(完整版)近年高考理科立体几何大题汇编(可编辑修改word版)

(完整版)近年高考理科立体几何大题汇编(可编辑修改word版)
(完整版)近年高考理科立体几何大题汇编(可编辑修改word版)

近几年高考理科立体几何大题汇编

1.(2018 年III 卷)如图,边长为2 的正方形

ABCD所在的平面与半圆弧C D所在平面垂直,M 是

C D上异于C,

D 的点.

(1)证明:平面AMD ⊥平面BMC ;

(2)当三棱锥M ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD 中,底面

ABCD 为矩形,PA⊥平面ABCD,E为PD 的中点.

(1)证明:PB∥平面AEC;

(2)设二面角D-AE-C 为60°,AP=1,AD=3,

求三棱锥E-ACD 的体积.

1

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.

4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图三

棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,

AB⊥B1C.

(1)证明:AC=AB1;

(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求

二面角A -A1B1-C1的余弦值.

2

5.(菱形建系)【2015 高考新课标1】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;

(Ⅱ)求直线AE 与直线CF 所成角的余弦值.

6.(翻折)(2018 年I 卷)如图,四边形ABCD 为正方形,E, F 分别为AD, BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .

(1)证明:平面PEF ⊥平面ABFD ;

(2)求DP 与平面ABFD 所成角的正弦值.

3

10

2

P

O

B M

7.(翻折)(2016 年全国II 高考)如图,菱形ABCD 的对角线AC 与BD交于点O ,

AB = 5, AC = 6 ,点E, F 分别在AD, CD 上,AE =CF =5

,EF 交BD 于点H .将4

?DEF 沿EF 折到?D'EF 位置,OD'=.

(Ⅰ)证明:D'H ⊥平面ABCD ;

(Ⅱ)求二面角 B -D'A -C 的正弦值.

8.(动点问题)(2018 年II 卷)如图,在三棱锥P -ABC 中,AB =BC = 2 ,

PA =PB =PC =AC = 4 ,O 为AC 的中点.

(1)证明:PO ⊥平面ABC ;

(2)若点M 在棱BC 上,且二面角M -PA -C 为30?,

求PC 与平面PAM 所成角的正弦值.

A C

4

5

DA = - = = 近几年高考理科立体几何大题汇编

1.(2018 年 III 卷)如图,边长为 2 的正方形

ABCD 所在的平面与半圆弧 C D 所在平面垂直, M 是 C

D 上异于 C , D 的点. (1) 证明:平面 AMD ⊥ 平面 BMC ;

(2) 当三棱锥 M - ABC 体积最大时,求面 MAB 与面 MCD 所成二面角的正弦值.

1.解:(1)由题设知,平面 CMD ⊥平面 ABCD ,交线为 CD .因为 BC ⊥CD ,BC ? 平面 ABCD , 所以 BC ⊥平面 CMD ,故 BC ⊥DM .

因为 M 为 C

D 上异于 C ,D 的点,且 DC 为直径,所以 DM ⊥CM . 又 BC CM =C ,所以 DM ⊥平面 BMC .

而 DM ? 平面 AMD ,故平面 AMD ⊥平面 BMC . (2)以 D 为坐标原点,

的方向为 x 轴正方向,建立如图所示的空间直角坐标系 D ?xyz .

当三棱锥 M ?ABC 体积最大时,M 为 C

D 的中点. 由题设得 D (0, 0, 0), A (2, 0, 0), B (2, 2, 0), C (0, 2, 0), M (0,1,1) ,

AM ( 2,1,1), AB (0, 2, 0), DA (2, 0, 0)

设 n = (x , y , z ) 是平面 MAB 的法向量,则

6

5 2 5

2 5

5

DA DA

| |) ( )

= ?n ? ? AM = 0, 即?-2x + y + z = 0, ?n ? ?2 y = 0. ?? AB = 0. ?

可取 n = (1, 0, 2) .

是平面 MCD 的法向量,因此

cos n , DA n ?

=

= , | n || DA | 5

sin

n , DA , 5

所以面 MAB 与面 MCD 所成二面角的正弦值是

.

