面或者用手触摸端面(端面若留下划痕或指印,会极大的影响使用)。

(2)清洗时应注意:若透镜表面不慎染上污迹,那么必须清洗透镜表面,否则可能会影响正常使用。为了确保透镜表面不留残渣,一般情况下清洗剂应使用浓度>95%的甲醇或丙酮溶液。

(3)储存时应注意:原包装打开后,若需长期储存,则应在包装内使用干燥皿或干燥剂(如硅胶)以防止透镜受潮,尤其对于非镀膜透镜。

附:自聚焦透镜原理简介

1.什么是自聚焦透镜:

传统的透镜是通过控制透镜表面的曲率,凭借光在介质分界面的折射使光线汇聚于一点。自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其内部特殊的折射率分布使从透镜端面入射的光线在透镜内部沿正弦曲线传播。其折射率变化N(r)由下式描述:

(1-Ar2/2)

N(r)=N

(式中:N

表示自聚焦透镜的中心折射率,r表示自聚焦透镜的半径,A表示自聚焦透镜的

折射率分布常数)

图1自聚焦透镜折射率分布曲线自聚焦透镜的主要应用参数包括:

透镜直径Ф;

中心轴折射率N

折射率分布常数A;

数值孔径NA(NA=nSinαm,式中n表示入射

光所在介质的折射率,αm表示入射光线的最大

孔径角);

截距P(光束沿正弦轨迹传播,完成一个正

弦波周期的长度即称为一个截距P);

透镜长度Z(透镜两端面之间的距离即为透

镜长度)。

在不同长度的棒透镜中,光的传播轨迹不同。如下所示:

图2不同长度的GRIN棒中光的传播轨迹

图中,Z为透镜长度,P为截距。如图所示,沿棒透镜长度方向的不同位置可以得到不同的成像状态。由此可见,选择不同的棒透镜长度,可起到凸透镜或凹透镜的作用,形成倒立实像和虚像、正立实像和虚像。

2.自聚焦透镜的制备:

为了获得折射率成梯度分布的棒透镜,制备自聚焦透镜最为常用的方法是离子交换法,它具有成本低和容易控制等优点,被广泛地用于光通信用自聚焦透镜的制作。主要工序及流程包括:玻璃熔炼,玻璃棒加工,拉制纤维,离子交换,棒透镜抽样测试。其基本原理图如下:

图7离子交换法的基本原理

由于一价金属离子在玻璃中具有最大的扩散系数,为获得GRIN棒,在高温下,将基础玻璃放入熔融盐浴中,引发离子交换反应,用熔盐中的对折射率贡献较小的离子部分替换基础玻璃中对折射率贡献较大的离子,使这两种离子在玻璃中的浓度形成一定的梯度,而在玻璃中产生折射率梯度。基础玻璃中必须具有足够的高极化率离子(Tl+,Cs+,Ag+等),而用于离子交换的熔盐应含有电子极化率小的离子(K+或Na+)。

为满足光通信用自聚焦透镜的要求,基础玻璃配方必须符合如下条件:

1,符合设计要求的光学性能(折射率,光吸收等);

2,合理的熔制温度,以及高温下合适的粘度;

3,满足成型所要求的料性;

4,较高的离子交换系数;

5,高温及常温下的足够的化学稳定性。

此外,在透镜端面增加防反射膜,可以有效地减少光能量的损失,有助于保护透镜表面,避免潮湿、化学反应和物理损伤;对透镜进行端面角度化处理,可以有效减少表面的回光反射;对透镜进行柱面金属化处理,增加金属化保护,可以使用户将其焊接到相应位置上,这

样既可以保证与外界隔绝的密封,同时提供比环氧粘接更为牢固的结合强度。

3.自聚焦透镜的应用:

由于从自聚焦透镜端面入射的光线在透镜内部沿正弦曲线传播,以及其圆柱状的外形特点,将适当长度的GRIN棒用于光学系统,便可实现聚焦、准直、成像等特定的功能,从而可以应用在多种不同的微型光学系统中。

聚焦:根据自聚焦透镜的传光原理,对于Z=P/4的自聚焦透镜,当从一端面输入一束平行光时,经过自聚焦透镜后光线会汇聚在另一端面上。这种端面聚焦的功能是传统曲面透镜所无法实现的。

