多媒体信息处理技术(5)

多媒体信息处理技术(5)
多媒体信息处理技术(5)

多媒体信息处理技术

1 多媒体数据的分类

媒体是承载信息的载体,是信息的表示形式。信息媒体元素是指多媒体应用中可以显示给用户的媒体组成元素,目前主要包括文本、图形、图像、声音、动画和视频等媒体。

一、多媒体数据的特点

多媒体数据具有数据量巨大、数据类型多、数据类型间差别大、数据输入和输出复杂等特点。多媒体数据类型多,包括图形、图像、声音、文本和动画等多种形式,即使同属于图像一类,也还有黑白、彩色、高分辨率和低分辨率之分,由于不同类型的媒体内容和格式不同,其存储容量、信息组织方法等方面都有很大的差异。

二、多媒体数据的分类

1.文字

在计算机中,文字是人与计算机之间信息交换的主要媒体。文字用二进制编码表示,也就是使用不同的二进制编码来代表不同的文字。

文本是各种文字的集合,是人和计算机交互作用的主要形式。

文本数据可以在文本编辑软件里制作,如Word编写的文本文件大都可以直接应用到多媒体应用系统中。但多媒体文本大多直接在制作图形的软件或多媒体编辑软件时一起制作。

2.音频

音频泛指声音,除语音、音乐外,还包括各种音响效果。将音频信号集成到多媒体中,可提供其他任何媒体不能取代的效果,从而烘托气氛、增加活力。

3.图形、图像

凡是能被人类视觉系统所感知的信息形式或人们心目中的有形想象都称为图像。

图形文件基本上可以分为两大类:位图和向量图。

位图图像是一种最基本的形式。位图是在空间和亮度上已经离散化的图像,可以把一幅位图图像看成一个矩阵,矩阵中的任一元素对应于图像的一个点,而相应的值对应于该点的灰度等级。

图形是指从点、线、面到三维空间的黑白或彩色几何图形,也称向量图。图形是一种抽象化的图像,是对图像依据某个标准进行分析而产生的结果。

向量图形文件则用向量代表图中的文件,以直线为例,在向量图中,有一数据说明该元件为直线,另外有些数据注明该直线的起始坐标及其方向、长度或终止坐标,

图形文件保存的不是像素点的值,而是一组描述点、线、面等几何图形的大小、形状、位置、维数等其他属性的指令集合,通过读取指令可以将其转换为屏幕上显示的图像。由于大多数情况下不需要对图形上的每一个点进行量化保存,所以,图形文件比图像文件数据量小很多。图形与图像是两个不同的概念。

4.动画

图像或图形都是静止的。由于人眼的视觉暂留作用,在亮度信号消失后亮度感觉仍可保持1/20s~1/10s。利用人眼视觉惰性,在时间轴上,每隔一段时间在屏幕上展现一幅有上下关联的图像、图形,就形成了动态图像。任何动态图像都是由多幅连续的图像序列构成的,序列中的每幅图像称为一帧,如果每一帧图像是由人工或计算机生成的图形时,称为动画;若每帧图像为计算机产生的具有真实感的图像时,称为三维真实感动画;当图像是实时获取的自然景物图像时就称为动态影像视频,简称视频。

用计算机制作动画的方法有两种:一种称为造型动画,另一种称为帧动画。帧动画由一幅幅连续的画面组成图像或图形序列,是产生各种动画的基本方法。造型动画则是对每一个活动的对象分别进行设计,赋予每个对象一些特征(如形状、大小、颜色等),然后用这些对象组成完整的画面。

5.视频

影像视频是动态图像的一种。与动画一样,由连续的画面组成,只是画面图像是自然景物的图像。

计算机视频图像可来自录像带、摄像机等视频信号源,这些视频图像使多媒体应用系统功能更强、更精彩。

2 多媒体信息的计算机表示

一、文本文件格式

常用的文本文件的格式有TXT、RTF以及WORD格式的DOC、DOT文件。

二、声音文件格式

常用的声音文件格式有WAV、MID和MP3等。

1. WAV文件

Windwos使用的标准数字音频称为波形文件,文件的扩展名为WAV,记录了对实际声音进行采样的数据。在适当的硬件及计算机控制下,使用波形文件能够重现各种声音,无论是不规则的噪音还是CD 音质的音乐,也无论是单声道还是立体声。