2、[2014·新课标全国卷Ⅱ] 如图 1-3,四棱锥 P -ABCD 中,底面 ABCD 为矩形,PA ⊥ 平面 ABCD ,E 为 PD 的中点.

(1) 证明:PB ∥平面 AEC ; (2) 设二面角 D -AE -C 为 60°,AP =1,AD = 3,求三棱锥 E -ACD 的体积.

图 1-3

2,解:(1)证明:连接 BD 交 AC 于点 O ,连接 EO . 因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO ∥PB .

因为 EO ?平面 AEC ,PB ?平面 AEC ,所以 PB ∥平面 AEC . (2)因为 PA ⊥平面 ABCD ,ABCD 为矩形, 所以 AB ,AD ,AP 两两垂直.

如图,以 A →

为坐标原点,AB ,

AD ,AP 的方向为 x 轴、y 轴、z 轴的正方向, → 为 单位长,建立空间直角坐标系 A -xyz ,则 D (0, 3,0),E (0, 1 →

, ,AE = 0, 2 2

,1 .

2 2

3 3

7

3 3 3 1 { 即

设 B (m ,0,0)(m >0),则 C (m ,3,0) → (m ,3,0).

,AC = 设 n 1=(x ,y ,z )为平面 ACE 的法向量,

→ n 1·AC =0,

则 → ) {m x + 3y =0,

)

n 1·AE =0, 2 y + z =0,

可取 n 1=

(

2

,-1, )

.

又 n 2=(1,0,0)为平面 DAE 的法向量,

1

由题设易知|cos 〈n 1,n 2〉|= ,即

2

1 3 = ,解得 m = .

2

2

1 1

因为 E 为 PD 的中点,所以三棱锥 E -ACD 的高为 .三棱锥 E -ACD 的体积 V = ×

2 3

1 3 1 × 3× × = .

2 2 2 8

3.(2017?新课标Ⅰ卷)如图,在四棱锥 P ﹣ABCD 中, AB ∥CD ,且∠BAP=∠CDP=90°.

(1) 证明:平面 PAB ⊥平面 PAD ;

(2) 若 PA=PD=AB=DC ,∠APD=90°,求二面角 A ﹣PB ﹣

C 的余弦值. 3.【答案】( 1) 证明: ∵∠ BAP=∠ CDP=90°, ∴ PA⊥ AB , PD⊥ C

D , ∵ AB∥ CD , ∴ AB⊥ PD ,

又 ∵ PA ∩PD=P , 且

PA ? 平 面

PAD ,

PD ? 平 面 PAD , ∴ AB⊥ 平

面 PAD , 又

AB ? 平 面 PAB ,

PAB⊥

PAD ;

(2)解:∵AB∥CD,AB=CD ,∴四边形 ABCD 为平行四边形, 由(1)知 AB⊥平面 PAD ,∴AB⊥ AD ,

则 四 边 形

ABCD 为 矩 形 ,

3

m

3 3+4m 2

在△APD 中,由PA=PD,∠APD=90°,可得△PAD为等

腰直角三角形,

设PA=AB=2a,则AD= .

取 AD 中点 O, BC 中点 E,连接 PO 、 OE,

以 O 为坐标原点,分别以 OA、OE、OP 所在直线为 x、y、z 轴建立空间直角坐标系,则:D(),B(), P(0,0,),C().

,,.

设平面PBC 的一个法向量为,

由,得,取y=1,得.

∵AB⊥平面PAD,AD?平面PAD,∴AB⊥AD,

又PD⊥PA,PA∩AB=A,

∴ PD⊥ 平面 PAB,则为平面 PAB 的一个法向量,.

∴cos<>= =

.由图可知,二面角A﹣PB﹣ C

为钝角,

∴二面角A﹣PB﹣ C 的余弦值为.

4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C.

(1)证明:AC=AB1;

(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1-C1的余弦值.

4 解:(1)证明:连接BC1,交B1C 于点O,连接AO,因为侧面BB1C1C 为菱形,所以B1C⊥BC1,且O 为B1C 及BC1的中点.

8

又AB⊥B1C,所以B1C⊥平面ABO.

