实用运放电路实例解析(经典)

实用运放电路实例解析(经典)
实用运放电路实例解析(经典)

从虚断、虚短分析基本运放电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。

遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出

Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!

今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念

由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。

“虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。

由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接

近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。

在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。

1)反向放大器:

图1

图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2

的电流是相同的。

流过R1的电流:I1 = (Vi - V-)/R1 ………a

流过R2的电流:I2 = (V- - Vout)/R2 ……b

V- = V+ = 0 ………………c

I1 = I2 ……………………d

求解上面的初中代数方程得Vout = (-R2/R1)*Vi

这就是传说中的反向放大器的输入输出关系式了。

2)同向放大器:

图2

图二中Vi与V-虚短,则 Vi = V- ……a

因为虚断,反向输入端没有电流输入输出,通过R1和R2 的电流相等,设此电流为I,由欧姆定律得:I = Vout/(R1+R2) ……b

Vi等于R2上的分压,即:Vi = I*R2 ……c

由abc式得Vout=Vi*(R1+R2)/R2 这就是传说中的同向放大器的公式了。

图3

图三中,由虚短知: V- = V+ = 0 ……a

由虚断及基尔霍夫定律知,通过R2与R1的电流之和等于通过R3的电流,故 (V1 – V-)/R1 + (V2 – V-)/R2 = (V- –Vout)/R3 ……b

代入a式,b式变为V1/R1 + V2/R2 = Vout/R3 如果取R1=R2=R3,则上式变为

-Vout=V1+V2,这就是传说中的加法器了。

图4

请看图四。因为虚断,运放同向端没有电流流过,则流过R1和R2的电流相等,同理流过R4和R3的电流也相等。

故 (V1 – V+)/R1 = (V+ - V2)/R2 ……a

(Vout – V-)/R3 = V-/R4 ……b

由虚短知: V+ = V- ……c 如果R1=R2,R3=R4,则由以上式子可以推导出 V+ = (V1 + V2)/2 V- = Vout/2 故 Vout = V1 + V2 也是一个加法器,呵呵!

5)减法器

图5

图五由虚断知,通过R1的电流等于通过R2的电流,同理通过R4的电流等于R3的电流,故有 (V2 –V+)/R1 = V+/R2 ……a

(V1 – V-)/R4 = (V- - Vout)/R3 ……b

如果R1=R2,则V+ = V2/2 ……c

如果R3=R4,则V- = (Vout + V1)/2 ……d

由虚短知 V+ = V- ……e

所以 Vout=V2-V1 这就是传说中的减法器了。

图6

图六电路中,由虚短知,反向输入端的电压与同向端相等,

由虚断知,通过R1的电流与通过C1的电流相等。

通过R1的电流 i=V1/R1

通过C1的电流i=C*dUc/dt=-C*dVout/dt

所以 Vout=((-1/(R1*C1))∫V1dt 输出电压与输入电压对时间的积分成正比,这就是传说中的积分电路了。

若V1为恒定电压U,则上式变换为Vout = -U*t/(R1*C1) t 是时间,则Vout 输出电压是一条从0至负电源电压按时间变化的直线。

图7

图七中由虚断知,通过电容C1和电阻R2的电流是相等的,

由虚短知,运放同向端与反向端电压是相等的。

则: Vout = -i * R2 = -(R2*C1)dV1/dt

这是一个微分电路。

如果V1是一个突然加入的直流电压,则输出Vout对应一个方向与V1相反的脉

冲。

图8

由虚短知Vx = V1 ……a

Vy = V2 ……b

由虚断知,运放输入端没有电流流过,则R1、R2、R3可视为串联,通过每一个电阻的电流是相同的,电流I=(Vx-Vy)/R2 ……c

则: Vo1-Vo2=I*(R1+R2+R3) = (Vx-Vy)(R1+R2+R3)/R2 ……d

由虚断知,流过R6与流过R7的电流相等,若R6=R7,则Vw = Vo2/2 ……e 同理若R4=R5,则Vout – Vu = Vu – Vo1,故Vu = (Vout+Vo1)/2 ……f

由虚短知,Vu = Vw ……g

由efg得 Vout = Vo2 –Vo1 ……h

由dh得 Vout = (Vy –Vx)(R1+R2+R3)/R2 上式中(R1+R2+R3)/R2是定值,此值确定了差值(Vy –Vx)的放大倍数。

这个电路就是传说中的差分放大电路了。

9)电流检测:

图9

分析一个大家接触得较多的电路。很多控制器接受来自各种检测仪表的0~20mA或4~20mA电流,电路将此电流转换成电压后再送ADC转换成数字信号,图九就是这样一个典型电路。如图4~20mA电流流过采样100Ω电阻R1,在R1上会产生0.4~2V的电压差。由虚断知,运放输入端没有电流流过,则流过R3和R5的电流相等,流过R2和R4的电流相等。故:

(V2-Vy)/R3 = Vy/R5 ……a

(V1-Vx)/R2 = (Vx-Vout)/R4 ……b

由虚短知:Vx = Vy ……c

电流从0~20mA变化,则V1 = V2 + (0.4~2) ……d

由cd式代入b式得(V2 + (0.4~2)-Vy)/R2 = (Vy-Vout)/R4 ……e

如果R3=R2,R4=R5,则由e-a得Vout = -(0.4~2)R4/R2 ……f

图九中R4/R2=22k/10k=2.2,则f式Vout = -(0.88~4.4)V,

即是说,将4~20mA电流转换成了-0.88 ~ -4.4V电压,此电压可以送ADC去处理。

注:若将图九电流反接既得 Vout = +(0.88~4.4)V,

10)电压电流转换检测:

图10

电流可以转换成电压,电压也可以转换成电流。图十就是这样一个电路。上图的负反馈没有通过电阻直接反馈,而是串联了三极管Q1的发射结,大家可不要以为是一个比较器就是了。只要是放大电路,虚短虚断的规律仍然是符合的!

由虚断知,运放输入端没有电流流过,

则 (Vi – V1)/R2 = (V1 – V4)/R6 ……a

同理 (V3 – V2)/R5 = V2/R4 ……b

由虚短知 V1 = V2 ……c

如果R2=R6,R4=R5,则由abc式得V3-V4=Vi

上式说明R7两端的电压和输入电压Vi相等,则通过R7的电流I=Vi/R7,如果负载RL<<100KΩ,则通过Rl和通过R7的电流基本相同。

11)传感器检测:

图11

来一个复杂的,呵呵!图十一是一个三线制PT100前置放大电路。PT100传感器引出三根材质、线径、长度完全相同的线,接法如图所示。有2V的电压加在由R14、R20、R15、Z1、PT100及其线电阻组成的桥电路上。Z1、Z2、Z3、D11、D12、D83及各电容在电路中起滤波和保护作用,静态分析时可不予理会,Z1、Z2、Z3可视为短路,D11、D12、D83及各电容可视为开路。由电阻分压知,V3=2*R20/(R14+20)=200/1100=2/11 ……a

由虚短知,U8B第6、7脚电压和第5脚电压相等V4=V3 ……b

由虚断知,U8A第2脚没有电流流过,则流过R18和R19上的电流相等。(V2-V4)/R19=(V5-V2)/R18 ……c

由虚断知,U8A第3脚没有电流流过,V1=V7 ……d 在桥电路中R15和Z1、PT100及线电阻串联,PT100与线电阻串联分得的电压通过电阻R17加至U8A的第3脚,V7=2*(Rx+2R0)/(R15+Rx+2R0) …..e

由虚短知,U8A第3脚和第2脚电压相等,V1=V2 ……f

由abcdef得, (V5-V7)/100=(V7-V3)/2.2 化简得 V5=(102.2*V7-100V3)/2.2 即 V5=204.4(Rx+2R0)/(1000+Rx+2R0) –200/11 ……g

上式输出电压V5是Rx的函数我们再看线电阻的影响。Pt100最下端线电阻上产生的电压降经过中间的线电阻、Z2、R22,加至U8C的第10脚,

由虚断知,V5=V8=V9=2*R0/(R15+Rx+2R0) ……a

(V6-V10)/R25=V10/R26 ……b

由虚短知,V10=V5 ……c

由式abc得V6=(102.2/2.2)V5=204.4R0/[2.2(1000+Rx+2R0)] ……h

由式gh组成的方程组知,如果测出V5、V6的值,就可算出Rx及R0,知道Rx,查pt100分度表就知道温度的大小了。

集成运放基本运算电路的分析与设计

实验报告 实验名称集成运放基本运算电路的分析与设计 课程名称模电实验 院系部:控计专业班级: 学生姓名:学号: 同组人:实验台号: 指导老师:成绩: 实验日期: 华北电力大学 一、实验目的和要求 1.掌握使用集成运算放大器构成反相输入比例运算电路、同相输入比例运算电路、反相输入求和运算电路、减法运算电路的方法。2.进一步熟悉该基本运算电路的输出与输入之间的关系。 二、实验设备 1.模拟实验箱 2.数字万用表 3.运算放大器LM324 4.10K、20K、100K的电阻若干