图3自聚焦透镜聚焦原理示意图

准直:准直是聚焦功能的可逆,反向应用。对于Z=1/4P的自聚焦透镜,当汇聚光从自聚焦透镜一端面输入时,经过自聚焦透镜后会转变成平行光线。

图4自聚焦透镜准直原理示意图

自聚焦透镜可应用于要求有聚焦和准直功能的各种场合,如:耦合器,准直器,光隔离器,光开关,波分复用器等等。图5中两个自聚焦透镜分别用做准直和聚焦。这样我们可在两个自聚焦透镜之间加入多种光学器件,例如:滤波片、偏振片、法拉第旋光器等等,来构成多种光学无源器件。

图5自聚焦透镜准直和聚焦功能光轨迹示意图

此外,由于自聚焦透镜可以通过水平端面完成聚焦功能,加之其简单圆柱外型,使得他具有耦合聚焦的功能,在进行光能量连接及转换中有着很广泛的用途。自聚焦透镜的这种功能使其能够应用于多种光耦合场合,例如:光纤和光源、光纤和光电探测器以及光纤和光纤之间的耦合等等。

图6自聚焦透镜耦合聚焦功能光轨迹示意图

图6中L1表示光源或光纤到自聚焦透镜的端面的距离,Z为自聚焦透镜的长度,L2为自聚焦透镜的端面到光纤的距离。调节L1使入射光在自聚焦透镜的最大有效半径之内。调

节L2使出射光的焦点在光纤的有效半径之内。为了使光源或光纤发出的光经过自聚焦透镜

聚焦后能够有效地耦合进光纤,就要调节L1和L2的大小,从而有效地提高耦合效率。

此外,自聚焦透镜也可用于成像。

由于特定长度的自聚焦透镜具有端面成像的特性,采用P/2的整数倍长透镜可以实现显微摄像系统中端面到端面的像中继传输。因此低色差的自聚焦透镜在各种医用内窥镜及工业内窥镜中作为物镜和中继透镜得到了越来越广泛的应用。

单棒透镜的直径和视场角都很小(约为Φ0.25-3.0mm,12o左右),而且成像距离也很短,所以单根棒透镜覆盖的物面极小。因此,在使用中常常需要将棒透镜排列成列阵。自聚焦透镜阵列(SLA)是80年代初发展起来的一种小型、轻量、高性能的新型透

镜。SLA由许多根GRIN棒透镜按一定规律排列而成,使之成复合像。到80年代中期,以1:1共轭成像列阵为代表的列阵形成了系列产品,在办公自动化设备,如复印机。传真机以及图像扫描光学部件方面得到广泛应用,成为此类设备更新换代的关键部件。

由于GRIN棒内部折射率变化可以调节,当它用于复杂的光学系统时,可以减少系统中光学元件的数量,在某些场合可以代替非球面光学元件。此外这种光学元件的几何形状简单,容易进行光学加工,且使用这种光学元件的系统具有结构紧凑、性能稳定、成本低廉等优点。因此GRIN棒透镜已经被越来越多地应用于光学系统,尤其是在光纤通信领域中。它在光纤之间的连接、隔离、定向耦合、波分复用/解复用器件以及光开关等方面显示出独特的优势。

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

8mm点聚焦透镜天线设计

8mm点聚焦透镜天线设计 摘要:根据对物体毫米波信号采集的需要,设计一种工作于8 mm频段的点聚焦透镜天线,选用宽波束微带天线做馈源,设计焦距大小不同的双面透镜,采用电磁仿真软件CST 对聚焦透镜天线进行仿真实验,从仿真结果可以看出,不同焦距双面透镜实现了预期聚焦效果且空间分辨率大小能够 满足对物体逐点扫描的需求。 关键词:点聚焦透镜;微带天线;焦距;空间分辨率 中图分类号:TN820.1?34 文献标识码:A 文章编号:1004?373X(2016)11?0079?03 Abstract:A point?focusing lens antenna working at 8 mm frequency band was designed according to the demand for millimeter?wave signal acquisition. The double?sided lens with different focal lengths was designed by selecting the wide beam microstrip antenna as the feed source. The electromagnetic simulation software CST is used to simulate the focusing lens antenna. The simulation results show that the double?sided lens with different focal lengths can realize the expected focusing effect and high spatial resolution,which can meet the demand for point?by?point scanning of the object.

