微生物油脂生产与利用

微生物油脂生产与利用
微生物油脂生产与利用

微生物油脂生产与利用

微生物油脂一般又称之为单细胞油脂,即微生物

以碳水化合物、碳氢化合物和普通油脂为碳、氮源、辅以无机盐生产的油脂和另一些有商业价值脂质“。

微生物细胞通常仅含有2%~3%油脂,随着人们

对微生物研究深入,发现某些微生物在特定条件下培养,干菌体含油率可达30%,甚至60%,如此之高含油量使微生物油脂实际开发成为可能。尤其引人注目的是,某些微生物还可产生具有生理活性功能的二十二

碳六烯酸(DHA)、二十碳五烯酸(EPA),.亚麻酸和

花生四烯酸(从)等脂肪酸,在人们日益关注自身健

康今天,具有保健功能油脂开发拥有广阔发展前景。

1微生物油脂生产

1.1微生物生产油脂优点

与动、植物油生产相比,微生物油脂生产具有许

多优点:(1)微生物细胞增殖快、生长周期短;(2)微生

物生长所需原料丰富,且能利用农副产品及食品工

业、造纸工业中产生废弃物,起到保护环境作用:(3)所需劳动力少,同时不受季节、气候变化限制;(4)能连续大规模生产,降低成本;(5)利用细胞融合、细胞诱变等方法,能使微生物产生更能符合人体需要的高营养油

脂或某些特定脂肪酸组成油脂,如EPA、DHA、类可可脂等。

1.2微生物油脂生产工艺

微生物油脂一般按如下工艺生产:

筛选菌种一菌种扩大培养一收集茵体一干茵体

预处理一油脂提取一精制

1.2.1产油微生物菌种筛选

用于工业化生产菌株必须具备以下条件:(1)油脂

积累量大,含油量应达50%以上,且油脂转化率不低

于l5%:(2)生长繁殖速度快,不易污染杂菌;(3)能适应工业化深层培养,装置简单;(4)油风味良好,安全无毒,易消化吸收" 。

目前研究用于生产微生物油脂菌种主要有藻类、

酵母和霉菌。具体如下:

在各种藻类中,金藻纲、黄藻纲、硅藻纲、绿藻纲、隐藻纲和甲藻纲中藻类都能产生高含量多不饱和脂肪酸。常见产油酵母有:浅白色隐球酵母、弯隐球酵母、

斯达氏油脂酵母、茁芽丝孢酵母、产油油脂酵母、胶粘红酵母、类酵母红冬孢等。

常见产油霉菌有:土霉菌、紫癜麦角菌、高梁褶孢

黑粉菌、高山被孢霉、深黄被孢霉等¨。

1.2.2菌种扩大培养

菌种扩大培养就是油脂发酵生产和积累过程。培

养基组成、培养条件是此阶段中主要影响因素,直接

影响到油脂产量和质量。

1.2.3干菌体预处理

在微生物油脂生产过程中,菌体预处理是关键工

艺。微生物油脂存在于细胞内,有些油脂甚至与蛋白

质或糖类呈结合态存在,且由于细胞壁较坚韧,故在

有机溶剂浸提前须对菌体细胞进行预处理。预处理方

法主要有四种:即干菌体磨碎法(干菌体与细砂一起

研磨);干菌体稀盐酸共煮法;菌体自溶法(让菌体在

50℃下保温2~3 d);菌体蛋白变性法(用乙醇或丙酮

使结合蛋白质变性)。

1.2.4 油脂提取

油脂提取一般采用有机溶剂浸提,用于油脂浸提有

机溶剂主要有乙醚、异丙醚、氯仿、乙醚一乙醇、石油醚、

氯仿一甲醇等。磨碎微生物干菌体由于颗粒较细,浸

提时溶剂渗透性极差,混合油不易浸出,因此在浸提前可

对干菌体进行造粒处理,这样提高浸出设备利用率,混合

油中粉末少,毛油质量好,浸出系统管道不易堵塞。需要

注意的是,造粒时须严格控制温度,最宜不高于50"C,以

防油脂氧。浸提后再通过减压蒸馏等手段回收溶剂。

1.2.5精制

通过水化脱胶、碱炼、活性白土脱色和蒸汽脱臭对

微生物毛油进行精炼,可得到品质较高微生物油脂" 。

1.3影响微生物油脂合成因素

1.3.1培养基组成

收稿日期:2005-08.09

作者简介:王祯旭(1983~),男,硕士研究生,研究方向:食品化学与营养。维普资讯https://www.360docs.net/doc/ed7369725.html,

l4 粮食与油脂2005年第10期

培养基一般采用食品和化工加工过程中产生副

产物(如:废糖液、淀粉、尿素等),外加一些微生物生长

所需生长因子。培养基中氮源浓度和C/N比是影响微

生物油脂产量主要因素,一般来说,培养基中含氮化

合物越多,则细胞蛋白质含量越多。因此在实际生产

中,培养初期供给大量氮源使微生物迅速增殖,以获

取大量菌体细胞,后期改为含糖量多的培养条件以使

油脂积累,这样可从蛋白质合成初期百分之几油脂含

量提高到后期百分之几十油脂含量。刘淑君等研究

发现,C/N比为61:l时,油脂产量和得率最高。

1.3.2培养温度

生成油脂最适温度大多在25~C左右。温度能影响

油脂的组成、含量;培养温度低时不饱和脂肪酸含量

将增加。

1.3.3 pH

生产油脂最适pH值随微生物种类不同而异,酵

母为3.5~6.0,霉菌为中性至偏碱性,油脂酵母培养基

pH值越接近中性,稳定期菌体油脂含量越高。

1.3.4培养时间

培养时间对油脂合成也很重要。如黑曲霉、米曲霉、

根霉、红酵母、酿酒酵母最佳培养时间分别为3 d、7 d、7 d、5 d、6 d。培养时间不足,微生物菌体总数达不到最大量而

影响油脂量;培养时间过长,微生物个体变形、自溶,形

成油脂进入培养基中难以收集;同样影响油脂产量。1.3.5通气量

微生物利用糖类基质合成油脂及不饱和脂肪酸

时都需要氧气,因此必须供给充足氧。

1.3.6 无机盐

对某些微生物,添加一定量无机盐类,可提高其

产油量。

1.3.7 光照

一般来说,对于许多硅藻和裸藻,低光照强度增

加脂肪酸形成和积累;但对于绿藻类,红藻类,紫球藻,

光照强度效果则相反。

2微生物油脂利用

由于微生物油脂制造成本较高,尚未实现大规模

工业化生产,现还无法与动植物油脂相竞争。因此目

前对微生物油脂研究和开发主要集中在利用微生物

生产附加值高的功能性油脂和特殊用途油脂方面。

2.1 一亚麻酸( .GLA)