5.模拟实验箱上有滑动变阻器可供同学使用 三、实验原理. 实际运放具有高增益、低漂移、高输出阻抗、低输出阻抗、可靠性高的特点,可视为理想器件。运放的理想参数: 1.开环电压增益 A=∞vd2.输入电阻 R=∞,R=∞icid3.输出电阻 R =0 o4.开环带宽 BW= ∞ KCMR =∞.共模抑制比5 .失调电压、电流6 、=0VI=0 ioio 根据分析时理想运放的条件,得出两个重要结论: =V 虚开路:I=0 V虚短路:i+-下图为反相比例运算放大器与同相比例运算放大器。 四、实验方法与步骤: 1.反向输入比例运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uiO相比较,分析误差产生的原因。 2.同向输入比例运算 参照反相输入比例运算的电路,设计比例系数为6的同相比例运算电路,设计出相应的电路图及表格,得到四组数据。并将测量值与设计要求进行比较。 输入电压不能过大,要保证运放工作在线性区。

3.反向输入比例求和运算 按实验原理中所示电路接线,接通电源。从实验箱的直流信号源引入输入信号U,测量对应的输出信号U的值,算出A,将实验值与理论值uOi相比较,分析误差产生的原因。 4.减法运算 参照反相输入求和运算的电路,设计比例系数为5的减法运算电路,设计出减法运算的电路图及相应的表格,得到四组数据。然后将测量值与设计要求进行比较。. 输入电压不能过大从而保证运放工作在线性区。五、实验结果与数据处理反向输入比例运算(V) U i U(V) o A 实验值u A-5 计算值 -5 -5 -5 u同向输入比例运算自行设计的电路图 自行设计的表格 (V)i (V) U o A 实验值u A6 6 6 6 计算值u反向输入求和运算 U(V) i1U-1 1 -1 (V) 1 i2U实验值o U计算值o减法运算自行设计电路图 自行设计表格 U (V) i1. -1 1 -1 1 (V) U i2U 实验值o U 计算值o六、思考题第

精心收集:单电源供电时的运算放大器应用大全

单电源运算放大器应用集锦 (一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC -引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

单片机常用模块电路大全

单片机常用模块电路大全 1. 双路232通信电路:3线连接方式,对应的是母头,工作电压5V,可以使用MAX202或MAX232。 2. 三极管串口通信:本电路是用三极管搭的,电路简单,成本低,但是问题,一般在低波特率下是非常好的。 3. 单路232通信电路:三线方式,与上面的三级管搭的完全等效。 4. USB转232电路:采用的是PL2303HX,价格便宜,稳定性还不错。 5. SP706S复位电路:带看门狗和手动复位,价格便宜(美信的贵很多),R4为调试用,调试完后焊接好R4。 卡模块电路(带锁):本电路与SD卡的封装有关,注意与封装对应。此电路可以通过端口控制SD卡的电源,比较完善,可以用于5V和。但是要注意,有些器件的使用,5V和是不一样的。 液晶模块(ST7920):本电路是常见的12864电路,价格便宜,带中文字库。可以通过PSB端口的电平来设置其工作在串口模式还是并行模式,带背光控制功能。

字符液晶模块(KS0066):最常用的字符液晶模块,只能显示数字和字符,可4位或8位控制,带背光功能。 9.全双工RS485电路(带保护功能):带有保护功能,全双工4线通信模式,适合远距离通信用。 半双工通信模块:可以通过选择端口选择数据的传输方向,带保护功率。此模块只能工作在5V. 11. ARM JTAG仿真接口电路:比较完善,可以应用在常规的ARM芯片下,具有有自动下载功能,可以用JLINK或ULINK. 电源模块:这个电路比较简单,如果用直插可以达到,如果用贴片的可以到达1A。 电源模块:可以到达800mA,价格非常便宜,也有相应的的芯片,可以直接替换。 常用开关电源电路 buck电源电路。 14.最常用的开关电源:

运放电路PCB设计技巧

运放电路PCB设计技巧 虽然这里主要针对与高速运算放大器有关的电路,但是这里所讨论的问题和方法对用于大多数其它高速模拟电路的布线是普遍适用的。当运算放大器工作在很高的射频(RF)频段时,电路的性能很大程度上取决于PCB布线。“图纸”上看起来很好的高性能电路设计,如果由于布线时粗心马虎受到影响,最后只能得到普通的性能。在整个布线过程中预先考虑并注意重要的细节会有助于确保预期的电路性能。 原理图 尽管优良的原理图不能保证好的布线,但是好的布线开始于优良的原理图。在绘制原理图时要深思熟虑,并且必须考虑整个电路的信号流向。如果在原理图中从左到右具有正常稳定的信号流,那么在PCB上也应具有同样好的信号流。在原理图上尽可能多给出有用的信息。因为有时候电路设计工程师不在,客户会要求我们帮助解决电路的问题,从事此工作的设计师、技术员和工程师都会非常感激,也包括我们。 除了普通的参考标识符、功耗和误差容限外,原理图中还应该给出哪些信息呢?下面给出一些建议,可以将普通的原理图变成一流的原理图。加入波形、有关外壳的机械信息、印制线长度、空白区;标明哪些元件需要置于PCB上面;给出调整信息、元件取值范围、散热信息、控制阻抗印制线、注释、扼要的电路动作描述……(以及其它)。 谁都别信 如果不是你自己设计布线,一定要留出充裕的时间仔细检查布线人的设计。在这点上很小的预防抵得上一百倍的补救。不要指望布线的人能理解你的想法。在布线设计过程的初期你的意见和指导是最重要的。你能提供的信息越多,并且整个布线过程中你介入的越多,结果得到的PCB就会越好。给布线设计工程师设置一个暂定的完成点——按照你想要的布线进展报告快速检查。这种“闭合环路”方法可以防止布线误入歧途,从而将返工的可能性降至最低。

经典运放电路分析

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出及输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入

端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 1)反向放大器: 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,

555芯片应用电路大全

555内部电原理图

将分别介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。 双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。

第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。 双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。这是双稳工作方式的结构特点。2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。 无稳类电路 第三类是无稳工作方式。无稳电路就是多谐振荡电路,是555电路中应用最广的一类。电路的变化形式也最多。为简单起见,也把它分为三种。 第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。 第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。其中第1个单元电路(3.2.1)是应用最广的。第2个单元电路(3.2.2)是方波振荡电路。第3、4个单元电路都是占空比可调的脉冲振荡电路,功能相同而电路结构略有不同,因此分别以3.2.3a 和3.2.3b的代号。

电流反馈运放电路设计

电流反馈运放电路设计 电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈放大器在很宽的增益范围上维持其大部分带宽不变。 正因为如此,准确地说,电流反馈运放没有增益带宽积的限制。当然,电流反馈运放也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来获得较大的压摆率。 那么如何构建这些电路呢?电流反馈运放具有一个与差分对相对的输入缓冲器,该输入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大器的输入都是高阻。 电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。 电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个方面。加之具有非常高的压摆率和基于反馈电阻的可调节带宽,你可以获得与器件的小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低的失真。 如何发现最佳的反馈电阻R F 由于放大器的交流特性部分地取决于反馈电阻,这就让我们能够针对每一个特定的应用“量身定制”放大器。降低反馈电阻的数值将提升环路增益。为了保持稳定性和最大的带宽,在低增益时,反馈电阻要设置为较高的数值;随着增益的上升,环路增益自然降低。如果需要高的增益,可以利用较小的反馈电阻来部分地恢复环路增益。 图1:具有Z(s)和反馈电阻的电路示意图

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。

二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 R785K1 ACH_BF1 FREN1 U85PS2801-1 1 2 4 3 R273 1K R274 1K C213 22nF FREN1 R292 200K - + U87B LM393DR2G 5 6 7 R275 1K 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计 如图所示,恒流原理分析过程如下: U5B(上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V5 V3=;

