【CN109856729A】一种分光自聚焦透镜镀膜方法及Glens透镜【专利】

【CN109856729A】一种分光自聚焦透镜镀膜方法及Glens透镜【专利】
【CN109856729A】一种分光自聚焦透镜镀膜方法及Glens透镜【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910183753.3

(22)申请日 2019.03.12

(71)申请人 飞秒光电科技(西安)有限公司

地址 710119 陕西省西安市高新区新型工

业园发展大道18号

(72)发明人 张红菊 刘政 

(74)专利代理机构 西安佩腾特知识产权代理事

务所(普通合伙) 61226

代理人 张倩

(51)Int.Cl.

G02B 6/32(2006.01)

G02B 3/00(2006.01)

G02B 1/10(2015.01)

C23C 14/30(2006.01)

(54)发明名称

一种分光自聚焦透镜镀膜方法及Glens透镜

(57)摘要

本发明涉及分光自聚焦透镜镀膜方法及

Glens透镜,包括以下方法:1)确定膜系结构:根

据Glens透镜的折射率分布及技术需求,确定高

折射率材料H和低折射率材料L,进而确定初步膜

系结构;2)优化膜系结构:根据技术需求和初步

膜系结构,利用TFC软件,计算初步膜系结构的等

效折射率,对初步膜系结构进行优化,得到优化

膜系结构;3)根据优化的膜系结构采用IAD离子

束辅助沉积法在Glens透镜的出光面上镀膜。本

发明解决了现有的分光膜镀膜方式所存在的问

题,本发明为Glens透镜提供了一种镀膜方法,工

艺简单,

稳定性高。权利要求书1页 说明书3页 附图2页CN 109856729 A 2019.06.07

C N 109856729

A

权 利 要 求 书1/1页CN 109856729 A

1.一种分光自聚焦Glens透镜镀膜方法,其特征在于,包括以下方法:

1)确定膜系结构:

根据Glens透镜的折射率分布及技术需求,确定高折射率材料H和低折射率材料L,进而确定初步膜系结构;

2)优化膜系结构:

根据技术需求和初步膜系结构,利用TFC软件,计算初步膜系结构的等效折射率,对初步膜系结构进行优化,得到优化膜系结构;

3)根据优化的膜系结构采用IAD离子束辅助沉积法在Glens透镜的出光面上镀膜。

2.根据权利要求1所述的分光自聚焦镀膜方法,其特征在于,在步骤3)之前还包括在Glens透镜的出光面涂布结合层。

3.一种分光自聚焦Glens透镜,其特征在于:包括透镜本体,所述透镜本体的出光面上镀有分光膜。

4.根据权利要求3所述的分光自聚焦Glens透镜,其特征在于:还包括结合层,透镜出光面与分光膜之间涂布有结合层。

5.根据权利要求3或4所述的分光自聚焦Glens透镜,其特征在于:所述分光膜包括高折射率材料层和低折射率材料层。

6.根据权利要求5所述的分光自聚焦Glens透镜,其特征在于:分光膜的结构为LH0.35LHLH0.5L1.2H(LH)^6L1.6H0.5L1.4H1.6L0.7HL,其中L代表低折射率材料层,H代表高折射率材料层,数字代表当前层的厚度,^6代表(LH)层重复6次。