一亚麻酸是人体必需脂肪酸之一,具有明显降血

脂和降低胆固醇作用,已被广泛应用于医药、保健食

品、高级化妆品中。

英国科学家使用爪哇镰刀菌,以小麦淀粉生产葡

萄糖作为培养基进行发酵生产,.亚麻酸含量高达

16%。我国上海工业微生物研究所张秀鲁等c10]利用

Mlo2菌株发酵生产-亚麻酸,其含量占总脂肪酸8%。2.2花生四烯酸(AA)

花生四烯酸一般存在于陆地动物油脂和一些植

物油中,但含量极低。它是合成前列腺素前体,其代谢

产物PG、TX、LT具有调节脉管阻塞、血栓、伤口愈合、

炎症及过敏等生理功能。1979年,Lizuka等发现青霉

属Penicillium cyaneum在细胞内明显积累花生四烯

酸,用烷烃作为主要碳源培养,其花生四烯酸含量为

0.2 mg/g(干细胞)””。我国研究起步较晚,1997年朱法

科等¨以一株被孢霉为出发菌株,经紫外诱变获得

AA高产菌,AA得率达0.83 g/L。

2.3 类可可脂

可可脂是一种价格较贵油脂,其甘油三酯组成主

要为POS 51.9%、SOS l8.4%、POP 6.5%(P:棕桐酸,S:硬脂酸,O:油酸)。荷兰利用假丝酵母属、类酵母属、红

酵母属、油脂酵母属等l4个属酵母变异种生产类可可

脂及其代用品,以N一甲基一N一亚硝基胍诱变后得到

高产菌种,经培养,油脂含量达30%,且其中95%甘油

三酯具有P 37.6%、S 14.3%、O 37.5%脂肪酸组成。2.4 EPA和DHA

天然EPA、DHA主要富集在深海鱼油中,其具有

重要生理功能:(1)预防和治疗动脉粥样硬化、血栓及

高血压;(2)防治乳腺癌、前列腺癌和结肠癌;(3)治疗

气喘、关节炎、周期性偏头痛等;(4)促进婴儿神经系统

和视觉系统发育。

美国Martek Bioscience’S公司研究人员发现硅藻

异养菌Nitzschia alba是一种很好EPA生产菌,在机械

搅拌罐培养64h后,菌体浓度达到45 g~48g/L,硅藻

油含量高达干重50%,EPA 占油总量4%~5%。日本

筛选、养殖一种海藻Chlorella mimutissma,其脂肪酸

中含99%EPA“。

在自然资源日益贫乏今天,对新资源研究开发必

将成为全世界关注热点。微生物油脂正是作为一种新

型油脂新资源出现在我们面前,相信随着其生产技术

日趋完善,微生物油脂必定具有广阔发展前景。

[

代谢工程在工业微生物育种中的应用

代谢工程在工业微生物育种中的应用 摘要:传统的诱变育种仍是目前发酵工业菌种选育中最常用的育种技术,以基因工程技术为主的多元化育种方式的发展,为代谢途径操作引入了全新的理念和方法,使代谢工程得以发展。代谢工程是对细胞代谢网络的代谢流量及代谢控制进行定量地、系统地分析,并通过DNA重组技术和相关的遗传学手段对微生物细胞进行代谢改造,提高其目的产物代谢量。本文论述了微生物代谢工程的理论基础及其在发酵工业微生物育种中的应用现状。 关键词:代谢工程;代谢途径;菌种选育 发酵工业自20世纪40年代发展至今,在青霉素等抗生素的发酵生产、赖氨酸等一系列氨基酸的发酵生产以及核苷酸、有机酸等物质的发酵产业发展中起了极其重要的作用。在工业微生物育种的过程中,对个别基因进行改造的经典基因工程技术不能保证对微生物代谢网络结构和功能的准确分析和高效利用,影响了相关行业的生产效率的稳定和经济效益的提高。目前,几乎所有重要工业微生物模式菌种的基因组全序列已经或即将公布,转录组、蛋白质组、代谢组、通量组等数据资源正在迅速扩展。充分利用组学数据中包含的有用信息,可以更有效地改造和控制细胞性能、提高底物利用以及产品的产率、改善微生物工业适应性,促进工业生物技术发展[1]。 菌种筛选和持续不断的改良贯彻于发酵生产过程的始终,以基因工程为核心的现代生物技术正越来越显示出其在菌种改良上的魅力,将最终成为微生物育种的主导技术[2]。建立在重组DNA技术基础之上的代谢工程技术,可以更容易地选择菌种的改良靶点,构建具有新的代谢途径的微生物细胞,提高其发酵性能,生产特定目的产物,从而可以推动发酵工业的发展。 一、代谢工程概述 代谢工程(Metabolic engineering),又称途径工程(Pathway engineering),是指利用生物学原理,系统地分析细胞代谢网络,并通过DNA重组技术合理设计细胞代谢途径,通过遗传修饰,完成细胞特性改造的应用性学科。1974年,Chakrabarty在假单胞菌属的两个菌种中分别引入几个稳定的重组质粒,从而提高了对樟脑和萘等复杂有机物的降解活性,这成为代谢工程技术的第一个应用实例。代谢工程的概念是1991年由生化工程专

微生物课后答案

绪论 3微生物是如何分类的? 答为了识别和研究微生物,将各种微生物按其客观存在的生物属性(如个体形态及大小、染色反应、菌落特征、细胞结构,生理生化反应、与氧的关系、血清学反应等)及谈们的亲缘关系,有次序的分门别类排列成一个系统,从小到大按域、界、门、纲、目、科、属、种等分类。 6微生物有哪些特点? 答、①个体极小:微生物的个体极小,有几纳米到几微米,,要通过光学显微镜才能看见,病毒小于0.2微米,在光学显微镜可视范围外,还需要通过电子显微镜才可看见。②分布广,种类繁多环境的多样性如极端高温、高盐度和极端pH造就了微生物的种类繁多和数量庞大。③繁殖快大多数微生物以裂殖的方式繁殖后代,在适宜的环境条件下,十几分钟至二十分钟就可繁殖一代。在物种竞争上取得优势,这是生存竞争的保证。④易变异多数微生物为单细胞,结构简单,整个细胞直接与环境接触,易受外界环境因素影响,引起遗传物质DNA的改变而发生变异。或者变异为优良菌种,或使菌种退化。 第一章 1病毒是一类怎样的微生物?他有什么特点? 答病毒是没有细胞结构,专性寄生在活的敏感素主体内的超微笑微生物。它们只具有简单的独特结构,可通过细菌过滤器。特点:个体小、