光纤准直器的结构与参数

?光纤准直器是光无源器件中的一个重要的组件,在光通信系统中有着非常普遍的应用。 它是由单模尾纤和准直透镜组成,具有低插入损耗,高回波损耗,工作距离长,宽带宽,高 稳定性,高可靠性,小光束发散角,体积小和重量轻等特点。可将光纤端面出射的发散光束变换为平行光束,或者将平行光束会聚并高效率耦合入光纤,是制作多种光学器件的基础器件,因此被广泛应用于光束准直,光束耦合,光隔离器,光衰减器,光开关,环行器, MM,密集波分复用器ES之中。 目录 ?光纤准直器的结构与参数 ?光纤准直器的原理 ?光纤准直器的优点 ?光纤准直器的装配 光纤准直器的结构与参数 ?光纤准直器的结构参数如图5 所示,因光纤头端面的8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的原理 ?光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。 光纤准直器的优点 ?低插损、高回损、尺寸小 工作距离长、宽带宽

高稳定性、高可靠性 光纤准直器的装配 (1)采用斜端面插针耦合,可大大提高光纤准直器的回波损耗,当斜面倾角为8°01%增 透膜时,光纤准直器的时,光纤准直器的自聚焦透镜后端面镀反射率为0.回波损耗可达 60dB。采用斜端面插针耦合,主要是为了满足器件高回波损耗的求,角度越大,准直器的回波损耗越大。但插针的端面角度越大,准直器的插入损耗就会越大(要求是:插入损耗越小越好,回波损耗越大越好),这和准直器要求的低插入损耗矛盾,对于准直器插入损耗而言,透镜和毛细管是垂直端面最为理想。因此本文采用8°是针对环行器在这种互相制约关系下的一个折中。视应用场合不同其端面斜角可做成6°、8°、9°、11°或任何角度。 (2)透镜与光纤毛细管端面的间隙也主要是和器件高回波损耗有关,为了达到器件高回 波损耗的要求,其间隙一般大于200μm,当间隙大于200μm,器件的回波损耗值近似达到理论上最大值。但透镜和毛细管端面的间隙越大,同时会造成准直器的插入损耗增大,这又是一对矛盾,根据准直器图纸的精度要求,其间隙是0.385mm,这同时能满足高回波损耗的距离要求,也能使其插入损耗达到要求。准直器的插入损耗和回波损耗相比较而言,回波损耗更容易保证,因此在准直器装配时,以其插入损耗为检测依据,就是这个道理。

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()2 01??? ? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++= 112, (3) 而且,l q q +=01,2/32w l q q -=,12 010if w i q ==λπ,22 023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: () () 2 12 01 02Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212 Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 2 1 2f C ACf BC AD l w --≤ , (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()() 121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l - =1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: () () () () ?? ? ? ???? ?? -=??????L A L A A n L A A n L A D C B A o o cos sin sin 1 cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

用自聚焦透镜作平行光束

光子学报 ACTA PHOTONICA SINICA 1999年第28卷第2期Vol.28No.21999 用自聚焦透镜作平行光束 与单模光纤的最佳耦合 高应俊姚胜利高凤 摘要本文提出一种用两片自聚焦透镜组合而成的耦合系统,可以实现平行光束与单模光纤的最佳耦合.文中给出了该耦合系统的参数计算公式,并进行了计算机数字式计算,最后推导给出了最佳结构参数计算的解析公式.表明给出的耦合系统具有唯一最佳结构参数解,并且这种解具有和谐的对称性. 关键词耦合;自聚焦透镜;单模光纤 OPTIMIZED COUPLING OF GRADIENT INDEX ROD LENSES WITH SINGLE MODE FIBER GaoYingjun,YaoShengli,GaoFeng Xi′an Institute of Optics and Precision Mechanics,Xi′an,China 710068 Abstract A coupling system composed of two-pieces of gradient index rod lenses is developed to achieve optimized coupling between a collimating light beam and a single mode fiber.The calculating expressions for the construction parameters of the coupling system are given,and the digital computing by using computer was carried out,the analytical formula for obtaining the optimized construction parameters were derived.The formula show that the best solution for the coustruction parameters is exist and unique,and is harmonic and symmetric. Keywords Coupling;Gradient index rod lens;Single mode fiber 0 引言 在光纤的使用实践中,经常需要解决光束与单模光纤(single Mode Fiber,SMF)的高效耦合问题.自聚焦透镜(Gradient Index Rod Lens,GRIN or Selfoc Lens)由于其优越的小体积、平端面、易加工、易调整对准、易耦合组装、耦合效率高,而特别地受到重用.然而单片自聚焦透镜由于其确定的性能参数,难以同时满足单模光纤的小芯径(约8~