2

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

光纤准直器的结构与参数

?光纤准直器是光无源器件中的一个重要的组件,在光通信系统中有着非常普遍的应用。 它是由单模尾纤和准直透镜组成,具有低插入损耗,高回波损耗,工作距离长,宽带宽,高 稳定性,高可靠性,小光束发散角,体积小和重量轻等特点。可将光纤端面出射的发散光束变换为平行光束,或者将平行光束会聚并高效率耦合入光纤,是制作多种光学器件的基础器件,因此被广泛应用于光束准直,光束耦合,光隔离器,光衰减器,光开关,环行器, MM,密集波分复用器ES之中。 目录 ?光纤准直器的结构与参数 ?光纤准直器的原理 ?光纤准直器的优点 ?光纤准直器的装配 光纤准直器的结构与参数 ?光纤准直器的结构参数如图5 所示,因光纤头端面的8 度斜角,造成输出光束与准直器轴线存在夹角θ,称为点精度。图6 所示为两准直器的理想耦合情况,二者的输出光场完全重合,其间距为准直器的工作距离Zw。准直器输出高斯光束的束腰距离其端面Zw/2,束腰直径为2ωt,而高斯光束的发散角与其束腰直径成反比关系。到此我们介绍了光纤准直器的三个主要参数:工作距离、点精度和光斑尺寸。 光纤准直器的原理 ?光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处,使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得到所需工作距离,因此准直器的工作距离与光纤头和透镜的间距L相关。光纤准直器的设计方法是,根据实际需求确定准直器的工作距离,依据高斯光束传输理论,确定光纤头和透镜间距L并计算光斑尺寸,然后依据光线理论计算准直器的点精度。 光纤准直器的优点 ?低插损、高回损、尺寸小 工作距离长、宽带宽

高稳定性、高可靠性 光纤准直器的装配 (1)采用斜端面插针耦合,可大大提高光纤准直器的回波损耗,当斜面倾角为8°01%增 透膜时,光纤准直器的时,光纤准直器的自聚焦透镜后端面镀反射率为0.回波损耗可达 60dB。采用斜端面插针耦合,主要是为了满足器件高回波损耗的求,角度越大,准直器的回波损耗越大。但插针的端面角度越大,准直器的插入损耗就会越大(要求是:插入损耗越小越好,回波损耗越大越好),这和准直器要求的低插入损耗矛盾,对于准直器插入损耗而言,透镜和毛细管是垂直端面最为理想。因此本文采用8°是针对环行器在这种互相制约关系下的一个折中。视应用场合不同其端面斜角可做成6°、8°、9°、11°或任何角度。 (2)透镜与光纤毛细管端面的间隙也主要是和器件高回波损耗有关,为了达到器件高回 波损耗的要求,其间隙一般大于200μm,当间隙大于200μm,器件的回波损耗值近似达到理论上最大值。但透镜和毛细管端面的间隙越大,同时会造成准直器的插入损耗增大,这又是一对矛盾,根据准直器图纸的精度要求,其间隙是0.385mm,这同时能满足高回波损耗的距离要求,也能使其插入损耗达到要求。准直器的插入损耗和回波损耗相比较而言,回波损耗更容易保证,因此在准直器装配时,以其插入损耗为检测依据,就是这个道理。

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

光纤准直器原理

光纤准直器原理 曾孝奇 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 图1 光纤准直器原理示意图 其中,i q (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: ()()() z w i z R z q 211πλ-=, (1) ()z f z z R 2 +=,()2 01??? ? ??+=f z w z w ,λπ2 0w f =; (2) 图1中,i q (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰处的q 参数,而01w 和02w 分别表示透镜变换前后的束腰;l 表示光纤端面与透镜间隔,l w 为准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, D Cq B Aq q ++= 112, (3) 而且,l q q +=01,2/32w l q q -=,12 010if w i q ==λπ,22 023if w i q ==λ π。

这样,我们可以得到经过透镜后的束腰大小: () () 2 12 01 02Cf D Cl BC AD w w ++-=, (4) 工作距离: ()()()()2 12212 Cf D Cl ACf D Cl B Al l w +++++-=, (5) 方程(5)是关于l 的二次方程,为使得l 有实根,方程(5)的判别式应该不小于零,从而我们可以得到: 1 2 1 2f C ACf BC AD l w --≤ , (6) 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 ()() 121max /2f C ACf BC AD l w --=。此时,我们得到:C D f l - =1。 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离l 有关,也就是说,对于给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变l 来实现不同的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: () () () () ?? ? ? ???? ?? -=??????L A L A A n L A A n L A D C B A o o cos sin sin 1 cos , (7) 其中,0n 透镜的透镜的轴线折射率,L 为透镜的中心厚度,A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于0n ,L 和A ,因而,适当选择这些参数,同样能改变准直器的出射光斑大小和工作距离。 对于 C lens(厚透镜),它的传输矩阵为:

用自聚焦透镜作平行光束

光子学报 ACTA PHOTONICA SINICA 1999年第28卷第2期Vol.28No.21999 用自聚焦透镜作平行光束 与单模光纤的最佳耦合 高应俊姚胜利高凤 摘要本文提出一种用两片自聚焦透镜组合而成的耦合系统,可以实现平行光束与单模光纤的最佳耦合.文中给出了该耦合系统的参数计算公式,并进行了计算机数字式计算,最后推导给出了最佳结构参数计算的解析公式.表明给出的耦合系统具有唯一最佳结构参数解,并且这种解具有和谐的对称性. 关键词耦合;自聚焦透镜;单模光纤 OPTIMIZED COUPLING OF GRADIENT INDEX ROD LENSES WITH SINGLE MODE FIBER GaoYingjun,YaoShengli,GaoFeng Xi′an Institute of Optics and Precision Mechanics,Xi′an,China 710068 Abstract A coupling system composed of two-pieces of gradient index rod lenses is developed to achieve optimized coupling between a collimating light beam and a single mode fiber.The calculating expressions for the construction parameters of the coupling system are given,and the digital computing by using computer was carried out,the analytical formula for obtaining the optimized construction parameters were derived.The formula show that the best solution for the coustruction parameters is exist and unique,and is harmonic and symmetric. Keywords Coupling;Gradient index rod lens;Single mode fiber 0 引言 在光纤的使用实践中,经常需要解决光束与单模光纤(single Mode Fiber,SMF)的高效耦合问题.自聚焦透镜(Gradient Index Rod Lens,GRIN or Selfoc Lens)由于其优越的小体积、平端面、易加工、易调整对准、易耦合组装、耦合效率高,而特别地受到重用.然而单片自聚焦透镜由于其确定的性能参数,难以同时满足单模光纤的小芯径(约8~

光纤准直器原理

3) 而且, q 1 q 0 l , q 2 q 3 l w /2, q 0 i 2 w01 if 1, q 3 i 2 w 02 2 if 2。 一 . 模型 光纤准直器通过透镜能实现将从发散角较大 (束腰小) 的光束转换为发散角 较小(束腰大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们 将从光纤中的出射光束认为是基模高斯光束;光纤准直器基本模型如下: 其中, q i ( i=0,1,2,3 )为高斯光束的 q 参数,q 参数定义为: 图 1 中, q i (i=0,1,2,3 )分别表示光纤端面,透镜入射面,透镜出射面,和出 射光束的束腰处的 q 参数,而w 01和 w 02分别表示透镜变换前后的束腰; l 表示光 纤端面与透镜间隔, l w 为准直器的设计工作距离。 二 . 理论分析 根据 ABCD 理论,高斯光束 q 参数经透镜变换后, Aq 1 B q2 Cq 1 D , 光纤准直器原理 曾孝奇 11 qz Rz i w 2z , 1) 2 , w z w 0 1 2 w 2)