没有合成蛋白质结构----核糖体、也没有合成细胞物质和繁殖所必需的酶系统,不具有独立代谢能力,必须专性寄生在活的敏感细胞内依靠宿主细胞和成病毒的化学组成和繁殖新个体。 3病毒具有怎样的化学组成和结构? 答、病毒的化学组成由蛋白质和核酸,个体大的病毒还含有脂质和多糖。病毒没有细胞机构,确有其自身特有的结构。整个病毒体分两部分:蛋白质衣壳和核酸内芯,两者够成核衣壳。完整具有感染力的病毒体叫病毒粒子。病毒粒子有两种一种不具被膜(囊膜)的裸漏病毒粒子,另一种是在核衣壳外面有被膜包围所构成的病毒粒子。 4叙述大肠杆菌T系噬菌体的繁殖过程。 答、吸附、侵入、复制与聚集、释放。吸附:大肠杆菌T系噬菌体以及它的尾部末端吸附到敏感细胞表面上某一特定的化学成分。侵入:噬菌体的尾部借着尾丝的帮助固着在敏感细胞的细胞壁上,尾部的酶水解细胞壁的肽聚糖形成小孔,尾鞘消耗ATP获得能量而收、、、、、、、、、、、、P18 5什么叫毒性噬菌体?什么叫温和噬菌体? 答、噬菌体有毒性噬菌体和温和噬菌体两种类型,侵入宿主细胞后,随即引起宿主细胞裂解的噬菌体称作毒性噬菌体。维恩和噬菌体则是:当他侵入宿主细胞后,其核酸附着并整合在宿主染色体上,和宿主的核酸同步复制,宿主细胞不裂解而继续生长,这种不引起宿主细胞裂解的噬菌体称作温和噬菌体。 6什么叫溶原细胞(菌)?什么叫原噬菌体?

微生物油脂及其新的应用研究

粮油加工?油脂工程? 微生物油脂及其新的应用研究 董文宾梁西爱代春吉苗晓洁 (陕西科技大学生命科学与工程学院) 【摘要】微生物的增殖率高,干菌体含油量高;用微生物方法生产油脂周期短、产量高、不受场地、季节、环境的影响,从而为人类提供了科学产油的广阔前景。 【关键词】微生物;油脂;应用;现状 中图分类号:!"##$%&文献标识码:’文章编号:&(()*&+(,(#((-)(.*(($/*(# 微生物油脂又称单细胞油脂,即微生物以碳水化合物、碳氢化合物和普通油脂为碳、氮源,辅以无机盐生产的油脂和另一些有商品价值的脂质。 利用微生物生产油脂在技术上已经完全可行,关键要看经济上是否可行。微生物生产油脂成本取决于培养基的价格和发酵结束后从微生物细胞中提取脂类的费用。目前,即使在最佳条件下,由微生物生产!"油脂的价格仍明显高于用大豆、油菜籽或油棕生产!"油脂的价格,因此,对微生物油脂的研究主要集中在经济价值高的特殊营养油脂、特殊工业用途油脂,如类可可脂、多不饱和脂肪酸、生物食用色素、甾体激素、蜡酯、羟基脂肪酸等。利用微生物可生产各种类型脂肪酸,有单不饱和脂肪酸如棕榈油酸、油酸等,多不饱和脂肪酸如亚油酸、亚麻酸、花生四烯酸、二十五碳五烯酸、二十六碳六烯酸等,这些具有特殊生物功能和特殊用途的功能性油脂在促进人类健康方面将越来越重要。更重要的是微生物油脂生物安全性好,更有利于健康,这一点可抵消其价格略高的缺陷。 &微生物油脂的特点及组成 &%&微生物油脂的特点 (!)微生物适应性强,生长繁殖迅速,生长周期短,代谢活力强,易于培养和品种改良。 (#)微生物产油脂所需劳动力低,占地面小,且不受场地、气候和季节变化等的限制,能连续大规模生产。 ($)微生物生长所需原材料来源丰富且便宜,可利用农副产品、食品加工及造纸业的废弃物(如乳清、糖蜜、木材糖化液等)为培养基原料,十分有利于废物再利用和环境保护。 (%)微生物油脂的生物安全性好。 (&)可利用不同的菌株和培养基的产品构成变化较大的特点,尤其适合开发一些功能性油脂,如富含油酸、!’亚麻酸、((、)*(、+,(、角鲨烯、二元羧酸等的油脂以及代可可脂。 &%#微生物油脂的组成 油脂是微生物生命活动的代谢产物之一,微生物油脂也和动植物油脂一样以两种形式存在,一种是体质脂形式,即作为细胞的结构组成部分而存在于细胞质中,在微生物中含量非常恒定,如微生物细胞膜上的磷脂;另一种形式是贮存脂形式,油脂在微生物细胞内以脂滴或脂肪粒形式贮存于细胞质中。 微生物油脂中甘油三酯约占-&.,其他脂质(如糖脂、甘油一酯、甘油二酯)约占!/.。少数不常见脂质,如硫脂(硫酸脑苷脂,脑硫脂)、肽脂、甾醇、羟基脂、蜡酯、甘油硫酸酯、醚酯等,在细菌(包括古细菌)中也有发现。酵母和霉菌还可生产各种类胡萝卜素、甾醇、脂酰基鞘氨醇类神经鞘脂及糖脂。 微生物油脂的成分组成大致上类似植物油,主要为中性脂肪酸、游离脂肪酸、磷脂及不皂化物。 #微生物油脂生产的基本流程 微藻、酵母、霉菌和细菌等微生物,可以碳水化合物、碳氢化合物和普通油脂为碳源生产油脂和一些具有商业价值的脂质。真核的微藻、酵母、霉菌能在它们体内合成与植物油脂相似的甘油三酯(单细胞油脂,012),原核的细菌则合成特殊的脂质,如蜡、聚酯、聚’"’羟丁酸等。 !!"《粮油加工与食品机械》!""#年第$期

代谢工程

代谢工程 科技名词定义 中文名称:代谢工程 英文名称:metabolic engineering 定义:通过基因工程的方法改变细胞的代谢途径。 所属学科:生物化学与分子生物学(一级学科);新陈代谢(二级学科) 本内容由全国科学技术名词审定委员会审定公布 代谢工程书籍图 代谢工程(Metabolic engineering)是生物工程的一个新的分支。代谢工程把量化代谢流及其控制的工程分析方法和用以精确制订遗传修饰方案并付之实施的分子生物学综合技术结合起来,以上述“分析——综合”反复交替操作、螺旋式逼近目标的方式,在较广范围内改善细胞性能,以满足人类对生物的特定需求的生物工程。 目录