单电源供电运放电路设计

单电源供电运放电路设计 模拟电路设计,在学习中还属于薄弱环节。以设计单电源供电、由运用运放构成、输入方波、输出三角波的电路为例,探讨一下设计中一些需要考虑的问题。 1. 运放双电源供电 运放通常使用正负相等的双电源供电,输入信号和输出信号均以“地”(电位为0)为参考点。 -+o m V +m -V 图 1.1 图1.1双电源供电电路需要关注如下问题: (1)电路的静态(输入信号为0,输入端接地)时,同相、反相输入端直流电位应近似为0(理想为0),输出端为0(0为运放理想情况,实际可能相差较大,因为运放开环具有极高增益、且有运放的失调、R 的差异等)。静态输出不为0的解决办法是:在电容上并联一个100--500倍R 的电阻,使电路在静态时形成-100到-500倍增益的放大电路,选用100—500倍R 的并联电阻,是让RC 的积分特性仍近

似为RC 确定(100-500R 的影响近似忽略)。此时输出静态电压若还有较小的输出静态电位偏差(指不为0),可通过运放的调零电路解决。电路如图1.2所示。 -+o R m V +m -V 图1.2 (2)运放反相输入端的电阻,称为静态平衡(匹配)电阻,主要抵消运放输入电流在输入端产生微小差模直流电压。这里需要注意,运放的两个输入端必须有直流通路,为其提供输入电流,这样运放才能在放大状态下正常工作。LT1226运放内部的输入部分电路见图1.3。除加电源外,只有给运放内部T1、T2的基极适当的直流偏置(适当的直流电位及基极电流),才能工作于放大区。

图1.3 2. 运放单电源供电 运放使用单电源供电,需要将电路的静态工作电位调整到0.5VCC 。即两个输入端及输出端的静态电位均应为0.5VCC 。解决的办法之一是通过两个电阻分压,提供给运放的输入端。类似与晶体管电路中讲 到的分压式负反馈偏置电路,分压电路需要有稳定的分压值,使基极电流的影响可以忽略。电路见图1.4。 -+i v o v R m V +m -V 图1.4

单电源运放电路图集

单电源运放图集 前言 前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。我的E文不好,在这里要感谢《金山词霸》。 ^_^ 水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。 E-mail:wz_carbon@https://www.360docs.net/doc/ec7658151.html, 王桢 10月29日

介绍 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1. 1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。1. 2虚地

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

运放设计原理及电路说明

运放设计原理及电路说明 一、集成电路及其特点集成电路是利用氧化,光刻,扩散,外延,蒸铝等集成工艺,把晶体管,电阻,导线等集中制作在一小块半导体(硅)基片上,构成一个完整的电路。按功能可分为模拟集成电路和数字集成电路两大类,其中集成电路运算放大器(线性集成电路,以下简称集成运放)是模拟集成电路中应用最广泛的,它实质上是一个高增益的直接耦合多级放大电路。集成电路的特点1.单个元件精度不高,受温度影响也大,但元器件的性能参数比较一致,对称性好。适合于组成差动电路。2.阻值太高或太低的电阻不易制造,在集成电路中管子用得多而电阻用得少。3.大电容和电感不易制造,多级放大电路都用直接耦合。 4. 在集成电路中,为了不使工艺复杂,尽量采用单一类型的管子,元件种类也要少所以,集成电路在形式上和分立元件电路相比有很大的差别和特点。常用二极管和三极管组成的恒流源和电流源代替大的集电极电阻和提供微小的偏量电流,二极管用三极管的发射结代替5.在集成电路中,NPN管都做成纵向管,β大;PNP管都做成横向管,β 小而PN结耐压高。NPN管和PNP管无法配对使用。对PNP管,β和 (β+1)差别大,IB往往不能忽略。 ?二、集成运放电路的组成及各部分的作用1.组成 ?2.作用如图所示,集成运放电路由四部分组成,输入级是一个双端输入的高性能差动放大电阻,要求其Ri高,Aod大,KCMR大,静态电流小,该 级的好坏直接影响集成运放的大多数性能参数,所以更新变化最多。中间级的作用是使集成运放具有较强的放大能力,故多采用复合管做放大管,以电流源做集电极负载。输出级要求具有线性范围宽,输出电阻小,非线性失真小等特点。偏置电路用于设置集成运放各级放大电路的静态工作点

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

经典运放电路分析经典修订稿

经典运放电路分析经典 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

从虚断,虚短分析基本运放电路 运算放大器组成的电路五花八门,令人眼花了乱,是模拟电路中学习的重点。在分析它的工作原理时,倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所斩获。 遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出 ()1o f i V R V =+,那是一个反向放大器,然后得出o f i V R V =-*……,最后学生往往得出这样 一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了! 今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB 以上。而运放的输出电压是有限的,一般在 10 V ~14 V 。因此运放的差模输入端电压不足1 mV ,两输入端近似等电位,相当于 “短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端当成真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1M Ω以上。因此流入运放输入端的电流往往不足1uA ,远小于输入端外电路的电流。故 通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性 称为虚假开路,简称虚断。显然不能将两输入端当成真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东西只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当成理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 1)反向放大器:

LDO电路集锦

这是我常用的LDO电路,实测最小稳定压差为0.2V,输入电压小于稳定电压(输出电压+0.1V)时,调整管饱合,压差小于0.2V,电流小于100mA情况下压差小于0.1V. 该电路取样及误差放大采用差分电路,并且省掉了常见串联型PNP稳压电路的启动电阻。 输出电压U。=Vz*(R114+R115)/R115 输出限流电流由R113决定(调整管用P-MOSFET则无此功能) 在大电流应用,将调整管改为P-MOSFET即可。 与1117的应用对比 该电路的缺点是元件较多,输出不够稳定,用主贴的参数提供200mA电流,VBAT由4.5V降为3.5V时,输出电压会有0.1V的下滑(即输出为3.2V)。 但如果电路中有多余的运放单元,则电路可大大简化。 该电路的优点:VBAT降到3.3V以下时,输出始终保持为VBAT-0.1V,比1117优秀得多。 某手持设备由三只干电池串联供电的开发过程中(耗电300mA),最初用L1117供电,当电池端电压降到3.6V时,其输出仅为2.7伏,电路产生异常。高倍率放电情况下,干电池的终止电压是0.95V/单元,这显然不能合理利用完电池能量。用该电路取代1117后,电池电压降到2.9伏电路产生异常,电池寿命试验证明,后者可提高电池便用寿命25%以上。 最近用了AME1117,也是别人推荐用的.之前也没感觉这类LDO有什么方便之处.在网上关于LDO的文章也比比皆是.有饿就顺便摘录几篇吧 (一)

这是我常用的LDO电路,实测最小稳定压差为0.2V,输入电压小于稳定电压(输出电压+0.1V)时,调整管饱合,压差小于0.2V,电流小于100mA情况下压差小于0.1V. 该电路取样及误差放大采用差分电路,并且省掉了常见串联型PNP稳压电路的启动电阻。 输出电压U。=Vz*(R114+R115)/R115 输出限流电流由R113决定(调整管用P-MOSFET则无此功能) 在大电流应用,将调整管改为P-MOSFET即可。 与1117的应用对比 该电路的缺点是元件较多,输出不够稳定,用主贴的参数提供200mA电流,VBAT 由4.5V降为3.5V时,输出电压会有0.1V的下滑(即输出为3.2V)。 但如果电路中有多余的运放单元,则电路可大大简化。 该电路的优点:VBAT降到3.3V以下时,输出始终保持为VBAT-0.1V,比1117 优秀得多。 某手持设备由三只干电池串联供电的开发过程中(耗电300mA),最初用L1117供电,当电池端电压降到3.6V时,其输出仅为2.7伏,电路产生异常。高倍率放电情况下,干电池的终止电压是0.95V/单元,这显然不能合理利用完电池能量。用该电路取代1117后,电池电压降到2.9伏电路产生异常,电池寿命试验证明,后者可提高电池便用寿命25%以上。 (二) LDO简介: 携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波[1]。 一.LDO的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 图1-1 低压差线性稳压器基本电路 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。

双电源运放电路设计

使用双电源的运放交流放大电路 为了使运放在零输入时零输出,运放的内部电路是按使用双电源的要求来设计的。运放交流放大电路采用 双电源供电,可以增大动态范围。 1.1.1 双电源同相输入式交流放大电路 图1是使用双电源的同相输入式交流放大电路。两组电源电压VCC和VEE相等。C1和C2为输入和输出耦合电容;R1使运放同相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;RF引入直流和交流负反馈,并使集成运放反相输入端形成直流通路,内部的差分管得到必要的输入偏置电流;由于C隔直流,使直流形成全反馈,交流通过R和C分流,形成交流部分反馈,为电压串联负反馈。引入直流全反馈和交流部分反馈后,可在交流电压增益较大时,仍能够使直流电压增益很小(为1倍),从而避免输入失 调电流造成运放的饱和。 无信号输入时,运放输出端的电压V0≈0V,交流放大电路的输出电压U0=0V;交流信号输入时,运放输出端的电压V0在-VEE~+VCC之间变化,通过C2输出放大的交流信号,输出电压uo的幅值近似为VCC(V CC=VEE)。引入深度电压串联负反馈后,放大电路的电压增益为放大电路输入电阻Ri=R1//γif。γif是运放引入串联负反馈后的闭环输入电阻。γif很大,所以Ri=R1/γif≈R1;放大电路的输出电阻R0=γof≈0,γof是运放引入电压负反馈后的闭环输出电阻,rof很小。 1.1.2 双电源反相输入式交流放大电路 图2是使用双电源的反相输入式交流放大电路。两组电源电压VCC和VEE相等。RF引入直流和交流负反馈,C1隔直流,使直流形成全反馈,交流通过R和C1分流,形成交流部分反馈,为电压并联负反馈。为了减小运放输入偏置电流造成的零点漂移,可以选择R1=RF。引入深度电压并联负反馈后,放大电路的电 压增益为因为运放反相输入端"虚地",所以放大电路的输入电阻Ri≈R;放大电 路的输出电R0=r0f≈0。