9

10

3

3 3 3 3 1

( ( )

B 1

C 1=BC = -1,- 3

,0 . {

{

3

3 由于 AO ?平面 ABO ,故 B 1C ⊥AO . 又 B 1O =CO ,故 AC =AB 1.

(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO .

又因为 AB =BC ,所以△BOA ≌ △BOC .故 OA ⊥OB ,从而 OA ,OB ,OB 1 两两垂直.

以 O 为坐标原点,OB 的方向为 x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系 O - xyz .

(

3

)

因为∠CBB 1=60°,所以△CBB 1 为等边三角形,又 AB =BC ,则 A 0,0, 3

B (1,0,0),B (

0, 3,0),C (0,- 3

,0).

→ AB 1= 0, 3 ,- 3) 3 → 3 ,A 1B 1=AB = 1,0,- ,

3 3 3

→ ( )

设 n =(x ,y ,z )是平面 AA 1B 1 的法向量,则

n ·AB 1=0,

3 y - z =0,)

n ·A 1B 1=0,

)

所以可取 n =(1,3, 3).

x - z =0.

{

设m 是平面A1B1C1的法向量,→

m·A1B1=0,

m·B1C1=0,)同理可取m=(1,-3, 3).

11

12

(Ⅰ)证明:平面 AEC ⊥平面 AFC ; (Ⅱ)求直线 AE 与直线 CF 所成角的余弦值.

5.,【答案】(Ⅰ)见解析(Ⅱ) 3

3

3 2 2 n ·m 1

则 cos 〈n ,m 〉= = .

|n ||m | 7

1

所以结合图形知二面角 A -A 1B 1 - C 1 的余弦值为 .

7

5.(菱形建系)【2015 高考新课标 1】如图,四边形 ABCD 为菱形,∠ABC =120°,

E ,

F 是平面 ABCD 同一侧的两点,BE ⊥平面 ABCD ,DF ⊥平面 ABCD ,BE =2DF , AE ⊥EC .

又∵AE ⊥EC ,∴EG = ,EG ⊥AC , 在 Rt △EBG 中,可得 BE = ,故 DF =

2 .

2

在 Rt △FDG 中,可得 FG =

6 .

2

在直角梯形 BDFE 中,由 BD =2,BE = ,DF = 2

可 得 EF = 3 2

, 2 2 ∴ E G 2 + FG 2 = EF 2 ,∴EG ⊥FG ,

13

3 2 3

GB , G C AE , C F ?

= - ∵AC ∩FG=G ,∴EG ⊥平面 AFC , ∵EG ? 面 AEC ,∴平面 AFC ⊥平面 AEC .

……6 分

(Ⅱ)如图,以 G 为坐标原点,分别以

的方向为 x 轴,y 轴正方向, | GB | 单位长度,建立空间直角坐标系 G-xyz ,由(Ⅰ)可得 A (0,- ,0),E (1,0, ),

F (-1,0, ),C (0, ,0),∴ AE =(1, , ), CF =(-1,

2

- , 2

).…10 分

2

故cos < >=

AE CF 3 | AE || C F | 3 所以直线 AE 与 CF 所成的角的余弦值为

3 .

……12 分

3

6.(翻折)(2018 年 I 卷)如图,四边形 ABCD 为正方形, E , F 分别为 AD , BC 的中点,以

DF 为折痕把△DFC 折起,使点C 到达点 P 的位置,且 PF ⊥ BF .

(1) 证明:平面 PEF ⊥ 平面 ABFD ; (2) 求 DP 与平面 ABFD 所成角的正弦值.

2

3 2 3 为

.

14

3

3 3

10 HF ? ? , 0), DP (1, , ), HP

6. 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以 BF ⊥平面 PEF .

又 BF ? 平面 ABFD ,所以平面 PEF ⊥平面 ABFD .

(2)作 PH ⊥EF ,垂足为 H .由(1)得,PH ⊥平面 ABFD .

以 H 为坐标原点,

的方向为 y 轴正方向, | BF | 为单位长,建立如图所示的空间直 角坐标系 H ?xyz .

由(1)可得,DE ⊥PE .又 DP =2,DE =1,所以 PE = .又 PF =1,EF =2,故 PE ⊥PF .