发展前沿 展开 编辑本段发展 为了满足人类对生物的特定需求而对微生物进行代谢途径操作,已有将近半个世纪的历史了。在氨基酸、抗生素、溶剂和维生素的发酵法生产中,都可以找到一些典型实例。操作的主要方法是,用化学诱变剂处理微生物,并用创造性的筛选技术来检出已获得优良性状的突变菌株。尽管这种方法已被广泛地接受并已取得好的效果,但对突变株的遗传和代谢性状的鉴定是很不够的,更何况诱变是随机的,科学不足技巧补! DNA重组的分子生物学技术的开发把代谢操作引进了一个新的层面。遗传工程使我们有可能对代谢途径的指定酶反应进行精确的修饰,因此,有可能构建精心设计的遗传背景。DNA重组技术刚进入可行阶段不久,就出现了不少可用来说明这种技术在定向的途径修饰方面的潜在应用的术语。如分子育种(1981年),体外进化(1988年),微生物工程或代谢途径工程(1988~1991年),细胞工程(1991年)和代谢工程(1991年)。尽管不同的作者提出不完全相同的定义,这些定义均传达了与代谢工程的总目标和手段相似的含义。 我们曾经把代谢工程定义为,代谢工程就是用DNA重组技术修饰特定的生化反应或引进新的生化反应,直接改善产物的形成和细胞的性能的学科。这样定义代谢工程强调了代谢工程工作目标的确切性。也就是说,先要找到要进行修饰或要引进的目标生化反应,一旦找准了目标,就用已建立的分子生物学技术去扩增、去抑制或删除、去传递相应的基因或酶,或者解除对相应的基因或酶调节,而广义的DNA重组只是常规地应用于不同步骤中,以便于达到这些目标。 编辑本段优势与研究方向 优势 尽管在所有的菌种改良方案中都有某种定向的含义,但与随机诱变育种相比较,在代谢工程中工作计划的定向性更加集中更加有针对性。这定向性在酶的目标的选择,实验的设计,数据的分析上起着支配的作用。不能把细胞改良中的所谓“定向” 解释为合理的途径设计和修饰,因为“定向选择”与随机诱变之间没有直接关系。相反地我们可借助于“逆行的代谢工程”(reverse metabolic engineering), 从随机诱变而获得的突变株及其性状的实验结果,来提取途径及其控制的判断信息(critical information)。 研究方向

微生物代谢工程答案整理样本

1.微生物代谢工程定义、研究内容和研究手段。 定义: 经过某些特定生化反应的修饰来定向改进细胞的特性功能, 运用重组DNA技术来创造新的化合物。 研究内容: 生物合成相关代谢调控和代谢网络理论; 代谢流的定量分析; 代谢网络的重新设计; 中心代谢作用机理及相关代谢分析; 基因操作。 研究手段: 代谢工程综合了基因工程、微生物学、生化工程等领域的最新成果。因此, 在研究方法和技术方面主要有下列三大常见手段: (1)检测技术: 常规的化学和生物化学检测手段都可用于代谢工程的研究, 如物料平衡、同位素标记示踪法、酶促反应动力学分析法、光谱学法、生物传感器技术。 (2)分析技术: 采用化学计量学、分子反应动力学和化学工程学的研究方法并结计算机技术, 阐明细胞代谢网络的动态特征与控制机理, 如稳态法、扰动法、组合法和代谢网络优化等。 (3) 基因操作技术: 在代谢工程中, 代谢网络的操作实质上能够归结为基因水平上的操作: 涉及几乎所有的分子生物学和分子遗传学实验技术, 如基因和基因簇的克隆、表示、调控, DNA 的杂交检测与序列分析, 外源DNA 的转化, 基因的体内同源重组与敲除, 整合型重组DNA 在细胞内的稳定维持等。 2. 2.代谢改造思路和代谢设计原理。 代谢改造思路: 根据微生物的不同代谢特性, 常采用改变代谢流、扩展代谢途径和构建新的代谢途径三种方法。 (1)改变代谢途径的方法: 加速限速反应, 增加限速酶的表示量, 来提高产

物产率。改变分支代谢途径流向, 提高代谢分支点某一分支代谢途径酶活力, 使其在与其它的分支代谢途径的竞争中占据优势, 从而提高目的代谢产物的产量。 (2)扩展代谢途径的方法: 在宿主菌中克隆和表示特定外源基因, 从而延伸代谢途径, 以生产新的代谢产物和提高产率。扩展代谢途径还可使宿主菌能够利用自身的酶或酶系消耗原来不消耗的底物。 (3)转移或构建新的代谢途径: 经过转移代谢途径、构建新的代谢途径等方法来实现。 代谢设计原理: 现存代谢途径中改变增加目的产物代谢流: 增加限速酶编码基因的拷贝数; 强化关键基因的表示系统; 提高目标途径激活因子的合成速率; 灭活目标途径抑制因子的编码基因; 阻断与目标途径相竟争的代谢途径; 改变分支代谢途径流向; 构建代谢旁路; 改变能量代谢途径; 在现存途径中改变物流的性质: 利用酶对前体库分子结构的宽容性; 经过修饰酶分子以拓展底物识别范围; 在现存途径基础上扩展代谢途径: 在宿主菌中克隆、表示特定外源基因能够延伸代谢途径, 从而生产新的代谢产物、提高产率。 3. 微生物的基因操作技术有哪些? ( 举两例说明) 微生物的基因操作技术有: 核酸的凝胶电泳、核酸的分子杂交技术、DNA序列分析、基因的定点诱变、细菌的转化、利用DNA与蛋白质的相互作用进行核酸研究、PCR技术等。 基因定点突变(site-directed mutagenesis): 经过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列, 用于研究氨基酸残基对蛋白质的结构、催

一种微生物复合菌剂的生产工艺流程及详细设计要求

一种微生物复合菌剂的生产工艺流程及详细设 计要求 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

一种微生物复合菌剂的生产工艺流程及设计要求 (附简图) 一.生产前的准备工作 (1)生产用菌种的鉴定:主要包括纯度鉴定,生产性能的检查,有无杂菌污染。还有就是菌种的活性,重要特性有无退化等。 (2)如菌种已发生功能性改变或被杂菌污染,还需要进行菌种的纯化或或复壮。 (3)其次在规模生产之前,还要通过实验室中试,确定该菌群的最适生长温度,PH,发酵培养基的最适成分与比例;生长曲线的绘制与最适培养时间的确定。我们一般选取对数生长期的菌体(丝)做为生产发酵用的菌种。最佳接种量与装液量的控制。 二.实验室菌种的活化与种子培养阶段: (1)将冷冻保藏管中的菌种在斜面中活化(37℃ 24h),并在平板中进行纯化(37℃ 24h)。最终得到斜面菌种或菌种斜面。 (2)摇瓶培养阶段: 取一环纯化后的的菌种,接入装量为20mL种子培养基的250mL三角瓶中,置于180r/min中摇床中培养 (37℃ 18h)。分别取1mL的种子液 ,接入五个盛有20mL发酵培养基的250 mL 三角瓶中。置于180 r/ min摇床中培养(37℃ 24h)。接种量为三角瓶实际培养基装量的4-5%.PH控制在之间。