科学凸透镜聚焦原理

教具: 1、分组实验材料:光学实验盒(凸透镜、纸屏、蜡烛、火柴等)放大镜,滴管,盛水的玻璃杯 2、课件:凸透镜光学示意图、成像示意图 教学目的: 1、掌握凸透镜放大、聚光、使物体成像的特点,并会使用凸透镜。 2、培养学生的实验能力——初步学会做凸透镜成像的实验;归纳概括能力——通过反复实验,归纳凸透镜成像大小的规律。 3、通过实验和制作,培养学生认真细致的科学态度;通过研究凸透镜的成像规律,培养学生的探究精神。 教学内容: 一、导入新课 猜谜导入:同学们,老师今天特意带来一个谜语,想考考大家,有信心吗?(出示谜语:小小玻璃片,作用可真大。老爷爷用到它,读书、看报都不怕;老奶奶用到它,做的针线活人人夸;小朋友用到它,科学发现成绩大。)学生自由猜谜。教师根据实际情况随机引导,揭示谜底是老花镜,然后指出老花镜其实是凸透镜。引入今天的课题《凸透镜》。 二、师生互动探究新知 (一)学生分组进行观察实验活动:亲密接触,认识凸透镜老师为每一个小组准备了一些放大镜(师出示一个放大镜)。请大家仔细观察或用手摸一摸,看它在外形上有哪些特点?咱们比一比看一看谁观察得仔细。 1、学生分组观察:(教师随机指导)(此观察活动大约需要3—4分钟要保证给学生充足的时间,直到每一同学都仔细观察一遍,以满足学生的好奇心) 2、学生在小组之间互相交流描述自己所观察的放大镜。 3、学生分小组汇报观察结果 小结:通过刚才的观察,我们发现,这些放大镜虽然有的中间厚一些,有的薄一些,实验用放大镜由镜片、镜框、镜柄三部分组成,但它们的共同特点是:边缘薄,中间厚,镜片透明。人们根据放大镜这一特点,又给它起了个名字,叫凸透镜。(板:凸透镜)我们把中间厚、边缘薄的透明镜片叫做凸透镜。这节课我们就来研究关于凸透镜的知识。 (二)亲身体验,分组研究凸透镜的作用同学们以前玩过放大镜和激光灯吗?那你一定有很多玩法!你想怎样玩?会有什么发现?每一个小组商量一个玩的方案,在做好简单的分工,玩的过程要及时记录产生的问题、疑惑和自己的发现。 学生分小组商议、分工、进行探究,记录。气氛活跃,热烈。 教师在小组内巡视,并做提示:不要用激光灯照射眼睛!不要用凸透镜看太阳,否则会灼伤眼睛! 1. 学生分小组研究凸透镜放大和聚光的作用,然后汇报自己小组的发现。 教师小结:看来,玩中真有大名堂!通过玩,我们发现了凸透镜有放大、聚光的作用,你们真棒!(在玩放大镜的过程中,教师可放手让学生尽情地玩,并时刻提示学生怎样做有危险性在玩中学生肯定会有自己的许多发现,教师应恰当地进行点播,使学生清楚放大镜的放大和聚光的作用。) 2. 亲手实践,探究凸透镜有成像的规律(1)实验指导咱们继续来尝试一种新的玩法, 好不好?老师已经给大家准备好了实验材料。(实验器材每四人一组,每组的实验装置为:蜡烛、火柴、凸透镜、纸屏、小瓷盘。实验桌上有一张记录卡。) 大家把蜡烛、凸透镜、纸屏直立在桌面上,然后用火柴点燃蜡烛(师提示要注意安全),调整蜡烛、凸透镜、纸屏三者的位置,看看有什么发现?