可得 PH =

3 , EH = 3 . 2 2

则 H (0, 0, 0), P (0, 0, 3 ), D (-1, - 3 = 3 = (0, 0, 3 ) 为平面 ABFD 的

法向量.

2 2 2 2 2

3

HP DP 4 3 设 DP 与平面 ABFD 所成角为,则sin =|

| HP | |

DP | |= =

.

4

所以 DP 与平面 ABFD 所成角的正弦值为

3 .

4

7.(翻折)(2016 年全国 II 高考)如图,菱形 ABCD 的对角线 AC 与 BD 交于点O ,

AB = 5, AC = 6 , 点 E , F 分别在 AD , CD 上, AE = CF = 5

, EF 交 BD 于点 H . 将

4

?DEF 沿 EF 折到 ?D 'EF 位置, OD ' = .

(Ⅰ)证明: D 'H ⊥ 平面 ABCD ; (Ⅱ)求二面角 B - D 'A - C 的正弦值.

15

u r u u r

n 1 ? n 2 u r u u r n 1 n 2

7 5 2 95 ? ' ?

?

7. 【解析】⑴证明:∵ AE = CF = 5

,∴ AE = CF ,

4 AD CD

∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴ AC ⊥ BD , ∴ EF ⊥ BD ,∴ EF ⊥ DH ,∴ EF ⊥ D 'H .

∵ AC = 6 ,∴ AO = 3 ;又 AB = 5 , AO ⊥ OB ,∴ OB = 4 ,

OH = AE

? OD = 1 , ∴ DH = D 'H = 3 , ∴ OD ' 2 = OH 2 + D ' H 2 , ∴ D ' H ⊥ OH

AO

.又∵ OH I EF = H ,∴ D ' H ⊥ 面 ABCD . ⑵建立如图坐标系 H - xyz .

B (5 , 0 , 0) ,

C (1, 3,

0) , D '(0 , 0 , 3) , A (1, - 3

, 0) ,

AB = (4 , 3, 0) , AD ' = (-1, 3, 3) , AC = (0 ,

6 , 0) ,

设面 ABD ' 法向量n 1 = ( x ,y ,z ) ,

? ?x = 3 由?n 1 ? AB = 0 得?4x + 3y = 0 ,取?

y = -4 ,∴ n = (3, - 4 , 5) . ? ??n 1 A D = 0 ?-x + 3y + 3z = 0 ? 1 ?z = 5

同理可得面 AD 'C 的法向量n 2 = (3, 0 , 1) ,

∴ cos

= =

= ,∴ s in = .

25 25

9 + 5

5 2 ? 10

16

2 3 8.(动点问题)(2018 年 II 卷)如图,在三棱锥 P - ABC 中, AB = BC = 2 ,

PA = PB = PC = AC = 4 , O 为 AC 的中点.

(1) 证明: PO ⊥ 平面 ABC ;

(2) 若点 M 在棱 BC 上,且二面角 M - PA - C 为30? ,求 PC 与平面 PAM 所成角的正弦值.

解:(1)因为 AP = CP = AC = 4 , O 为 AC 的中点,所以OP ⊥ AC ,且OP = 2 .

连结OB .因为 AB = BC =

2 AC ,所以△ABC 为等腰直角三角形,

2

且OB ⊥ AC , OB = 1

AC = 2 .

2

由OP 2 + OB 2 = PB 2 知 PO ⊥ OB .

由OP ⊥ OB , OP ⊥ AC 知 PO ⊥ 平面 ABC .

(2)如图,以O 为坐标原点, OB 的方向为 x 轴正方向,建立空间直角坐标系O - xyz .

由已知得O (0, 0, 0), B (2, 0, 0), A (0, -2, 0), C (0, 2, 0), P (0, 0, 2 3), AP = (0, 2, 2 3), 取平面

PAC 的法向量OB = (2, 0, 0) .

17

2 3 | a - 4| 2 3(a - 4)2 + 3a 2 + a 2

3 3 ? 设 M (a , 2 - a , 0)(0 < a ≤ 2) ,则 AM = (a ,

4 - a , 0) . 设平面 PAM 的法向量为n = (x , y , z ) .