培养基组成见下表: (注;1ppm=1mg/l) 三.生产车间多级种子罐发酵阶段: 工艺流程 工艺条件 中控 ℃ 蒸汽 ~ MPa ~ 加料体积50%~75%,实际为60% ~ 精密试纸或PH 计 121℃~125℃ ~ MPa ~ 25℃~35℃ 常压 摇瓶菌种 物料量的%.实际接种量为1% 25℃~35℃ 镜检: 24~36h 菌体的形态、密度

微生物油脂及其开发利用研究进展

微生物油脂及其开发利用研究进展 谢小萍 (武汉工业学院食品科学与工程食工082班080107305) 摘要:微生物油脂(亦称单细胞油脂,sco)是一种前景广阔的新型油脂资源,正越来越受到人们的重视,尤其在生产富含多不饱和脂肪酸的功能性油脂方面已成为研究热点。该文对微生物油脂制备、影响因素及开发利用等方面作一综述,并展望其应用前景。 关键词:微生物油脂;制备;开发利用 0 引言 微生物油脂又称单细胞油脂(sco),是由酵母、霉菌、细菌和藻类等微生物在一定条件下,利用碳水化合物、碳氢化合物和普通油脂作为碳源,在菌体内产生的大量油脂。对微生物油脂的研究最早始于第一次世界大战期间,德国曾准备利用内孢霉属Endomyces vernalis和单细胞藻类镰刀菌属Fusarium 的某些菌种作为油脂生产菌,以解决当时食用油的不足。之后,美国也开始研究微生物油脂的生产,但由于不能进行深层培养,故结果不终于筛选出适合深层培养的菌株,于是开始工业化生产微生物油脂。 利用微生物生产油脂有许多优点:(1)微生物繁殖速度快,生产周期短;(2)可利用农副产品下脚料、工业废弃物作为微生物生长原料,既降低处理废物的成本,又保护环境;(3)所需劳动力少,同时不受场地、季节、气候变化的影响; (4)利用生物技术改良菌种或选择不同培养基,可使微生物生产经济价值高的功能性油脂和有特殊用途的油脂,如富含Y一亚麻酸、花生四烯酸、EPA、DHA 等油脂及代可可脂。而且,由于人口增长使得日益增加的油脂需求量与自然资源严重短缺的矛盾愈发尖锐开辟微生物油脂这一新的油脂资源更具有重要的现实意义。 1 微生物油脂制备 微生物油脂的生产工艺流程一般为: 原料灭菌茵体培养茵体收集干燥 菌种筛选 油脂提取微生物毛油精炼 1.1 菌种选择 用于工业化生产的菌株必须具备以下条件:(1)油脂积累量大,含油量应达50%以上,且油脂转化率不低于l5%:(2)生长繁殖速度快,杂菌污染困难;(3)能适应工业化深层培养,装置简单;(4)风味良好,安全无毒,易消化吸收。真核的酵母、霉菌和藻类能合成与植物油组成相似的甘油三酯,而原核的细菌则合成特殊的脂类,如蜡、聚酯、聚-β- 羟丁酸等【1】,目前研究较多的是酵母、霉菌和藻类,如产油油脂酵母(Lipomyces lipofera)、胶粘红酵母(Rhodotorula glutinis)、高山被孢霉(Mortierella alpina)、深黄被孢霉(Mortierella isabellina)等。 1.2 茵体预处理 微生物油脂通常积累在菌体细胞内,由坚韧的细胞壁包裹,部分与蛋白质或糖类结合以脂蛋白、脂多糖的形式存在,故分离较为困难,因此必须对菌体进行预处理才利于油脂的提取。预处理方法主要有四种:干菌体掺砂共磨法、与稀

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH 及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀

我国在微生物代谢领域的研究现状及展望

我国在微生物代谢领域的研究现状及展望 发表时间:2012-06-18T14:33:59.827Z 来源:《赤子》2012年第8期供稿作者:李夏 [导读] 微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。 李夏(四川化工职业技术学院,四川泸州 646005) 摘要:微生物代谢是指微生物吸收营养物质维持生命和增殖并降解基质的一系列化学反应过程,包括有机物的降解和微生物的增殖。在分解代谢中,有机物在微生物作用下,发生氧化、放热和酶降解过程,使结构复杂的大分子降解;合成代谢中,微生物利用营养物及分解代谢中释放的能量,发生还原吸热及酶的合成过程,使微生物生长增殖。文章主要介绍我国在微生物代谢领域的研究现状及对未来的展望,为我们呈现了一个广阔的微生物代谢世界。 关键词:微生物代谢;分解代谢;合成代谢;研究现 前言 微生物在生长过程中机体内的复杂代谢过程是互相协调和高度有序的,并对外界环境的改变能够迅速做出反应。其原则是经济合理地利用和合成所需要的各种物质和能量,使细胞处于平衡生长状态。在实际生产中,往往需要高浓度的积累某一种代谢产物,而这个浓度又常常超过细胞正常生长和代谢所需的范围。因此要达到超量积累这种产物,提高生产效率,必须打破微生物原有的代谢调控系统,在适当的条件下,让微生物建立新的代谢方式,高浓度的积累人们所期望的产物[1]。 1 我国微生物代谢的研究现状 1.1 利用微生物代谢生产酶 工业上,曾由植物、动物和微生物生产酶。微生物的酶可以用发酵技术大量生产,是其最大的优点。而且与植物或动物相比,改进微生物的生产能力也方便得多。微生物的酶主要应用于食品及其有关工业中。酶的生产是受到微生物本身严格控制。为改进酶的生产能力可以改变这些控制,如在培养基中加入诱导物和采用菌株的诱变和筛选技术,以消除反馈阻遏作用。 1.2 利用微生物代谢产生的代谢产物生产目的物 在微生物对数生长期中,所产生的产物,主要是供给细胞生长的物质,入氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。这些产物称为初级代谢产物。利用发酵生产的许多初级代谢产物,具有重大的经济意义,我国现已可以根据微生物代谢调控的理论,通过改变发酵工艺条件如pH、温度、通气量、培养基组成和微生物遗传特性等,达到改变菌体代谢平衡,过量生产所需要产物的目的。 1.3 利用微生物代谢理论发展产生了代谢工程 代谢工程是指利用基因工程技术,定向的对细胞代谢途径进行修饰、改造,以改变微生物的代谢特征,并于微生物基因调控、代谢调控及生化工程相结合,构建新的代谢途径,生产新的代谢产物的工程技术领域。 1.4 改变微生物代谢途径生产目的物 改变代谢途径是指改变分支代谢的流向,阻断其他代谢产物的合成,以达到提高目的产物的目的。改变代谢途径有各种方法,如加速限速反应,改变分支代谢途径流向、构建代谢旁路、改变能量代谢途径等不同方法[1]。 1.5 利用微生物代谢进行发酵 数千年来由于科学技术进步缓慢,各种微生物工业也未能充分发展。直到20世纪中期才建立了一系列新的微生物工业。近几年来,由于微生物代谢工程的应用,发酵工业开始进入新的发展时期。发酵产品增长快、质量明显提高,在国民经济中起重要作用。 1.6 微生物代谢在环境方面的应用 微生物降解是环境中去除污染物的主要途径。深人了解污染物在微生物内的代谢途径,将有助于人们优化生物降解的条件,从而实现快速的生物修复。这些代谢中间体大都通过萃取、分析方法进行逐个研究,并借助专家经验拟合出代谢途径,其动力学过程亦很少触及。代谢组学方法的采用有可能改变这一现状[2]。 1.7 利用微生物代谢进行赖氨酸的生产 在许多微生物中,可用天冬氨酸作原料,通过分支代谢途径合成出赖氨酸、苏氨酸和甲硫氨酸。赖氨酸在人类和动物营养上是一种十分重要的必须氨基酸,因此,在食品、医药和畜牧业上需求量很大。但在代谢过程中,一方面由于赖氨酸对天冬氨酸激酶有反馈抑制作用,另一方面,由于天冬氨酸除用于合成赖氨酸外,还要作为合成甲硫氨酸和苏氨酸的原料,因此,在正常细胞内,就难以累积较高浓度的赖氨酸。 为了解除正常的代谢调节以获得赖氨酸的高产菌株,工业上选育了谷氨酸棒杆菌的高丝氨酸缺陷型菌株作为赖氨酸的发酵菌种。由于它不能合成高丝氨酸脱氢酶,故不能合成高丝氨酸,也不能产生苏氨酸和甲硫氨酸,在补给适量高丝氨酸的条件下,可在含较高糖浓度和铵盐的培养基上,产生大量的赖氨酸[3]。 1.8 微生物代谢与分子生物学方法的结合 随着遗传学、分子生物学等方法的不断发展,人们越来越多地将这些方法运用到微生物的研究工作中。一些野生菌的合成能力或分泌能力有限,目前可通过人工诱变或构建高效的基因工程菌株等方法对其进行改造以扩大应用范围此外,现在许多细菌合成拮抗物质的基因已被克隆测序,为使植物获得微生物所具有的特殊功能,一种可能的方法是通过基因工程将目的基因导入植物体内,使植物直接表达活性物质[4]。 2 展望 2.1 微生物代谢在医药行业的展望 微生物在代谢过程中可分泌蛋白酶、纤维素酶、半纤维素酶、果胶酶、淀粉酶等几十种胞外酶进入培养基,这些酶有的可以将药物成分分解转化,形成新的化合物,有的可水解植物细胞壁的纤维素、半纤维素、果胶质等,使细胞破裂,利于有效成分溶出。特别是采用一些酶作用于药用植物材料,使细胞壁及细胞间质中的纤维素、半纤维素等物质降解,使细胞破裂,细胞间隙增加,减小细胞壁、细胞间物质传递屏障、对有效成分从胞内向胞外扩散的阻力减少,可促进有效成分的吸收提高。 2.2 微生物代谢在生理生化、微生物遗传育种方面的展望 随着分子生物学理论与技术的飞速发展,尤其是基因组和后基因组时代的到来,传统上的生理学与遗传学的交叉融合越来越多,许多