光纤准直器原理

3) 而且, q 1 q 0 l , q 2 q 3 l w /2, q 0 i 2 w01 if 1, q 3 i 2 w 02 2 if 2。 一 . 模型 光纤准直器通过透镜能实现将从发散角较大 (束腰小) 的光束转换为发散角 较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们 将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 其中, q i ( i=0,1,2,3 )为高斯光束的 q 参数,q 参数定义为: 图 1 中, q i (i=0,1,2,3 )分别表示光纤端面,透镜入射面,透镜出射面,和出 射光束的束腰处的 q 参数,而w 01和 w 02分别表示透镜变换前后的束腰; l 表示光 纤端面与透镜间隔, l w 为准直器的设计工作距离。 二 . 理论分析 根据 ABCD 理论,高斯光束 q 参数经透镜变换后, Aq 1 B q2 Cq 1 D , 光纤准直器原理 曾孝奇 11 qz Rz i w 2z , 1) 2 , w z w 0 1 2 w 2)

这样,我们可以得到经过透镜后的束腰大小: AD BC w 02 w 01 2 Cl D 2 Cf 1 工作距离: 2 l 2 Al B Cl D ACf 12 , ( 5) l w 2 2 2 , ( 5) w Cl D 2 Cf 1 2 方程( 5)是关于 l 的二次方程,为使得 l 有实根,方程( 5)的判别式应该不小 于零,从而我们可以得到: AD BC 2ACf 1 , w 2 , C 2 f 1 方程( 6)表示准直器的工作距离有上限,就是一个最大工作距离 2D l wmax AD BC 2ACf 1 / C 2 f 1 。此时,我们得到: l f 1 D 。 C 分析:不论对于何 种透镜, 准直器的出射光斑和工作距离都取决于透镜的传 输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的 距离 l 有关, 也就是说,对于给定的入射光束和给定的透镜, 我们可以通过在透 镜焦距附近改变 l 来实现不同的工作距离。 在实际制作准直器当中, 我们正是通 过这种方法来实现不同的工作距离的。 进一步地, 如果我们需要定量计算准直器的出射束腰和工作距离, 需要具体 知道不同透镜的 ABCD 系数。对于 G Lens (自聚焦透镜,通常为 0.23P ),它的 ABCD 矩阵为: 1 cos AL 1 sin AL n o A , ( 7) n o Asin AL cos AL 其中,n 0 透镜的透镜的轴线折射率, L 为透镜的中心厚度, A 为透镜的聚焦常数。 由于G Lens 的ABCD 系数取决于 n 0,L 和 A ,因而,适当选择这些参数,同样能 改变准直器的出射光斑大小和工作距离。 对于 C lens ( 厚透镜 ) ,它的传输矩阵为: 4) 6) C A D B