这样,我们可以得到经过透镜后的束腰大小: AD BC w 02 w 01 2 Cl D 2 Cf 1 工作距离: 2 l 2 Al B Cl D ACf 12 , ( 5) l w 2 2 2 , ( 5) w Cl D 2 Cf 1 2 方程( 5)是关于 l 的二次方程,为使得 l 有实根,方程( 5)的判别式应该不小 于零,从而我们可以得到: AD BC 2ACf 1 , w 2 , C 2 f 1 方程( 6)表示准直器的工作距离有上限,就是一个最大工作距离 2D l wmax AD BC 2ACf 1 / C 2 f 1 。此时,我们得到: l f 1 D 。 C 分析:不论对于何 种透镜, 准直器的出射光斑和工作距离都取决于透镜的传 输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的 距离 l 有关, 也就是说,对于给定的入射光束和给定的透镜, 我们可以通过在透 镜焦距附近改变 l 来实现不同的工作距离。 在实际制作准直器当中, 我们正是通 过这种方法来实现不同的工作距离的。 进一步地, 如果我们需要定量计算准直器的出射束腰和工作距离, 需要具体 知道不同透镜的 ABCD 系数。对于 G Lens (自聚焦透镜,通常为 0.23P ),它的 ABCD 矩阵为: 1 cos AL 1 sin AL n o A , ( 7) n o Asin AL cos AL 其中,n 0 透镜的透镜的轴线折射率, L 为透镜的中心厚度, A 为透镜的聚焦常数。 由于G Lens 的ABCD 系数取决于 n 0,L 和 A ,因而,适当选择这些参数,同样能 改变准直器的出射光斑大小和工作距离。 对于 C lens ( 厚透镜 ) ,它的传输矩阵为: 4) 6) C A D B

方形自聚焦透镜的折射率分布研究

第34卷第2期2010年3月激光技术 LASERTECHNOLOGY V01.34,No.2 March,2010 文章编号:1001—3806(2010)02.0268.04 方形自聚焦透镜的折射率分布研究 杨永佳,周自刚’,韩艳玲,孙光春,王强 (西南科技大学理学院,绵阳621900) 摘要:为了获得方形自聚焦透镜的折射率分布,提出了一种求解其折射率分布的半经验方法。该方法利用圆形边界条件下获得的扩散方程的解去近似方形边界条件下扩散方程的解,该近似解中的4个待定系数用雅明干涉法测得的方形自聚焦透镜4个位置点上的折射率来确定。该方法避免了在方形边界条件下求解扩散方程的复杂过程,得到的半经验公式形式简单、计算方便,利用半经验公式计算得到的折射率与实验结果吻合得较好,二者之间的最大相对误差为0.94%,平均相对误差不超过0.3%。该公式为以后研究方形自聚焦透镜阵列成像问题提供了可供参考的理论依据。 关键词:信息光学;折射率分布;雅明干涉;方形自聚焦透镜 中图分类号:0435.1文献标识码:Adoi:10.3969/j.issn.1001-3806.2010.02.034 Studyonrefractiveindexdistributionofthesquareself-focusinglens YANGrong-jia,ZHOUZi—gang,HANYan—ling,SUNGuang—chun,WANGQia凡g (SchoolofScience,SouthwestUniversityofScienceandTechnology,Mianyang621000,China)Abstract:Inordertoacquiretherefractiveindexdistributionofasquareself-focusinglens.asemi-empiricalmethodwasputforward.Thediffusionequation’ssolutionunderthesquareboundaryconditionsWasapproximatedbythesolutionunderthe circularboundaryconditions.Thefourunknowncoefficientsoftheapproximatesolutionwereacquiredbytheknownrefractiveindexofthesquareself-focusinglen¥.andtherefractiveindexWasobtainedbyJamininterfefence.Thismethodavoidsthe complexprocessofsolvingthediffusionequationunderthesquare boundaryconditions,andtheobtainedsemi—empiricalformulaisverysimpleandeasycalculation.Thecalculationresultagreeswellwiththeexperimentaldata,themaximalrelativeerroris0.94%,andtheaverageislessthan0.3%,thisformulaprovidesabasisforthetheoreticalanalysisofimagingofthesquareself-mixinglensesarrays. Keywords:informationoptics;refractiveindexdistribution;Jamininterference;squareself-focusinglens 引言 自聚焦透镜是应用十分广泛的一类有重要意义的透镜,由于自聚焦透镜具有数值孔径大(可大于0.6)、焦距短(焦点可位于端面上)、直径小、圆柱形、聚焦光斑小(可小于1斗m)、成像分辨率高等优点,已广泛用于光纤通信、光纤传感和光信息处理等领域¨引。随着科技的发展,微透镜的集成化和阵列化是发展的必然趋势[4引。当前应用的微透镜阵列大多数是由圆柱形或者半圆球形微透镜构成的,均因不能很好地消除透镜元之间的空隙对光信息的损耗,不可能从根本上解决提高受光面积、减少光信息损失等问题¨1。为了解决这一问题,作者研制出了方形自聚焦透镜¨1。 方形自聚焦透镜也是一种变折射率光学元件,但 作者简介:杨永佳(1983-),女,硕士研究生,现主要从事微小光学的研究。 ?通讯联系人。E—mail:zhouzigan91973@163.com 收稿日期:2009-Ol一14;收到修改稿日期:2009—04-09 由于本身的特点,折射率分布不单纯关于某个轴对称,即折射率分布从整体上而言,不再是l维的,而变成了2维的情况旧J。要得到方形自聚焦透镜的折射分布,需要严格求解方形边界条件的扩散方程,但该过程较为复杂归J。作者首先介绍了制作自聚焦透镜的基本理论,然后从理论上分析了采用圆形边界条件下扩散方程的解,近似方形边界条件下扩散方程的解的可行性,在此基础上得到了一个描述自聚焦透镜折射率分布的半经验公式,该公式形式简单,对折射率的计算非常方便且有较高的精度。 1制作方形自聚焦透镜的基本理论 引起玻璃介质折射率变化的原因有很多种,最重要的一种就是通过离子交换使玻璃介质中的某种离子数目发生变化,其原理¨训就是在热驱动条件下,让引进的扩散离子部分置换玻璃中的某种离子,从而使得玻璃中该种离子数目按一定规律变化,并引起折射率也按相应的规律变化。 万方数据