通过Windows的对象连接与嵌入技术,波形文件可以嵌在其他Windows应用系统中使用。由于波形

文件记录的是数字化音频信号,因此,可由计算机对其进行处理和分析。如放慢或加快放音速度,将声音重新组合或抽取一些片段单独处理等等。

WAV文件还原成的声音的音质取决于声音卡采样样本的尺寸。一般来说,采样的样本尺寸越大,采样频率越高,音质就越好,但波形音频文件也就越大,开销就越大。因此,波形音频一般适用于以下几个场合:

①播放的声音是讲话语音,音乐效果对声音的质量要求不太高的场合。

②需要从CD-ROM光盘驱动器同时加载声音和其他数据,声音数据的传输不能独占处理时间的场合。

③需要在PC硬盘中存储的声音数据在1分钟以下以及可用存储空间足够的场合。

2. MIDI文件

MIDI(Musical Instrument Digital Interface)是指乐器数字化接口,MIDI文件的扩展名是MID。MIDI标准是数字式音乐的国际标准。把一个MIDI设备连接到PC的主要目的是记录MIDI乐器产生的声音。然后,对记录的音乐进行编辑和后期处理,把它们与其他乐器的录音进行组合,以产生出类似管弦乐队演奏效果的音乐。

3.MP3文件

MP3格式的音乐越来越受到人们的欢迎。MP3文件是一种压缩格式的声音文件,其扩展名为MP3。MP3文件的特点是音质好、数据量小。

三、图形、图像文件格式

常见的图形文件的格式有如下几种:BMP、PCX、GIF、TIF、JPG、TGA等。

1.GIF(Graphic Interchange Format)文件

2.BMP(bitmap)文件

3.JPG文件

4.TGA文件

5.TIF文件

6.PCX文件

7.PCD文件

四、影像文件格式

影像文件通常泛指自扫描仪或视频卡读入的静态画面(影像)。

在动态图像的文件格式中,常用的有AVI 、MOV、MPG和DAT文件等。

1.AVI

2.MOV文件

3.MPG文件格式

4.DAT文件格式

5.DIR文件格式

五、动画文件格式

多媒体应用中使用的动画文件主要有GIF、AVI、SWF等等。

1.GIF文件

2.SWF文件

3 多媒体数据压缩和编码技术

一、多媒体的数据量、信息量和冗余

多媒体计算机面临的最大难题是大量数据的存储与传送问题。在所有可能的数据库中,图像是数据量最大的数据类型。

数据是用来记录和传送信息的,或者说数据是信息的载体。对于人类而言,真正有用的不是数据本身,而是数据所携带的信息。

信息量与数据量的关系是:信息量=数据量+数据冗余

多媒体数据中存在的数据冗余类型有:空间冗余、时间冗余、编码冗余、结构冗余、知识冗余和视觉冗余等。

1.空间冗余

空间冗余是图像数据中经常存在的一种冗余。在同一幅图像中,规则物体和规则背景的表面物理特性具有相关性,这些相关性在数字化图像中表现为数据冗余。

2.时间冗余

时间冗余是序列图像如电视图像、运动图像和语音数据中经常包含的冗余。图像序列中的两幅相邻的图像,后一幅与前一幅之间有较大的相关,反映为时间冗余。在语音中,由于人在说话时其发音的音频是一个连续渐变的过程,而不是一个时间上完全独立的过程,因而存在时间冗余。

3.编码冗余

编码冗余也称为信息熵冗余,信息熵是指对一团数据所携带的信息量。

4.结构冗余

有些图像从大域上看存在着非常强的纹理结构,表现为结构冗余。

5.知识冗余

对有许多图像的理解与某些背景知识使有相当大的相关性。例如,人脸的图形有固定的结构等。这类规律性的结构可由先验知识和背景知识得到,表现为知识冗余。

6.视觉冗余

人类的视觉系统对于图像场的注意是非均匀的、非线性的,视觉系统并不能对于图像场的任何变化都有所感知。换句话说,尽管在对图像的编码和解码处理时,由于压缩或者量化引入噪声而使图像发生了一系列的变化,如果这些变化不能被视觉所察觉的话,我们仍认为图像是完好的或足够好的。事实上,人类视觉系统的一般分辨能力约为26灰度级,而一般图像的量化采用的是28灰度级,这样的冗余称为视觉冗余。

7.其他冗余

例如由图像的空间非定常特性所带来的冗余等。

正是由于多媒体数据中存在各种各样的冗余,才使得多媒体数据可以被压缩。针对冗余的类型不同,人们已经提出了各种各样的方法实施对多媒体数据的压缩。

二、数据压缩的基本方法

数据压缩处理一般由两个过程组成:一是编码过程,将原始数据经过编码进行压缩,以便存储与传输;二是解码过程,对编码数据进行解码,还原为可以使用的数据。

数据压缩处理方法的分类:

1.按照解码后的数据与原始数据一致性分类

根据解码后的数据与原始数据是否完全一致来进行划分,数据压缩方法有两类:可逆编码方法和不可逆编码方法。

2.按方法的原理分类

根据方法的原理进行分类,可以划分为预测编码、变换编码、量化与向量量化编码、信息熵编码、分频带编码、结构编码和基于知识的编码等。

三、音频信号的压缩编码

音频信号分为电话质量的语音、调幅广播质量的音频信号和高保真立体声信号。语音信号的频率范围是300Hz到3400Hz。随着带宽的增加,信号的自然度将逐步得到改善。高保真音频信号的频率范围是20Hz到20000Hz。

声音信号的编码方式可以分为三大类:

波形编码:要求重构的声音信号尽可能地接近于原始声音。典型的波形编码技术有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)、自适应预测编码(APC)、子带编码(SDC)、自适应变换编码(ATC)等。

分析合成编码:以声音信号产生模型为基础,将声音信号变换成模型参数后再进行编码,又称为参数编码方法。典型的分析和合成技术有通道声码器、共振峰声码器、同态声码器、线性预测声码器等。

混合型编码:是一种在保留分析合成编码技术精华的基础上,引用波形编码准则去优化激励源信号的方案,可以在位/秒~位/秒的编码率上获得较高质量的合成声音。

最简单的数字编码方法是对声音信号作直接的模/数转换。只要采样频率足够高,量化位数足够多,就能保证解码器恢复的声音有很好的质量。

四、视频信号的压缩编码

1.视频信号的压缩编码分类

图像压缩方法可以分成两种类型:有损压缩和无损压缩。

2.视频信号的压缩编码标准

JPEG和MPEG就是得到国际标准化组织认可并推荐的两个国际标准。

JPEG是联合专家小组(Joint Photographic Experts Group)的英文缩写。

MPEG是运动图像专家组(Moving Pictuer Experts Group)的英文缩写。MPEG标准包括MPEG视频、MPEG音频和MPEG系统三大部分。

3.JPEG静止图像压缩算法

JPEG标准是面向连续色调、多级灰度、彩色或单色静止图像的压缩标准,它定义了两种基本的压缩算法:一种是无失真压缩算法;另一种是有失真压缩算法。

4.MPEG运动图像压缩算法

4 音乐合成与MIDI

一、音乐合成

乐音必备的三要素是:音高、音色和音强。若把一个乐音放在运动的旋律中,它还应具备时值,即持续时间。这些要素的理想配合是产生优美动听的旋律的必要条件。

音高指声波的基频,基频越低,给人的感觉越低沉。

音色由声音的频谱决定,各个谐波的比例不同,随时间衰减的程度不同,音色就不同。

音强是对声音强度的衡量,它是听判乐音的基础。

时值具有明显的相对性,时值的变化导致旋律或平缓、均匀,或跳跃、颠簸以表达不同的情感。

调频(FM)是使高频振荡波的频率按照调制信号规律变化的一种调制方式。

二、MIDI规范

MIDI是乐器数字接口(musical instrument digital interface)的英文缩写。

MIDI文件记录的不是声音本身,因此比较节省空间。

MIDI标准规定了不同厂家的电子乐器与计算机连接的电缆和硬件。它还指定从一个装置传送数据到另一个装置的通信协议。

MIDI标准中规定了多媒体个人计算机(MPC)包括一个内部合成器和标准MIDI端口。

6 视频卡

一、视频卡的功能

视频卡是一种处理活动影像数据的扩展卡。

视频卡种类:

①视频转换卡用来将视频信号转换成计算机存储的数字视频信号保存在计算机中或在VGA显示器上显示,或将VGA信号转换成电视信号,使计算机信号可以在电视或录像机上播放。