方形自聚焦透镜的折射率分布研究

第34卷第2期2010年3月激光技术 LASERTECHNOLOGY V01.34,No.2 March,2010 文章编号:1001—3806(2010)02.0268.04 方形自聚焦透镜的折射率分布研究 杨永佳,周自刚’,韩艳玲,孙光春,王强 (西南科技大学理学院,绵阳621900) 摘要:为了获得方形自聚焦透镜的折射率分布,提出了一种求解其折射率分布的半经验方法。该方法利用圆形边界条件下获得的扩散方程的解去近似方形边界条件下扩散方程的解,该近似解中的4个待定系数用雅明干涉法测得的方形自聚焦透镜4个位置点上的折射率来确定。该方法避免了在方形边界条件下求解扩散方程的复杂过程,得到的半经验公式形式简单、计算方便,利用半经验公式计算得到的折射率与实验结果吻合得较好,二者之间的最大相对误差为0.94%,平均相对误差不超过0.3%。该公式为以后研究方形自聚焦透镜阵列成像问题提供了可供参考的理论依据。 关键词:信息光学;折射率分布;雅明干涉;方形自聚焦透镜 中图分类号:0435.1文献标识码:Adoi:10.3969/j.issn.1001-3806.2010.02.034 Studyonrefractiveindexdistributionofthesquareself-focusinglens YANGrong-jia,ZHOUZi—gang,HANYan—ling,SUNGuang—chun,WANGQia凡g (SchoolofScience,SouthwestUniversityofScienceandTechnology,Mianyang621000,China)Abstract:Inordertoacquiretherefractiveindexdistributionofasquareself-focusinglens.asemi-empiricalmethodwasputforward.Thediffusionequation’ssolutionunderthesquareboundaryconditionsWasapproximatedbythesolutionunderthe circularboundaryconditions.Thefourunknowncoefficientsoftheapproximatesolutionwereacquiredbytheknownrefractiveindexofthesquareself-focusinglen¥.andtherefractiveindexWasobtainedbyJamininterfefence.Thismethodavoidsthe complexprocessofsolvingthediffusionequationunderthesquare boundaryconditions,andtheobtainedsemi—empiricalformulaisverysimpleandeasycalculation.Thecalculationresultagreeswellwiththeexperimentaldata,themaximalrelativeerroris0.94%,andtheaverageislessthan0.3%,thisformulaprovidesabasisforthetheoreticalanalysisofimagingofthesquareself-mixinglensesarrays. Keywords:informationoptics;refractiveindexdistribution;Jamininterference;squareself-focusinglens 引言 自聚焦透镜是应用十分广泛的一类有重要意义的透镜,由于自聚焦透镜具有数值孔径大(可大于0.6)、焦距短(焦点可位于端面上)、直径小、圆柱形、聚焦光斑小(可小于1斗m)、成像分辨率高等优点,已广泛用于光纤通信、光纤传感和光信息处理等领域¨引。随着科技的发展,微透镜的集成化和阵列化是发展的必然趋势[4引。当前应用的微透镜阵列大多数是由圆柱形或者半圆球形微透镜构成的,均因不能很好地消除透镜元之间的空隙对光信息的损耗,不可能从根本上解决提高受光面积、减少光信息损失等问题¨1。为了解决这一问题,作者研制出了方形自聚焦透镜¨1。 方形自聚焦透镜也是一种变折射率光学元件,但 作者简介:杨永佳(1983-),女,硕士研究生,现主要从事微小光学的研究。 ?通讯联系人。E—mail:zhouzigan91973@163.com 收稿日期:2009-Ol一14;收到修改稿日期:2009—04-09 由于本身的特点,折射率分布不单纯关于某个轴对称,即折射率分布从整体上而言,不再是l维的,而变成了2维的情况旧J。要得到方形自聚焦透镜的折射分布,需要严格求解方形边界条件的扩散方程,但该过程较为复杂归J。作者首先介绍了制作自聚焦透镜的基本理论,然后从理论上分析了采用圆形边界条件下扩散方程的解,近似方形边界条件下扩散方程的解的可行性,在此基础上得到了一个描述自聚焦透镜折射率分布的半经验公式,该公式形式简单,对折射率的计算非常方便且有较高的精度。 1制作方形自聚焦透镜的基本理论 引起玻璃介质折射率变化的原因有很多种,最重要的一种就是通过离子交换使玻璃介质中的某种离子数目发生变化,其原理¨训就是在热驱动条件下,让引进的扩散离子部分置换玻璃中的某种离子,从而使得玻璃中该种离子数目按一定规律变化,并引起折射率也按相应的规律变化。 万方数据

薄透镜焦距的测量实验报告

一、实验综述 1、实验目的及要求 (1)了解对简单光学系统进行共轴调节 (2)学会用自准直法测量薄凸透镜的焦距 (3)学会用位移法测量薄凸透镜的焦距 (4)学会用物距-像距法测量薄凸透镜的焦距 (5)学会用物距-像距法测凹透镜的焦距 2、实验仪器、设备或软件 光具座,凸透镜,凹透镜,光源,物屏,平面反射镜,水平尺和滤光片等 二、实验过程(实验步骤、记录、数据、分析) (1)观测依据 1.自准直法测薄凸透镜的焦距 根据焦平面的定义,用右图所示的光路,可方便地 测出凸透镜的焦距 f = | x l - x 0 | 2.物距——像距法测凸透镜焦距 在傍轴光线成像的情况下,成像规律满足高斯公式 v u f 1 11+= v u v u f +?= 如图所示,式中u 和v 分别为物距和像距, f 为凸透镜焦距,对f 求解,并以坐标代入则有 f = o i l i o l x x x x x x --?- (x o <x L <x i ) x o 和x L 取值不变(取整数),x i 取一组测量平均值。 3.位移法测透镜焦距 (亦称共轭法、二次成像法) 如右图所示,当物像间距 D 大于 4 倍焦距 即D > 4 f 时,透镜在两个位置上均能对给定物成理 想像于给定的像平面上。两次应用高斯公式并以几何关系和坐标代入,则得到 x o 和x i 取值不变(取整数),x L1和x L2各取一组测量平均值。 4.用物距-像距法测凹透镜的焦距 o i l l o i x x x x x x D d D f -?---=-=4)()(421222 2