镜头设计

光学镜头设计 自 聚 焦 透 镜 姓名:董杏杰 学号:120514130 专业:12级光伏 2015年6月22日

光学系统的设计要求 任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求,这些要求概况起来有以下几个方面: 一、光学系统的基本特性 光学系统的基本特性有:数值孔径或相对孔径;视场角或线视角;系统的放大率或焦距。此外还有这些基本特性相关的一些参数,如光瞳的大小和位置、后工作距离、共轭距等。 二、系统的外形尺寸 外形尺寸也就是系统的横向尺寸和纵向尺寸。在设计多光组的复杂光学系统时,外形尺寸计算以及各光组之间光瞳的衔接都是很重要的。 三、成像质量 成像质量的要求和光学系统的用途有关。不同的光学系统按其用途可提出不同的成像质量要求。对于望远系统和一般的显微镜只要求中心视场有较好的成像质量;对于照相物镜要求整个视场都要有较好的成像质量。 四、仪器的使用条件 在对光学系统提出使用要求时,一定要考虑在技术上和物理上可实现的可能性。如生物显微镜的放大率m要满足500NA≤m≤1000NA条件,望远镜的视觉放大率一定要把望远系统的极限分辨率和眼睛的极限分辨率一起来考虑。 光学系统的设计过程 所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。因此我们可以把光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。 一、外形尺寸计算 在各个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。因此,常把这个阶段成为外形尺寸计算。一般都按理想光学系统的理论和计算公式进行外形尺寸计算。在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。每项性能的确定一定要合理,过高的要求会使设计结果复杂造成浪费,过低要求会使设计

自聚焦透镜产品说明书范本

自聚焦透镜 产品讲明书 北京旭廷科技开发有限公司 2004年8月

讲明书目录 1.产品概述及参数列 表 (1) 2.订货信 息 (3) 3.使用注意事 项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,同时能够在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。

本公司生产的自聚焦透镜要紧用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不同意存在直径大于30um的缺陷;不同意直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不同意宽度超过5um的划伤;同意宽度小于2um的划伤存在;不同意宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 要紧应用参数如下表:

其他技术指标如下: 2.产品订货信息 本公司产品采纳如下命名方法:

43o 55o 74o A-孔径角2θ 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长(nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550 E-镀膜单面镀膜双面镀膜不镀膜 序号AR1 AR2 N F-角度1o 2o 3o 4o 2o 4o 6o 8o 序号1D 2D 3D 4D 2 4 6 8 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o同时双面镀膜。 依照客户要求,可对透镜进行的专门工艺处理讲明如下: (1)端面角度化处理:此种处理能够有效减少回光反射。有

自聚焦透镜产品说明书范本

自聚焦透镜产品说明书 北京旭廷科技开发有限公司 2004年8月

说明书目录 1.产品概述及参数列表 (1) 2.订货信息 (3) 3.使用注意事项 (5) 附:自聚焦透镜原理简介 (6)

1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。 本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下: 针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。 划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 主要应用参数如下表:

其他技术指标如下:

最小透镜长度 2.3 mm(对镀膜透镜) 圆柱度≤5μm 面垂直度≤6 mrad 材料耐温≤350 o C 热胀系数10×10-6/ o C 2.产品订货信息 本公司产品采用如下命名方法: A-孔径角2θ43o 55o 74o 序号X1 X2 X3 B-直径(mm) 1.0 1.8 2.0 序号10 18 20 C-截距P 0.23 0.25 0.29 序号023 025 029 D-波长 (nm) 630 830 1060 1310 1550 序号630 830 1060 1310 1550

光纤准直器原理

(5) 一. 模型 光纤准直器通过透镜能实现将从发散角较大(束腰小)的光束转换为发散角较小(束腰 大)的光束,从而以较低损耗耦合进入其他光学器件。在这里,我们将从光纤中的出射光束 认为是基模高斯光束;光纤准直器基本模型如下: 图1光纤准直器原理示意图 其中,q i (i=0,1,2,3)为高斯光束的q 参数,q 参数定义为: i i ; (i ) q z R z 1 2 ? w z 丄2 2 2 f “ z 上 w 0 R z z , w z Wo .〔 一 , f 7 (2) z \ f 图1中,q i (i=0,1,2,3)分别表示光纤端面,透镜入射面,透镜出射面,和出射光束的束腰 处的q 参数,而w oi 和W 02分别表示透镜变换前后的束腰;I 表示光纤端面与透镜间隔,l w 为 准直器的设计工作距离。 二. 理论分析 根据ABCD 理论,高斯光束q 参数经透镜变换后, 工作距离: 2 Al B Cl D ACf i 光纤准直器原理 曾孝奇 q 2 Aq i Cq i (3) 2 而且, q i q o 1 , q 2 q 3 I w /2 , q o i if i , q 3 2 ? W 02 i - if 2。 这样,我们可以得到经过透镜后的束腰大小: W 02 (4) W oi

2 严, Cf i Cl D 2 (5)

方程(5)是关于I 的二次方程,为使得I 有实根,方程(5)的判别式应该不小于零,从而 我们可以得到: AD BC 2ACf i C 2f i 方程(6)表示准直器的工作距离有上限,就是一个最大工作距离 I wmax AD BC 2ACf i /C 2f i o 此时,我们得至U : I f 1 -。 C 分析:不论对于何种透镜,准直器的出射光斑和工作距离都取决于透镜的传输矩阵 ABCD ;对于给定的透镜,它们还跟入射光斑大小和光纤端面与透镜间的距离 I 有关,也就 是说,对于 给定的入射光束和给定的透镜,我们可以通过在透镜焦距附近改变 I 来实现不同 的工作距离。在实际制作准直器当中,我们正是通过这种方法来实现不同的工作距离的。 进一步地,如果我们需要定量计算准直器的出射束腰和工作距离,需要具体知道不同透 镜的ABCD 系数。对于G Lens (自聚焦透镜,通常为0.23P ),它的ABCD 矩阵为: A C B cos JAL — si n VAL D n -A , (7) n o J A s in UAL cos JAL 其中,n 。透镜的透镜的轴线折射 率, L 为透镜的中心厚度,、A 为透镜的聚焦常数。由于G Lens 的ABCD 系数取决于n o ,L 和.A ,因而,适当选择这些参数,同样能改变准直器的出射光 斑大小和工作距离。 对于C Iens (厚透镜),它的传输矩阵为: A C 三. 实例分析 本小组采用C lens 已制作的一些准直器, 曲率半径R=1.2mm ,透镜长度L=2.5mm ,C lens 采用SF11材料,在1550nm 处折射率 n=1.744742另外,从单模光纤SMF28出射的光斑半径为 w °1 5 口m 。这样,根据以上理论 分析,我们容易得到出射光在不同位置的光斑大小,并且,我们将理论计算值与 Beamsca n 得到的测量值比较,如下表: (6) 门 o (8) C lens 参数如下:

光纤与激光基础知识_肖

1、光纤传输条件 全反射条件 为了使光波在传输过程中光能量损耗尽可能小,需使光束在光纤内部传输时发生的内反射满足全反射条件。 谐振条件(相位条件) 考虑两列向前(光束分波前)传播的相干光在某一时刻的相位差及叠加情况,它们产生沿垂直于光纤光轴分布的相位差。这两列波产生谐振,或者相互减弱,这就是并非所有满足全反射条件的光波都能在光纤内部形成稳定的传输。 能够在光纤内稳定传输的光波,除了要满足全反射条件外,还要满足谐振条件-相长干涉条件,光波的入射角应满足: πδδθm nk i 2cos 2210=++ 才能在光纤内部形成稳定传输。对于给定光纤,能够在内部稳定传输的光波 之入射角i θ仅仅取一些分立值。 每个i θ值对应一个m 值,称为光纤内光场分布的一种模。 2、光纤的色散 光纤色散是决定光纤传输带宽的重要参数,限制传输容量、决定最大中继距离。光纤色散是指输入光脉冲在光纤中传输时由于各波长的群速度不同而引起光脉冲展宽的现象,即传输延时。光纤色散的存在使传输的信号脉冲发生畸变,从而限制了光纤的传输带宽。色散对数字信号通信的影响:目前光纤通信都采用脉冲编码形式,由于不同波长光波在介质中传播速度不一致,从而使得不同波长光波到达光纤终端时产生延时差。由于各个波长成分到达的时间先后不一致,因而使叠加后的脉冲加长了,这叫脉冲展宽。传输距离越远脉冲展宽现象越严重,比特率越低。光纤不是用来传输单个脉冲的,而是用来传输一个脉冲序列,要把宽度几乎为零的脉冲序列传输到接收端,要在接收端把这个脉冲序列区分开来,则脉冲序列的重复频率—即为比特率。 光纤色散可以分为三类:材料色散、波导色散、模间色散,光纤色散(延时差)是这几类色散(延时差)之和。

旭廷自聚焦透镜产品说明书

旭廷自聚焦透镜产品说 明书 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

自聚焦透镜 产品说明书 北京旭廷科技开发有限公司 2004年8月 说明书目录 1.产品概述及参数列表 (1) 2.订货信息 (3) 3.使用注意事项 (5) 附:自聚焦透镜原理简介 (6) 1.产品概述及参数列表 自聚焦透镜又称梯度渐变折射率(GRIN)透镜,其折射率从中心轴到周边沿径向梯度减小,呈轴对称抛物线分布。它具备准直、聚焦、耦合等功能,具有体积小、耦合效率高、插入损耗低的优点,并且可以在端面成像。自聚焦透镜广泛用于各种有源、无源光器件,如光纤连接器、光纤耦合器、波分复用器、光衰减器、光隔离器、光滤波器、光开关、光纤准直器、掺铒光纤放大器、光纤光栅等;同时它也广泛应用于医用光学领域,如数码电子宫腔镜等医用内窥镜。 本公司生产的自聚焦透镜主要用于光通信领域,其表面质量指标如下:针孔、麻点:直径范围内不允许存在直径大于30um的缺陷;不允许直径大于10um的杂质缺陷存在;直径在10um-30um之间的缺陷少于4处。