《微生物》习题附答案

一.名词解释 1.巴氏消毒法: 2.致死温度: 3.同步生长: 4.生长限制因子 5.次生代谢物 6.温和噬菌体: 7.致死时间: 8.灭菌: 9.消毒与灭菌: 10.disinfection 消毒continuous culture 连续培养 11.纯培养: 二.填空 1.混菌法平板计数,在10-2稀释度的平板中平均有32个细菌菌落,每毫升原始牛奶中有个__________细菌. 2.__________是在10分钟内将悬液中的所有微生物都杀死的最低温度。 3.__________ 酶能消除超氧化物自由基的毒害。 4.厌氧菌可生长在__________的培养基中 5根据细菌的生长曲线可将细菌的生长分为__________,__________, _________和__________ 四个时期,作为研究材料应取__________时期细菌最合适。 6.氢离子浓度(pH)可影响到细胞质膜电荷和养料吸收,大多数细菌的最适生长pH值为__________ 。 7书写莫诺(Monod)经验公式:__________,其含义是表示______________ . 8巴氏消毒采取的条件为:___________。 9高压蒸汽灭菌采取的条件为:_____________________。 10设一种细菌在接种时的细胞浓度为100个/ml,经400min的培养,细胞浓度增至10亿个/ml,则该菌在该段时间内的G为__________ ;R为__________ ;n为__________ 。(注:1/lg2=3.322,整个培养过程都处于对数期) 11好氧的微生物需要较____________(高、低)的氧化还原电位。厌氧的微生物需要较_____________(高、低)的氧化还原电位。 12烘箱热空气灭菌法的操作条件是控制温度在__________ ,维持时间为__________ 。

微生物发酵生产油脂研究进展

微生物发酵生产油脂研究进展 姓名:班级:学号:学院: 摘要: 微生物发酵产生油脂是开拓油脂新资源的一条好途径。简要地介绍了产生油脂微物 生资源的探索, 微生物发酵产生油脂的优点, 特种油脂的功能, 培养条件等因素对微生物产生油脂的影响及微生物产生油脂过程中的生化研究。 关键词: 微生物;发酵;油脂 一前言 目前,用于生产油脂的原料主要来源于石油和动植物等, 而石油储藏量却在逐年减少, 动植物的养殖业和种植业日益饱和, 因比多渠道开发其他油脂资源就成为必然。经过几十年来科技工作者的共同努力, 已探明微生物发酵产生油脂是开拓油脂新资源的一条好途径。 二产油脂微生物资源的探索 微生物产生油脂研究已有半个多世纪的历史。第二次世界大战期间,由于连年战火,油脂奇缺,德国科学家们就开始了微生物生产油脂的研究工作,并发现了高产油脂的斯达油脂酵母(Lipomycesstarkeyi),粘红酵母属(Rhodotorulaglutinis),曲霉属(Aspergillus) 以及毛霉属(Mucor)等微生物。80年代初,日本成功地建立了发酵法工业化生产长链二元酸的新技术,结束了以蓖麻油裂解合成十三碳二元酸的历史。1986年,日本和英国等国家率先推出含微生物γ-亚麻酸(GLA)油脂的保健食品、功能性饮料和高级化妆品等产品,微生物油脂实用化已迈出了第一步[1]。之后我国上海工业微生物研究所也利用微生物发酵生产了GLA。 进入90年代,特种油脂的发展越来越受人们的重视。罗玉萍等[2]分离到一株高产棕榈油酸的酵母,总脂中棕榈油酸含量高达50.14%。Matsunaga等筛选到两株Cyanobacteria总脂中棕榈油酸的含量分别达54.4%和54.5%。这些工作为利用微生物发酵生产棕榈油酸提供了广阔的前景;Stewdansk和Radevan分别筛选到产生花生四烯酸(AA)的真菌,它们总脂中AA的含量达到42%~55%[3,4];1996年