由 AP ? n = 0, AM ? n = 0 得??2 y + 2 3z = 0

??ax + (4 - a ) y = 0

,可取n = ( 3(a - 4), 3a , -a ) ,

u u u r 所以

=

2 3(a - 4)

. u u u r = 3 .

cos OB , n

2 3(a - 4)2 + 3a 2 + a 2

| cos OB , n | 2

所以

= 3 .解得a = -4 (舍去), a = 4

.

2

所以n = (- 8 , 4 , - 4

) .又 PC = (0, 2, -2 3) ,所以

cos 3

u u u r

PC , n 3

3 3

4

所以 PC 与平面 PAM 所成角的正弦值为

3 .

4

= 3 .

2017年高考立体几何大题(理科)

2017年高考立体几何大题(理科)1、(2017新课标Ⅰ理数)(12分) 如图,在四棱锥P-ABCD中,AB//CD,且90 ∠=∠=. BAP CDP (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,90 ∠=,求二面角A-PB-C的余弦值. APD

2、(2017新课标Ⅱ理)(12分) 如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂 直于底面ABCD ,o 1 ,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成 角为o 45,求二面角M AB D --的余弦值.

3、(2017新课标Ⅲ理数)(12分) 如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD⊥平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.

4、(2017理)(本小题14分) 如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD,AB=4.

(I)求证:M为PB的中点; (II)求二面角B-PD-A的大小; (III)求直线MC与平面BDP所成角的正弦值.

5、(2017理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其部)以AB 边所在直线为旋转轴旋转120?得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2018年高考立体几何大题练习

1.(14分)如图,在底面是正方形的四棱锥P ABCD -中,PA ⊥面ABCD ,BD 交AC 于点,E F 是PC 中点,G 为AC 上一点。 (Ⅰ)求证:BD ⊥FG ; (Ⅱ)确定点G 在线段AC 上的位置,使FG //平面PBD ,并说明理由; (Ⅲ)当二面角B PC D --的大小为23 π时,求PC 与底面ABCD 所成 角的正切值。 2.(本小题满分14分) 如图,三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112,AA AC AC AB BC ====, 且AB BC ⊥,O 为AC 中点. (Ⅰ)证明:1A O ⊥平面ABC ; (Ⅱ)求直线1A C 与平面1A AB 所成角的正弦值; (Ⅲ)在1BC 上是否存在一点E ,使得//OE 平面1A AB ,若不存在,说明理由;若存在, 确定点E 的位置. 1 A B C O A 1 B 1

3.如图1,在直角梯形ABCD 中,AD //BC ,D 2 π ∠BA = ,C 1AB =B =,D 2A =,E 是D A 的中点, O 是C A 与BE 的交点.将?ABE 沿BE 折起到1?A BE 的位置,如图2. (I )证明:CD ⊥平面1C A O ; (II )若平面1A BE ⊥平面CD B E ,求平面1C A B 与平面1CD A 夹角的余弦值. 4.(2016·兰州诊断)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB ∥ CD ,=21AB BC CD ==,,顶点1D 在底面ABCD 内的射影恰为点C (1)求证:1AD ⊥BC ; (2)若直线1DD 与直线AB 所成的角为3 π ,求平面11ABC D 与平面ABCD 所成角(锐角)的余弦值.

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

近三年高考全国卷理科立体几何真题

新课标卷近三年高考题 1、(2016年全国I 高考)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形,AF =2FD ,90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o . (I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【解析】 ⑴ ∵ABEF 为正方形 ∴AF EF ⊥ ∵90AFD ∠=? ∴AF DF ⊥ ∵=DF EF F I ∴AF ⊥面EFDC AF ⊥面ABEF ∴平面ABEF ⊥平面EFDC ⑵ 由⑴知60DFE CEF ∠=∠=? ∵AB EF ∥ AB ?平面EFDC EF ?平面EFDC ∴AB ∥平面ABCD AB ?平面ABCD ∵面ABCD I 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形 以E 为原点,如图建立坐标系,设FD a = ()020EB a =u u u r ,,,322a BC a ?? =- ? ???u u u r ,,,()200AB a =-u u u r ,, 设面BEC 法向量为()m x y z =u r ,,. 00m EB m BC ??=? ??=??u r u u u r u r u u u r ,即1111203 202a y a x ay z ?=????-?=?? 设面ABC 法向量为()222n x y z =r ,, =00n BC n AB ?????=??r u u u r r u u u r .即2222 320220a x ay ax ?-=???=? 222034x y z ===,