划痕:不允许宽度超过5um的划伤;允许宽度小于2um的划伤存在;不允许宽5um长200um划伤。 崩边:在中心区域的90%范围内不得有崩边。 主要应用参数如下表:

2.产品订货信息 本公司产品采用如下命名方法: 示例:SL-X2-10-025-1310-AR2-3D,表示需要定购的自聚焦透镜孔径角为55o、直径1.0mm、截距0.25P、应用波长1310nm、双端面倾角为3o并且双面镀膜。 根据客户要求,可对透镜进行的特殊工艺处理说明如下: (1)端面角度化处理:此种处理可以有效减少回光反射。有两种形式的角度化处理可供选择,一种是单端面角度化处理:一端倾斜、而另一端垂直于光轴(见图1图2);另一种是双端面角度化处理:两端面相互平行并都倾斜于光轴(见图3)。

准直器

尾纤型光纤准直器/光纤自聚焦透镜 2mm,4mm,8mm直径 1.6mm直径(放大) 12mm直径 _应用领域: ____? 光学器件封装光纤输出 ____? 光源-光纤耦合 ____? 光纤-光电二极管耦合 ____? 其他领域 ___ _产品特点: ____? 各种工作波长可选 ____? 各种光束直径选择 ____? 多种透镜可选. ____? 单模光纤,多模光纤,保偏光纤可选 ____? 低插入损耗,低回波反射 ____? 高功率处理能力 _产品描述: 本公司提供全系列的光纤准直器和光纤自聚焦透镜,产品具有低的背向反射,用来准直出纤光束达到想要的光束直径,广泛应用于激光二极管,光电二极管探测器,声光调制器等光学器件相配合的系统中. 光纤准直器和光纤自聚焦透镜可以成对使用,用来把光耦合进/出其他光学器件.因此,他们是其他器件光纤耦合封装的理想器件光纤准直器的准直光束直径(Collimated Beam Diameter,简称BD)和全发散角(Full Divergence Angle,简称DA),与透镜的焦距长度(f),光纤的纤芯直径(a),以及光纤的数值孔径(NA)有关.公式如下: BD(mm) = 2 x f(mm) x NA; DA(mrad)=a(um) / f(mm) 光纤准直器的工作原理: NA: 光纤的数值孔径; a: 光纤的芯径; BD: 光束直径; DA: 发散角度; f: 透镜的焦距 Connet Fiber Optics

Connet Fiber Optics 技术指标: _产品描述: 对于光纤自聚焦透镜, 准确的利用公式计算光斑直径(Spot Diameter,简称SD ),放大因子(Magnification Factor 简称M ),和工作距离(Working Distance 简称WD )比较困难, 而且这些参数和使用的透镜有关. 作为近似的计算,我们可以利用几何光学透镜公式: 其中,o 和I 分别表示物体和成像的距离,利用以上的公式,可以决定应该使用什么样的透镜. 自聚焦透镜的工作原理: 主要技术参数 单位 指标 工作波长范围 (可选范围) nm 180~2000 回波反射 dB -25, -40, -50,-60dB 可选 偏振消光比 dB 20, 25, 30 可选 光束直径 mm 0.2~22mm 可选 光斑直径 um 可以小到5um 波峰畸变 1/4波长-1/10波长 插入损耗典型值(尾纤型) dB <0.6dB(60mm 距离); <0.3dB (10mm 距离) 技术指标说明: ? 用户可以指定180nm~2000nm 波长范围内的各种波长 ? 用户可以要求达到的回波反射的指标.其中60dB 的回波反射指标只针对1310nm 和1550nm 波长. ? 偏振消光比用户可以指定需要达到的消光比 ? 用户根据自己的要求定购需要达到的光束直径值,不同的光束直径需要不同的透镜来实现,具体要求,请联系本公司的销售人员,他们会为您选择合适的透镜.

相关文档
最新文档