微生物生产L_苏氨酸的代谢工程研究进展_董迅衍

Advances in Microbial Metabolic Engineering to Increase L-Threonine Production DONG Xunyan 1,2, WANG Xiaoyuan *1,2 (1.State Key Laboratory of Food Science and Technology ,Jiangnan University ,Wuxi 214122,China ;2.School of Biotechnology ,Jiangnan University ,Wuxi 214122,China ) Abstract :As an essential amino acid for mammals ,L-threonine has a wide application in the food ,feeds ,pharmaceutical and cosmetics industries.To date ,L-threonine is almost exclusively produced through microbial fermentation.Metabolic engineering provides an effective means to strain development and thus to enhancing the L-threonine production.In this article ,the pathway and regulation of L-threonine in the major industrial strains ,Corynebacterium glutamicum and Escherichia coli are summarized ,and advances on metabolic engineering to increase L-threonine production are reviewed. Keywords :L-threonine ,Corynebacterium glutamicum ,Escherichia coli ,metabolic engineering ,fermentation 摘要:L-苏氨酸作为一种必需氨基酸被广泛用于食品、饲料、医药及化妆品行业。目前L-苏氨酸主要通过微生物发酵法生产。代谢工程技术的应用为菌种选育开辟了有效途径,使在现有高产基础上进一步提高氨基酸的产量成为可能。作者对两大氨基酸生产菌——— 大肠杆菌和谷氨酸棒杆菌中的L-苏氨酸生物合成相关途径、代谢调控机理以及运用代谢工程技术提高L-苏氨酸产量所取得的成果进行了系统综述。 关键词:L-苏氨酸;谷氨酸棒杆菌;大肠杆菌;代谢工程;发酵中图分类号:Q 933 文献标志码:A 文章编号:1673—1689(2016)12—1233—08 微生物生产L-苏氨酸的代谢工程研究进展 董迅衍1,2,王小元*1,2 (1.食品科学与技术国家重点实验室,江南大学,江苏无锡214122;2.江南大学生物工程学院,江苏无锡 214122) 收稿日期:2016-07-08 基金项目:国家973计划项目(2012CB725202);国家自然科学基金项目(NSFC31370131);江南大学博士科研基金项目(JUDCF11025)。作者简介:董迅衍(1986—),女,江苏无锡人,发酵工程博士研究生,主要从事氨基酸生产菌株代谢工程方面的研究。 Email :xunyandong@https://www.360docs.net/doc/ed7369725.html, *通信作者:王小元(1965—),男,山西垣曲人,工学博士,教授,博士研究生导师,主要从事工业微生物代谢工程方面的研究。 E-mail :xwang@https://www.360docs.net/doc/ed7369725.html,

微生物代谢工程

微生物代谢工程 1.代谢控制发酵 代谢控制发酵就是利用遗传学的方法或生物化学方法,人为地在DNA分子水平上改变和控制微生物的代谢,使得目的产物大量的生成、积累的发酵。 代谢控制发酵的核心:解除微生物代谢控制机制,打破微生物正常的代谢调节,人为地控制微生物的代谢。 2.微生物代谢工程定义、研究内容和研究手段 定义:应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作(包括代谢分析、代谢设计、遗传操作、目的代谢活性的实现)。简而言之,代谢工程是生物化学反应代谢网络有目的的修饰。 研究内容: (1)代谢流的定量和定向 (2)细胞对底物的吸收和产品的释放模型及分析 (3)研究胞内代谢物浓度的反应工程方法 (4)用13C标记实验进行胞内稳态流分析 研究手段 (1)采用遗传学手段的遗传操作 ①基因工程技术的应用。②常规诱变技术的应用。 (2)生物合成途径的代谢调控 ①生物合成中间产物的定量生物测定。②共合成法在生物合成中的应用。③酶的诱导合成和分解代谢产物阻遏。④无机磷对生物合成的调节。 (3)研究生物合成机制的常用方法 ①刺激实验法。②同位素示踪法。③洗涤菌丝悬浮法。④无细胞抽提法。⑤遗传特性诱变法。 3. 工业发酵的五字策略(图示加文字说明) ①进,在育种和发酵控制方面都要促进细胞对碳源营养物质的吸收; ②通,在育种方面解除对某些酶的反馈调节,在发酵控制方面,诱导这些酶的合成或激活这些酶,从而使来自各代谢物流(除碳架物流外海包括其他支持生物合成的物流)能够畅通的注入载流途径,汇入代谢主流,流向目的产物,特别是当发酵进入目的产物合成阶段后,必需确保载流路径通畅,代谢主流优势明显 ③节,采用育种或发酵控制手段,节制与目的产物的形成无关或关系不大的代谢支流,使碳架物质相对集中地流向目的产物。这里所谓的“节制”是指封闭或削弱以目的产物合成途径的起始底物或以中间产物为起始底物的分支途径; ④堵,采用育种或发酵手段消除或削弱目的产物进一步代谢的途径,包括目的产物参与的分解代谢和合成代谢,为了消除或削弱目的产物的进一步分解代谢,就必须降解目的产物进一步代谢的酶活力或酶量,甚至使这些酶不再合成或不起作用; ⑤出,促进目的产物向胞外空间分泌。在育种和发酵控制发面可通过调节细胞对目的产物的通透性,增加输送目的产物的载体蛋白的量,为目的产物输送代谢能的方法,使目的产物尽快转移出细胞。 4. 酶的阻遏机制,以大肠杆菌色氨酸或组氨酸操纵子为例来说明(图示加文字说明) 终端产物对其自身合成途径的酶的合成的反馈阻遏和弱化的机制反馈阻遏:

第六章-微生物代谢习题及答案

第六章微生物的代谢习题及参考答案 一、名词解释 1.发酵 2.呼吸作用 3.有氧呼吸 4.无氧呼吸 5.异型乳酸发酵 6.生物固氮 7.硝化细菌 8.光合细菌 9.生物氧化 10.初级代谢产物: 11.次级代谢产物: 12.巴斯德效应: 13.Stickland反应: 14.氧化磷酸化 二、填空题 1.微生物的4种糖酵解途径中,是存在于大多数生物体内的一条主流代谢途径;是存在于某些缺乏完整EMP途径的微生物中的一种替代途径,为微生物所特有;是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途

径。 2.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的 作用下被NADH 还原为乳酸。异型乳酸发酵经 、 和 途径分 解葡萄糖。代谢终产物除乳酸外,还有 。 3.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发 酵、 发酵和 发酵等。丁二醇发酵的主要产物是 , 发 酵的主要产物是乳酸、乙酸、甲酸、乙醇。 4.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放 的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学 能储存在ATP 中。 磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 5.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物 降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。 6.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下, 糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。 7.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像 22322423、CO O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。 8.化能自养微生物氧化 而获得能量和还原力。能量的产生是通过 磷酸化形式,电子受体通常是O 2。电子供体是 、 、 和 , 还原力的获得是逆呼吸链的方向进行传递, 能量。 9.微生物将空气中的N 2还原为NH 3的过程称为 。该过程中根据微生物和其