②视频捕捉卡用来从正在播放的动态画面中截取一些画面。

③窗口动态视频卡用来利用重叠、淡入、淡出等功能,提供窗口显示功能和数字化静止画面。

④动态视频捕捉播放卡用来同时抓取动态视频信号和声音信号并加以压缩、存储和播放。

⑤视频压缩卡用来根据JPEG/MPEG的标准对数据进行压缩和还原。

⑥视频还原卡用来实现将压缩后保存在计算机中的视频信号在计算机的显示器上播放出来。也称为视频回放卡、解压缩卡或电影卡。

⑦电视卡用来将计算机变成一台电视机,收看不同频道的电视节目。

二、视频信息的处理

1.视频处理系统简介

多媒体计算机系统中,对视频信号的应用大致分为三个过程:视频信息的采集、视频信息的编辑以及视频信息的应用。

⑴视频信号的捕获

⑵视频信息的编辑

⑶视频信息的应用

2.视频采集和编辑软件的功能

视频采集和编辑软件的基本功能:

①提供视频获取功能,可以与视频采集卡协同工作以实现视频图像截取。

②提供无硬件视频回放功能。借助于某些算法可以在窗口中播放活动视频图像。

③提供AVI文件格式,它保存了声音和视频的所有信息,并有相应的同步机制以确保播放时声音和视频同步。

④从硬盘或CD-ROM中有效地读出并播放视频信息。

⑤将多种媒体数据综合处理为一个视频文件。

⑥具有多种活动图像的特技处理功能。

视频信息的处理

第四章视频信息处理 思考与练习 1.什么是隔行扫描?什么是逐行扫描? 答: 1).隔行扫描:即把一幅图像(位图)分成两步(按分割的行)扫描,第一步先扫 1、3、5…行,第二步扫 2、4、6…行,每两步扫完一个完整的画面。最后使眼睛 感觉到是连续活动的景象。对于我国电视制式(PAL)来说,帧频为25Hz,即每秒放送25幅图像,如果逐幅播放,人眼会感受到光亮度的闪烁,眼睛容易疲劳。 但再增加幅频,则电视发射和接受的结构变化太复杂,故而把每幅图分先后两次来放送,这样,光亮度变化的次数就增加到50次/秒,人眼看上去就舒服多了。 2).逐行扫描:当电视摄像管或显像管中的电子束沿水平方向从左到右、从上到下以均匀速度依照顺序一行紧跟一行的扫描显示图像时(仅一步完成图像扫描),称为逐行扫描。从上到下扫描一幅完整的画面,称为一帧。 2.什么是分离电视信号?什么是全电视信号? 答: 1).分离电视信号S-Video:是一种两分量的视频信号,他把亮度和色度信号分成两路独立的模拟信号,一条用于亮度信号,另一条用于色差信号,这两个信号称为Y/C信号。这种信号不仅其亮度和色度都具有较宽的带宽,而且由于亮度和色度分开传输,可以减少其互相干扰。与复合视频信号相比,可以更好地重现色彩。 2).全电视信号:在无线或有线电视中,将视频的亮度信号、色度信号、同步信号和伴音信号复合在一起,称为全电视信号。为了在空中传播,需要将它们调制成高

频信号,也叫射频信号。 11.试讨论不同的MPEG标准,具体应用在何种场合? 答:MPEG运动图像专家小组研究数字视频及其与音频的同步进行压缩。 1).MPEG—1标准名称为“信息技术—用于数据速率高达大约1.5Mbps的数字存储媒体的电视图像和伴音编码”。由以下五部分组成: i.MPEG—1系统,规定电视图像数据、声音数据及其他相关数据的同步。 ii.MPEG—1电视图像,规定电视数据的编码和解码。 iii.MPEG—1声音,规定声音数据的编码和解码。 iv.MPEG—1一致性测试,详细说明了如何测试比特数据流和解码器是否满足MPEG—1前3个部分中所规定的要求。测试可由厂商和用户实施。 v.MPEG—1软件模拟,实际上是一个技术报告,给出了用软件执行MPEG—1标准前3个部分的结果。 由于数据速率较低,可用于高质量视音频存储,以及通过高带宽的媒体传输播放。 2).MPEG—2标准是针对标准数字电视和高清晰度电视在各种应用下的压缩方案和系统层的详细规定,编码码率从每秒3~100Mbps。较MPEG—1在系统和传 送方面做了更加详细的规定和进一步的完善。特别适用于广播级的数字电视的编码 和传送,专门规定了多路节目的复分接方式。目前分为9个部分。 MPEG—2的编码码流分为6个层次。为更好地表示编码数据,MPEG—2用句法规定了一个层次型结构,自上到下分别是:图像序列层、图像组、图像、宏块 条、宏块、块。MPEG—2标准的主要应用包括: i.视音频资料的保存。 ii.非线性编辑系统及非线性编辑网络。