B! 在上图中:L1为凸透镜,L2为凹透镜,凹透镜坐标位置为X L ,F1为凸透镜的焦点,F2为凹透镜的焦点,AB 为光源,A1B1为没有放置凹透镜时由凸透镜聚焦成的实像,同时也是放置凹透镜后凹透镜的虚物,坐标位置为X O ,A2B2为凹透镜所成的实像,坐标位置为X i 。 对凹透镜成像,虚物距u=X L -X o ,应取负值(x L <x o );实像距v=X i -X L 为正值(x L <x i );则凹透镜焦距f 2为: ) () ()(2o i l i o l X X X X X X v u v u f --?-= +?= <0 (凹透镜焦距为负值!!!) x L 取值不变,x o 和x i 各取一组测量平均值。 (2)实验步骤: 1.自准直法测凸透镜焦距 如图1布置光路,调透镜的位置,高低左右等,使其对物成与物同样大小的实像于物的 下方,记下物屏和透镜的位置坐标 x 0 和 x L 。 2.物距——像距法测凸透镜焦距 如图2布置光路,固定物和透镜的位置,使它们之间的距离约为焦距的 2 倍;移动像屏使成像清晰; 调透镜的高度,使物和像的中点等高;左右调节透镜和物屏,使物与像中点连线与光具座的轴线平行;用左右逼近法确定成理想像时,读像屏的坐标。重复测量 5 次。 3.用位移法进行共轴调节 参照图3布置光路,放置物屏和像屏,使其间距 D > 4 f ,移动透镜并对它进行高低、 左右调节,使两次所成的像的顶部(或底部)之中心重合,需反复进行数次调节,方能达到共轴要求。 4.位移法测焦距 在共轴调节完成之后,保持物屏和像屏的位置不变,并记下它们的坐标 x 0 和x i ,移动透镜,用左右逼近法确定透镜的两次理想位置坐标 x L 1 和 x L 2 。测量5次。 5.用物距——像距法测量凹透镜的焦距,要求测三次。 6.组装显微镜并测其放大率。 数据记录和处理 1 根据公式:f = | x l - x 0 |=195 2.物距——像距法 物坐标 x 0 = mm 透镜坐标 x L = mm x i 的测量平均值为 mm B2 L2

镜头设计

光学镜头设计 自 聚 焦 透 镜 姓名:董杏杰 学号:120514130 专业:12级光伏 2015年6月22日

光学系统的设计要求 任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求,这些要求概况起来有以下几个方面: 一、光学系统的基本特性 光学系统的基本特性有:数值孔径或相对孔径;视场角或线视角;系统的放大率或焦距。此外还有这些基本特性相关的一些参数,如光瞳的大小和位置、后工作距离、共轭距等。 二、系统的外形尺寸 外形尺寸也就是系统的横向尺寸和纵向尺寸。在设计多光组的复杂光学系统时,外形尺寸计算以及各光组之间光瞳的衔接都是很重要的。 三、成像质量 成像质量的要求和光学系统的用途有关。不同的光学系统按其用途可提出不同的成像质量要求。对于望远系统和一般的显微镜只要求中心视场有较好的成像质量;对于照相物镜要求整个视场都要有较好的成像质量。 四、仪器的使用条件 在对光学系统提出使用要求时,一定要考虑在技术上和物理上可实现的可能性。如生物显微镜的放大率m要满足500NA≤m≤1000NA条件,望远镜的视觉放大率一定要把望远系统的极限分辨率和眼睛的极限分辨率一起来考虑。 光学系统的设计过程 所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。因此我们可以把光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。 一、外形尺寸计算 在各个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。因此,常把这个阶段成为外形尺寸计算。一般都按理想光学系统的理论和计算公式进行外形尺寸计算。在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。每项性能的确定一定要合理,过高的要求会使设计结果复杂造成浪费,过低要求会使设计