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

十一种经典运放电路分析

十一种经典运放电路分析 从虚断,虚短分析基本运放电路 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

1)反向放大器: 传输文件进行[薄膜开关] 打样 图1 图一运放的同向端接地=0V,反向端和同向端虚短,所以也是0V,反向输入端输入电阻很高,虚断,几乎没有电流注入和流出,那么R1和R2相当于是串联的,流过一个串联电路中的每一只组件的电流是相同的,即流过R1的电流和流过R2的电流是相同的。 流过R1的电流:I1 = (Vi - V-)/R1 ………a 流过R2的电流:I2 = (V- - Vout)/R2 ……b V- = V+ = 0 ………………c I1 = I2 ……………………d

完整版电子相关专业面试题集锦

电子相关专业面试题集锦 模拟电路1、基尔霍夫定理的内容是什么?(仕兰微电子)流国一个接点的电流必定=流岀的2、平板电 容公式(C= £ S/4 n kd)°(未知)3、最基本的如三极管曲线特性。(未知)4、描述反馈电路的概念,列 举他们的应用。(仕兰微电子)5、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并 联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输岀电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用)(未知)6、放大电路的频率补偿的目的是什么, 有哪些方法?(仕兰微电子)7、频率响应,如:怎么才算是稳定的,如何改变频响曲线的几个方法。(未知)8、给岀一个差分运放,如何相位补偿,并画补偿后的波特图。(凹凸)9、基本放大电路种类(电 压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。(未知) 10、给出一差分电路,告诉其输出电压Y+和Y-,求共模分量和差模分量。(未知)11、画差放的两个输 入管。(凹凸)12、画岀由运放构成加法、减法、微分、积分运算的电路原理图。并画岀一个晶体管级的运放电路。(仕兰微电子)13、用运算放大器组成一个10倍的放大器。(未知)14、给出一个简单电路,让你分析输出电压的特性(就是个积分电路),并求输出端某点的rise/fall时间。(Infineon笔试试题)15、电阻R和电容C串联,输入电压为R和C之间的电压,输出电压分别为C上电压和R上电压,要 求制这两种电路输入电压的频谱,判断这两种电路何为高通滤波器,何为低通滤波器。当RC<数字电路 1、同步电路和异步电路的区别是什么?(仕兰微电子) 2、什么是同步逻辑和异步逻辑?(汉王笔试)同 步逻辑是时钟之间有固定的因果关系。异步逻辑是各时钟之间没有固定的因果关系。3、什么是"线与"逻辑,要实现它,在硬件特性上有什么具体要求?(汉王笔试)线与逻辑是两个输岀信号相连可以实现与的 功能。在硬件上,要用oc门来实现,由于不用oc门可能使灌电流过大,而烧坏逻辑门。同时在输出端 口应加一个上拉电阻。4、什么是Setup和Holdup时间?(汉王笔试)5、setup和holdup时间,区别.(南山之桥)6、解释setup time和hold time的定义和在时钟信号延迟时的变化。(未知)7、解释setup 和hold time violation ,画图说明,并说明解决办法。(威盛VIA 2003.11.06 上海笔试试题)Setup/hold time是测试芯片对输入信号和时钟信号之间的时间要求。建立时间是指触发器的时钟信号上升沿到来以前,数据稳定不变的时间。输入信号应提前时钟上升沿(如上升沿有效)T时间到达芯片,这个T就是建

相关文档
最新文档