立体几何高考真题大题

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=o ,且二面角D-AF-E 与二面角C-BE-F 都是60o . (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析; (Ⅱ)19 - 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平 面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m u r 及平面C B E 的法向量 n r ,再利用cos ,n m n m n m ?=r r r r r r 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E - ,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =o .从而可得(C -. 所以(C E =u u u r ,()0,4,0EB =u u u r ,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r 是平面C B E 的法向量,则 C 0 0n n ??E =???EB =??u u u r r u u u r r , 即040x y ?=?? =??, 所以可取(3,0,n =r .

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

2014高考理科立体几何大题练习

2014高考理科立体几何大题练习

1.如图1,在Rt ABC ?中,90C ∠=?,36BC AC ==,.D 、E 分别是AC AB 、上的点,且//DE BC ,将ADE ?沿DE 折起到1 A DE ?的位置,使1A D CD ⊥,如图2. (Ⅰ)求证: BC ⊥平面1A DC ; (Ⅱ)若2CD =,求BE 与平面1A BC 所成角的正弦值; (Ⅲ) 当D 点在何处时,1 A B 的长度最小,并求出最小值. 2.如图,四棱锥ABCD P -中,底面 ABCD 为正方形,PD PA =,⊥PA 平面PDC , E 为棱PD 的中点. (Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值. A B C D E 图图 A B C D E

E C 1 B 1A 1C B A 4. 如图,在直三棱柱111ABC A B C -中,90BAC ∠=?,1 2,AB AC AA ===E 是BC 中点. (I )求证:1//A B 平面1 AEC ; (II )若棱1AA 上存在一点M ,满足11 B M C E ⊥,求AM 的长; (Ⅲ)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.

E D A B C P 5.如图,在三棱锥P-ABC 中,PA=PB=AB=2, 3BC =,90=∠ABC °,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点. (Ⅰ)求证:DE‖平面PBC ; (Ⅱ)求证:AB ⊥PE ; (Ⅲ)求二面角A-PB-E 的大小. 6..如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

立体几何高考真题大题

立体几何咼考真题大题 1. (2016高考新课标1 卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方 形,AF=2FD, NAFD =90:且二面角 D-AF-E 与二面角 C-BE-F 都是 60: (I )证明:平面 ABEF 丄平面EFDC (n )求二面角 E-BC-A 的余弦值. 【答案】(I )见解析;(n ) -2蜃 19 【解析】 试题分析:(I )先证明AF 丄平面E FDC ,结合直F U 平面AB E F ,可得平面ABE F 丄 平面E FDC . (n )建立空间坐标系,分别求出平面E C E 的法向量m 及平面E C E 的法 试题解析:(I )由已知可得 A F 丄DF, A F 丄F E|,所以A F 丄平面E FDC . 又A F U 平面 AE E F ,故平面AEE F 丄平面|E F D C . _ (n )过D 作DG 丄E F ,垂足为G ,由(I )知DG 丄平面[A E 百F . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直 角坐标系G —xyz . 由(I )知N DF E 为二面角D -A F -E 的平面角,故N DF E =60:贝U DF = 2 , DG|=3,可得九(1,4,0 ), B(—3,4,0 ), E(—3,0,0 ), D (0,0, 73 ). 由已知,AE //E F ,所以AE //平面E FDC . 又平面 A ECD n 平面 |E FDC = DC ,故〕AB //CD , CD//EF . 由EE //A F ,可得EE 丄平面I E F DC ,所以N C E F |为二面角C —EE —F 的平面角, 向量n ,再利用cos (n,m ) 求二面角. n ||m |

2017高考立体几何大题(理科)

2017年高考立体几何大题 1、( 2017新课标I 理数)(12分) 如图,在四棱锥P-ABCD 中,AB//CD ,且 BAP (1)证明:平面PAB 丄平面PAD ; (2)若 PA=PD=AB=DC , APD 90° ,求二面角(理科) A-PB-C 的余弦值.