多媒体信息处理教学大纲

多媒体信息处理教学大纲 课程名称:多媒体信息处理 适用专业: 学时:44 学分: 开课学期:第二学期 课程类别:限定选修 先修课程:计算机应用基础 一、课程性质与任务 多媒体信息处理课程分为两大块:音视频处理技术(premiere)以及多媒体综合技术(Authorware)。课程的特点是概念多、实践性强、涉及面广,并有极广泛的实用性,其应用渗透到各个领域。本课程的目的与任务是使学生通过本课程的学习,理解音视频和多媒体综合技术的基本概念和主要功能,掌握相关软硬件的使用方法,具备音视频和多媒体处理的能力,从而为学生以后的学习和工作打下基础。 1、多媒体综合技术(Authorware): Authorware是多媒体信息处理中的重要综合技术。本课程基本任务是使学生掌握Authorware的具体设计方法。主要包括:基本操作,编辑功能,文件和图片的创建,显示效果,动画设计,声音、视频,流程管理,变量、函数和表达式的应用等,要求掌握有关概念,必要的理论,掌握具体操作,解决实际应用问题。 2、音视频处理技术(premiere) 主要讲授利用Premiere进行数码视频捕捉,并通过使用多轨的影像与声音合成来制作Microsoft Video for Windows(.avi)和QuickTime Movies(.mov)等动态影像格式的基础知识和基本技巧,使学生不仅使能全面地掌握Premiere软件的各

个知识点,还能运用这些知识点制作出实用的作品或实现某些较复杂视频、音频处理目的。其主要任务是为计算机多媒体技术人员进行多媒体视频处理奠定必要的理论基础和实际处理能力,并最终提高分析问题、解决问题的能力。 本课程注重讲解基本知识,训练基本技能,强化实践开发环节,使学生熟练运用Premiere环境进行简单视频处理,培养学生独立分析问题和解决问题的能力。为最终适应实际较复杂的工作奠定坚实的基础。 二、课程的教学内容与教学要求 第一部分:多媒体综合技术(Authorware) (一)Authorware基础 , 教学要求:熟悉Authorware编辑环境的各个组成部分,掌握流程设计的基本操作、程序设 计、运行和调试的具体步骤。 , 主要内容: (1) Authorware的运行环境,编辑环境 (2) 流程线的编辑和设计 (3) 窗口 (4) 程序的运行和调试 1 (二)文本和图片的创建 , 教学要求:熟练掌握文本和图形的创建。 , 主要内容: (1) 绘图工具箱 (2) 文本对象的创建 (3) 外部文本文件的引入 (4) 图形对象的创建

视频信号的传输方式

视频信号的传输方式 监控系统中,视频信号的传输是整个系统非常重要的一环,也是广大工程商挺挠头的一件事,随着工程中监控设备价格的透明性和工程商竞争的加剧,信号传输部分的费用越来越受到大家的重视;目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,对于不同场合、不同的传输距离,怎样能保证传输质量、降低费用,根据多年的工程经验,在这里我们作一些介绍供参考。 一、同轴电缆传输 (一)通过同轴电缆传输视频基带信号视频基带信号也就是通常讲的视频信号,它的带宽是0-6MHZ,一般来讲,信号频率越高,衰减越大,一般设计时只需考虑保证高频信号的幅度就能满足系统的要求,视频信号在5.8MHZ的衰减如下:SYV75-3 96编国标视频电缆衰减30dB/1000米, SYV75-5 96编国标视频电缆衰减19dB/1000米,,SYV75-7 96编国标视频电缆衰减13dB/1000米;如对图象质量要求很高,周围无干扰的情况下,75-3电缆只能传输100米,75-5传输160米,75-7传输230米;实际应用中,存在一些不确定的因素,如选择的摄像机不同、周围环境的干扰等,一般来讲,75-3电缆可以传输150米、75-5可以传输