食用油脂微生物

食用油脂微生物 一、微生物的定义与种类 1.自然界除了肉眼可观察到的动物、植物外,还有一类不易被肉眼直接观 察到的生物,人们通常将此类个体微小、结构简单的低等生物称之为微生物。 2.微生物种类广泛,一般包括病毒、细菌、霉菌、酵母菌、放线菌、蓝细 菌、立克次氏体、衣原体及原生物等。 二、微生物的基本特性 1.个体微小:通常以“微米”为度量单位,个体更小的病毒则要以“纳米”为度 量单位。 2.种类繁多:如常见的真菌,目前已命名的就有十几万个;细菌,按现有 分类标准已有1000多种。 3.分布广泛:只要人类存在的环境就无处不在,如一般城市街道空气中含 微生物5000个/m3,普通宿舍20000个/m3 ,土壤中甚至要以亿计。在人类及其他高级生物无法存在的环境,如缺氧、高温、低温、酸碱性环境甚至有毒环境下,许多微生物都可存活。 4.繁殖迅速:微生物具有强大的分解能力和合成能力,可在简单的营养基 质中繁殖生长,如普通的大肠杆菌在适宜条件的牛乳中繁殖一代仅需 12.5mins,以此计算一个大肠杆菌一昼夜可繁殖115代,数量可达 4.15?1034个。 三、微生物的作用 1.参与物质的循环:如其重要的分解作用,它可分解自然界中存在的一切 动植物、微生物的有机体,最后转化为最简单的无机体,供植物或其它生物利用;另外微生物又是自然界化合物最初级生产者,它可利用太阳能,从简单无机物合成有机化合物。 2.对人类的有益帮助:如日常生活中食用的味精、酱油、醋、酒、馒头、 面包等均是微生物发酵的产物,又如各种有机酸、维生素、酶制剂及众多药物均是借助微生物制成。 3.对人类有害影响:各种疾病、食品变质等。 四、影响微生物生长的因素 ?温度 ?水分活度 ?氧化还原单位 ?辐射作用 ?超声波 ?营养物质 ?PH值 ?重金属及其化合物 ?氧化剂 ?有机化合物

微生物代谢工程

生工学院 课程编号:020101 课程名称:分子生物学(Molecular Biology) 总学时:41 学分:2.0 主讲教师:王正祥(教授) 主要内容:前言、分子生物学方法、转录和转录后加工、翻译、DNA复制重组和转座、基因组、实验。通过学习掌握分子生物学的基本知识,了解分子生物学的最新进展,掌握分子生物学中常用专业英文词汇,基本掌握分子生物学研究中的核心技术。 课程编号:020102 课程名称:基因操作实验技术(Laboratory Techniques for Gene Manipulation) 总学时:56 学分:2.0 主讲教师:王正祥(教授) 主要内容: 课程编号:020201 课程名称:工业微生物资源(Sources and Application of Industrial Microorganisms) 总学时:46 学分:2.0 主讲教师:诸葛健(教授) 主要内容: 工业微生物资源、目的菌株筛选、模拟放大、工业微生物的初步鉴定与保藏、专利保护。通过学习,可以帮助同学掌握工业微生物资源的获得方法和应用工业微生物生产的技术;为学位研究课题奠定应用工业微生物的技术基础。 课程编号:020202 课程名称:工业微生物育种学(Genentic Improvement of Industrial Microorganisms) 总学时:46 学分:2.0 主讲教师:诸葛健(教授) 主要内容:绪论、诱变育种、原生质体育种技术、基因工程育种技术。通过本课程的学习,将进一步规范微生物操作,完成单元实验和组合实验,为进入研究课题奠定有关的基础理论和实验技能。 课程编号:020203 课程名称:现代微生物实验技术(Modern Microbiology Laboratory Manual) 总学时:46 学分:2.0 主讲教师:诸葛健(教授) 主要内容:显微技术、微生物细胞特殊结构的观察、噬菌体、工业菌种的标记获得、核酸的测定、固定化技术等。通过本课程的学习使学生进一步了解和初步掌握一些现代微生物学上应用的实验技术,有利于学位论文中更多采用现代微生物学实验技术。 课程编号:020204

提取微生物油脂的方法与流程

提取微生物油脂的方法与流程 本发明涉及一种提取微生物油脂的方法,尤其是一种不使用溶剂从微生物中提取含有多不饱和脂肪酸油脂的方法。 背景技术:多不饱和脂肪酸是指含有两个或两个以上双键且碳链长度为18~22个碳原子的直链脂肪酸,主要包括亚油酸、γ-亚麻酸、花生四烯酸、二十碳五烯酸、二十二碳五烯酸和二十二碳六烯酸等。多不饱和脂肪酸作为婴幼儿发育必需营养素,在其生长过程中发挥着重要作用,典型代表分别是花生四烯酸和二十二碳六烯酸。在婴幼儿时期花生四烯酸属于必需脂肪酸,花生四烯酸的缺乏对于人体组织器官的发育,尤其是大脑和神经系统发育可能产生严重不良影响。二十二碳六烯酸俗称脑黄金,是神经系统细胞生长及维持的一种主要成分,是大脑和视网膜的重要构成成分,在人体大脑皮层中含量高达20%,在视网膜中所占比例最大,约占50%,因此对婴幼儿智力和视力发育至关重要。由于婴幼儿体内花生四烯酸和二十二碳六烯酸的合成效率很低,其合成量不足以满足身体发育的需求,所以必须从食物中额外补充。 通过发酵富集富含多不饱和脂肪酸油脂的微生物是目前多不饱和脂肪酸油脂的主流生产方法。传统的微生物多不饱和脂肪酸油脂的提取方式是将微生物菌种通过发酵得到大量微生物,然后进行预处理破壁,再通过有机溶剂提取、脱溶,得到富含多不饱和脂肪酸的微生物毛油。该提取方式需要使用大量溶剂,如己烷、丁烷等,容易造成环境污染,且溶剂回收会增加生产成本,并存在安全隐患。 无溶剂提取工艺是一种高效、经济、无污染的提取方式,它利用油脂与水分子在高温下的极性差异,通过高速离心等方法将水相和油相分离得到油脂。与传统脱胶工艺相比,无溶剂提取工艺具有能耗低、污染小等优点,近些年逐渐受到油脂生产企业的重视。 专利CN101463371A公开了一种无溶剂提取方法,包括以下步骤:在培养基中培养所述微生物,处理来自所述培养基的微生物细胞并没有干燥细胞已释放胞内脂质,将包含已释放胞内脂

相关文档
最新文档