(2017新课标U理)(12分) 如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂 1 直于底面ABCD,AB BC AD, BAD ABC 90°, 2 E是PD的中点. (1)证明:直线CE//平面PAB; (2)点M在棱PC 上,且直线BM与底面ABCD所成角 为45°,求二面角M AB D的余弦值. 3、( 2017新课标川理数)(12分) 如图,四面体ABCD中,△ ABC是正三角形,△ ACD是直角三角形,/

ABD=ZCBD , AB=BD . (1)证明:平面ACD 丄平面ABC ; (2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等 的两部分,求二面角D -\E-C 的余弦值. B

4、(2017北京理)(本小题14分) 如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD丄平面ABCD,点M 在线段PB 上, PD// 平面MAC,PA= PD=二,AB=4 .

(I) 求证:M为PB的中点; (II)求二面角B-PD-A的大小; (III)求直线MC与平面BDP所成角的正弦值. 门

5、(2017山东理)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB边所在直线为旋转轴旋转120得到的,G是D F的中点. (I)设P是CE上的一点,且AP BE,求CBP的大小; (H)当AB 3,AD 2,求二面角E AG C的大小.

近年高考理科立体几何大题总汇编

近几年高考理科立体几何大题汇编 1.(2018年III卷)如图,边长为2的正方形 ABCD所在的平面与半圆弧CD所在平面垂直,M是 CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC 体积最大时,求面MAB与面MCD所成二面角的正弦值. 2、[2014·新课标全国卷Ⅱ] 四棱锥P-ABCD中,底 面ABCD为矩形,PA⊥平面ABCD,E为PD的中 点. (1)证明:PB∥平面AEC; (2)设二面角D-AE-C为60°,AP=1,AD= 3,求三棱锥E-ACD的体积.

3.(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB⊥平面PAD; (2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值. 4.(菱形建系)[2014·新课标全国卷Ⅰ] 如图

三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (1)证明:AC=AB1; (2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.

5.(菱形建系)【2015高考新课标1】如图,四边形ABCD为菱形,∠ ABC=120°, E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面 AFC; (Ⅱ)求直线AE与直线CF所成角的余弦值. AD BC的中点,以6.(翻折)(2018年I卷)如图,四边形ABCD为正方形,,E F分别为, DF为折痕把DFC ⊥. △折起,使点C到达点P的位置,且PF BF (1)证明:平面PEF⊥平面ABFD; (2)求DP与平面ABFD所成角的正弦值.

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

(完整)2019-2020年高考数学大题专题练习——立体几何(一)

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

历年全国理科数学高考试题立体几何部分含答案

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥 O ABCD -的体积为 。 3.如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。 (一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直

角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{ n AB n PB ?=?=u u u r u u u r 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{ PB BC ?=?=u u u r u u u r 可取m=(0,-1,3-) 27 cos ,27 m n = =- 故二面角A-PB-C 的余弦值为 27 7 - (二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 3 C 2 3 D 6 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?u u u v u u u v 的最 小值为

立体几何高考真题大题

立体几何高考真题大题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

立体几何高考真题大题 1.(2016高考新课标1卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD, 90AFD ∠=,且二面角D-AF-E 与二面角C-BE-F 都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 试题分析:(Ⅰ)先证明F A ⊥平面FDC E ,结合F A ?平面F ABE ,可得平面F ABE ⊥平面FDC E .(Ⅱ)建立空间坐标系,分别求出平面C B E 的法向量m 及平面C B E 的法向量 n ,再利用cos ,n m n m n m ?= 求二面角. 试题解析:(Ⅰ)由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ?平面F ABE ,故平面F ABE ⊥平面FDC E . (Ⅱ)过D 作DG F ⊥E ,垂足为G ,由(Ⅰ)知DG ⊥平面F ABE . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可 得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D . 由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =,故//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE -的平面角, C F 60∠E =.从而可得(C -.

相关文档
最新文档