300米、75-7可以传输500米;对于传输更远距离,可以采用视频放大器(视频恢复器)等设备,对信号进行放大和补偿,可以传输2-3公里;另外,通过一根同轴电缆还可以实现视频信号和控制信号的共同传输,即同轴视控传输技术,下面简单介绍一下该技术:在监控系统中,需要传输的信号主要有两种,一个是图像信号,另一个是控制信号。其中视频信号的流向是从前端的摄像机流向控制中心;而控制信号则是从控制中心流向前端的摄像机(包括镜头)、云台等受控对像;并且,流向前端的控制信号,一般又是通过设置在前端的解码器解码后再去控制摄像机和云台等受控对像的。同轴视控传输技术是利用一根视频电缆便可同时传输来自摄象机的视频信号以及对云台、镜头的控制功能,这种传输方式节省材料和成本、施工方便、维修简单化,在系统扩展和改造时更具灵活性;同轴视控实现方法有两类:一是采用频率分割,即把控制信号调制在与视频信号不同的频率范围内,然后同视频信号复合在一起传送,再在现场做解调将两者区分开;由于采用频率分割技术,为了完全分割两个不同的频率,需要使用带通滤波器、带通陷波器和低通滤波器、低通陷波器,这样就影响了视频信号的传输效果;由于需将控制信号调制在视频信号频率的上方,频率越高,衰减越大,这样传输距离受到限制;另外方法是采用双调制的方

最新5多媒体技术试题

多媒体技术试题 一、选择题 1、Photoshop是一款 B 软件。 A.多媒体操作系统B.多媒体工具软件C.视频处理软件D.音乐播放软件2、多媒体计算机的硬件系统除了要有基本计算机硬件以外,还要具备一些多媒体信息处理 的 A 。 A. 外部设备和接口卡B.主机C.显示器D.外部设备 3、在播放音频时,一定要保证声音的连续性,这就意味着多媒体系统在处理信息时有严格 的 D 要求。 A.多样性B.集成性C.交互性D.实时性 4、不进行数据压缩的、标准的Windows图像文件格式是 A 。 A.BMP B.GIF C.JPG D.TIFF 5、由CompuServe公司开发、可以存储多幅图像并形成动画效果的图像文件格式是 B 。 A.BMP B.GIF C.JPG D.PNG 6、GIF图像文件可以用1~8位表示颜色,因此最多可以表示 C 种颜色。 A.2 B.16 C.256 D.65536 7、对于调频立体声广播,采样频率为44.1kHz,量化位数为16位,双声道。其声音信号数字化后未经压缩持续一分钟所产生的数据量是 D 。 A.5.3Mb B.5.3MB C.8.8Mb D.10.6MB 8、通常用来保存未压缩的音频、属于事实上的通用音频文件格式的是 C 。 A.MP3 B.MIDI C.W A V D.WMA 9、显示器所用的颜色模型是采用 C 三种基本颜色按照一定比例合成颜色的方法。 A.红色、黄色、蓝色B.青色、品红、黄色 C.红色、绿色、蓝色D.红色、黄色、绿色 10、PNG图像文件采用无损压缩算法,其像素深度可以高达 D 位。 A.8 B.24 C.32 D.48 11、既是图像文件格式,又是动画文件格式的文件格式是 A 。 A.GIF B.JPG C.SWF D.MPG 12、数据压缩是指对原始数据进行重新编码,去除原始数据中 C 数据的过程。 A.噪音B.冗长C.冗余D.重复 13、真彩色图像的像素深度是 A 位。 A.24 B.32 C.48 D.64 14、像素深度是指每个像素的颜色所使用的二进制位数,其单位是 C 。 A.B B.字节C.bit D.Byte 15、奈奎斯特采样定理指出,采样频率不低于声音信号的 D ,就能够由采样信号还原成原来的声音。 A.频率的2倍B.最高频率C.最高频率的4倍D.最高频率的2倍 16、数字化后的多媒体信息的数据量庞大,给存储器的存储容量以及通信网络的带宽带来极大的压力,多媒体 C 技术可以缓解这方面的压力。 A.数据聚合B.数据存储C.数据压缩D.数据加密