自聚焦透镜产品说明书范本

自聚焦透镜 产品讲明书 北京旭廷科技开发有限公司 2004年8月

讲明书目录 1.产品概述及参数列 表 (1) 2.订货信 息 (3) 3.使用注意事 项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,同时能够在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。

本公司生产的自聚焦透镜要紧用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不同意存在直径大于30um的缺陷;不同意直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不同意宽度超过5um的划伤;同意宽度小于2um的划伤存在;不同意宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 要紧应用参数如下表:

其他技术指标如下: 2.产品订货信息 本公司产品采纳如下命名方法:

43o 55o 74o A-孔径角2θ 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长(nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550 E-镀膜单面镀膜双面镀膜不镀膜 序号AR1 AR2 N F-角度1o 2o 3o 4o 2o 4o 6o 8o 序号1D 2D 3D 4D 2 4 6 8 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o同时双面镀膜。 依照客户要求,可对透镜进行的专门工艺处理讲明如下: (1)端面角度化处理:此种处理能够有效减少回光反射。有

自聚焦透镜产品说明书范本

自聚焦透镜产品说明书 北京旭廷科技开发有限公司 2004年8月

说明书目录 1.产品概述及参数列表 (1) 2.订货信息 (3) 3.使用注意事项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。 本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 主要应用参数如下表:

其他技术指标如下:

最小透镜长度 2.3 mm(对镀膜透镜) 圆柱度≤5μm 面垂直度≤6 mrad 材料耐温≤350 o C 热胀系数10×10-6/ o C 2.产品订货信息 本公司产品采用如下命名方法: A-孔径角2θ43o 55o 74o 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长 (nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550

光纤准直器原理

(5) 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰 大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束 认为是基模高斯光束;光纤准直器基本模型如下: 图1光纤准直器原理示意图 其中,q i (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: i i ; (i ) q z R z 1 2 ? w z 丄2 2 2 f “ z 上 w 0 R z z , w z Wo .〔 一 , f 7 (2) z \ f 图1中,q i (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰 处的q 参数,而w oi 和W 02分别表示透镜变换前后的束腰;I 表示光纤端面与透镜间隔,l w 为 准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, 工作距离: 2 Al B Cl D ACf i 光纤准直器原理 曾孝奇 q 2 Aq i Cq i (3) 2 而且, q i q o 1 , q 2 q 3 I w /2 , q o i if i , q 3 2 ? W 02 i - if 2。 这样,我们可以得到经过透镜后的束腰大小: W 02 (4) W oi

2 严, Cf i Cl D 2 (5)

方程(5)是关于I 的二次方程,为使得I 有实根,方程(5)的判别式应该不小于零,从而 我们可以得到: AD BC 2ACf i C 2f i 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 I wmax AD BC 2ACf i /C 2f i o 此时,我们得至U : I f 1 -。 C 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离 I 有关,也就 是说,对于 给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变 I 来实现不同 的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透 镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: A C B cos JAL — si n VAL D n -A , (7) n o J A s in UAL cos JAL 其中,n 。透镜的透镜的轴线折射 率, L 为透镜的中心厚度,、A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于n o ,L 和.A ,因而,适当选择这些参数,同样能改变准直器的出射光 斑大小和工作距离。 对于C Iens (厚透镜),它的传输矩阵为: A C 三. 实例分析 本小组采用C lens 已制作的一些准直器, 曲率半径R=1.2mm ,透镜长度L=2.5mm ,C lens 采用SF11材料,在1550nm 处折射率 n=1.744742另外,从单模光纤SMF28出射的光斑半径为 w °1 5 口m 。这样,根据以上理论 分析,我们容易得到出射光在不同位置的光斑大小,并且,我们将理论计算值与 Beamsca n 得到的测量值比较,如下表: (6) 门 o (8) C lens 参数如下:

相关文档
最新文档