论多媒体信息处理技术现状与应用发展

学院:计算机科学与教育软件学院班级:计科138姓名:叶海峰学号:1300002032 论多媒体信息处理技术现状与应用发展 多媒体技术被广泛的应用到生活学习中,并且以发展快、技术活跃等优点独占鳌头,现已成为新一代电子技术开发和竞争的主要焦点。多媒体技术中的媒体通常是指信息载体。现下对“媒体”有多种解释,但是其主要分为五类:感觉媒体、表示媒体、显示媒体、存储媒体、传输媒体。多媒体技术的出现使计算机领域更加的丰富多样,同时也使计算机世界充满了生机和活力。多媒体的快速发展已是当今网络趋势下的必然走势,并且会更加优质和高效地发展下去。 多媒体技术的现状: 如今,多媒体技术在私人电脑及生活中的普遍应用。 1、多媒体中的图像设计。每一个多媒体项目的创建都是十分复杂的,其中包括对图形元素、人物、截面按钮等的创建或对其他东西的创建,其都是由某种类型的图文信息来组成。直观的图像显示是媒体产品中不可或缺的一部分,二者关系的重要性不言而喻,因为图形是多媒体的基本要素之一。 2、多媒体中的动画设计。二维动画是多媒体动画中的主要表现形式。二维动画:无论是在卡通动画或是电影电视上,需要用到二维动画技术的地方较多。美工需要绘制出很多相关的画面并且要借助计算机来完成。在二维动画的制作中,计算机的作用相当重大。使用计算机进行二维动画创作可以提高工作效率和加强观赏效果。 3、多媒体中的数字视频。现代数字视频技术是将传统模拟视频片段捕获并转换成能被电脑调用的数字信号的技术。我们常见的VCD就是这样一种经过压缩而形成的数字视频媒介。数字视频有着使媒体作品生动完美、制作难度比动画制作低等优点。数字视频技术被国际标准化协会所认可,国际标准化协会对此还制定了三项有关图像压缩编码的国际标准:JPEG标准、H.261标准及MPEG标准。 4、多媒体中的数字音乐。多媒体声音主要分为两大类:音乐和音效,音乐不仅包括普通的音乐还包括MIDI音乐。 对声音的处理主要是应用音频信息处理技术,具体为:对音乐进行合成、特定对象与非特定对象的语音识别、文字到图像的相互转换。在多媒体技术被广泛应用的今天,存储信息的重要性日益明显,其包括:WAV文件、VOC文件、MIDI文件、AIF文件及AAC文件等。 5、多媒体中的语音识别。多媒体技术发展至今,由于科学技术的不断完善和发展,新技术的出现使语音识别有着实质性的发展。值得一提的是,对HMM的研究和应用推动了语音识别技术的发展。在科学技术快速发展的今天,对语音系统的研究也日益完善,之后陆续出现了很多在HMM模型基础上的多类别语音识别软件系统。 6、多媒体中的超文本。超文本是多媒体技术中的重要技术应用,超文本是在计算机和多媒体不断发展壮大的基础上发展起来的。超文本将声音、文字和图像进行了有机的结合,同时也对综合表达信息起到了至关重要的作用。超文本现在被广泛的应用同时且发挥着其巨大的作用,这对未来多媒体技术的发展起到了推动性作用。

常见视频信号传输特性(精)

常见视频信号传输特性 1. 分量视频(Component Signal) 摄像机的光学系统将景像的光束分解为三种基本的彩色:红色、绿色和蓝色。感光器材再把三种单色图像转换成分离的电信号。为了识别图像的左边沿和顶部,电信号中附加有同步信息。显示终端与摄像机的同步信息可以附加在绿色通道上,有时也附加在所有的三个通道,甚至另作为一个或两个独立的通道进行传输,下面是几种常见的同步信号附加模式和表示方法: - RGsB:同步信号附加在绿色通道,三根75Ω同轴电缆传输。 - RsGsBs:同步信号附加在红、绿、蓝三个通道,三根75Ω同轴电缆传输。 - RGBS:同步信号作为一个独立通道,四根75Ω同轴电缆传输。 - RGBHV:同步信号作为行、场二个独立通道,五根75Ω同轴电缆传输。 RGB分量视频可以产生从摄像机到显示终端的高质量图像,但传输这样的信号至少需要三个独立通道分别处理,使信号具有相同的增益、直流偏置、时间延迟和频率响应,分量视频的传输特性如下: - 传输介质:3-5根带屏蔽的同轴电缆 - 传输阻抗:75Ω- 常用接头:3-5×BNC接头 - 接线标准:红色=红基色(R)信号线,绿色=绿基色(G)信号线,蓝色=蓝基色(B)信号线,黑色=行同步(H)信号线,黄色=场同步(V)信号线,公共地=屏蔽网线(见附图VP-03) 2. 复合视频(Composite-Video)

由于分量视频信号各个通道间的增益不等或直流偏置的误差,会使终端显示的彩色产生细微的变化。同时,可能由于多条传输电缆的长度误差或者采用了不同的传输路径,这将会使彩色信号产生定时偏离,导致图像边缘模糊不清,严重时甚至出现多个分离的图像。 插入NTSC或PAL编解码器使视频信号易于处理而且是沿单线传输,这就是复合视频。复合视频格式是折中解决长距离传输的方式,色度和亮度共享 4.2MHz(NTSC)或 5.0-5.5MHz(PAL)的频率带宽,互相之间有比较大的串扰,所以还是要考虑频率响应和定时问题,应当避免使用多级编解码器,复合视频的传输特性如下: - 传输介质:单根带屏蔽的同轴电缆 - 传输阻抗:75?- 常用接头:BNC接头、莲花(RCA)接头 - 接线标准:插针=同轴信号线,外壳公共地=屏蔽网线(见附图VP-01) 3. 色差信号(Y,R-Y,B-Y) 对视频信号进行处理而传输图像时,RGB分量视频的方式并不是带宽利用率最高的方法,原因是三个分量信号均需要相同的带宽。 人类视觉对亮度细节变化的感受比彩色的变化更加灵敏,因此我们可以将整个带宽用于亮度信息,把剩余可用带宽用于色差信息,以提高信号的带宽利用率。 将视频信号分量处理为亮度和色差信号,可以减少应当传输的信息量。用一个全带宽亮度通道(Y)表示视频信号的亮度细节,两个色差通道(R-Y和B-Y)的带宽限制在亮度带宽的大约一半,仍可提供足够的彩色信息。采用这种方法,可以通过简单的线性矩阵实现RGB与Y,R-Y,B-Y的转换。色差通道的带宽限制在线性矩阵之后实现,将色差信号恢复为RGB分量视频显示时,亮度细节按全带宽得以恢复,而彩色细节会限制在可以接受的范围内。 色差信号也有多种不同的格式,有着不同的应用范围,在普遍使用的复合PAL、SECAM和NTSC制式中,编码系数是各不相同的,见下表:

多媒体信息处理

多媒体信息处理总结 PROJECT:深度图的优化 论文题目:Ef?cient Spatio-Temporal Hole Filling Strategy for Kinect Depth Maps 姓名:董有臣 学号:M201271706 学院:电信系 指导老师:喻莉

深度图的优化 ——深度图修复的结构引导融合 一、综述 深度对于计算机视觉非常重要,因为它是理解真是场景的一种内核信息。随着计算机视觉应用的日益广泛一级自动化程度的进一步提高,人们对于计算机视觉系统的要求也越来越高。然而,传统的计算机视觉系统所处理的是光学图像,这种光学图像反应的是场景的光强也颜色信息,由于投影成像的原理,它失去了现实世界中的三维深度信息,并且因为从二维光学图像中恢复物体的深度信息的困难性,使得计算机视觉系统在这些应用领域受到很大的限制。 近年来,随着激光测距技术的迅猛发展,直接包含物体深度信息的深度图像数据获取已经成为可能,基于深度信息的计算机视觉系统也随之引起人们的重视。深度成像传感器用来测量景物表面的三维坐标数据,它的输出称之为深度图像,深度图像与环境光照和阴影无关,它的像素点清晰地表达了景物表面的几何形状。从灰度图像中提取三维物体几何特征的方法,对景物的几何和物理特征都有特别的限制,与这些方法相比,深度图像可以直接利用三维信息,这就大大简化了三维物体的识别和定位问题。作为这种新型的计算机视觉系统的核心内容,深度图像处理方法的研究具有非常重要的意义。 由于受到人类双眼系统的影响,传统的获取深度信息的方法都是基于多视图几何体的,最近几年,对于深度获取引进了一些新的经济

设施,比如:时间飞行传感器,结构光,以及Kinect。继Kinect的产生之后,深度的获取变得相对容易了,对于计算机视觉应用,通过Kinect获取的深度图需要额外的处理来填补丢失的部分。然而,对于彩色图像中传统的修复方法并不能直接应用于深度图,因为没有足够的信息来对场景结构作出准确的判断。因此便提出了一种新的基于融合的修复方法来改善深度图,这种方法将传统的修复方法与最近研究的非局部滤波算法结合到一起。 二、翻译 1、基于融合的深度图修复 基于深度和彩色相机的几何关系,通过多视图几何体推导出了一个映射函数,由于队列较复杂,我们仅仅表示了垂直方向的映射函数: p=m(p’,d(p’)) (1)(其中:d(p’)表示深度像素p’,p代表彩色图像上的一个像素)这个映射函数将深度图上的像素p’投影到彩色图像上为p,通过对投影在彩色图像上的深度图的重新采样得到了一个增广数据阵列{d(p),J(p)}。在这个增广阵列上,彩色信息对于所有的像素都是有效的,然而,对于像素p,深度信息却丢失了,因此,深度图的修复就是在知道深度和彩色像素的条件下,恢复深度信息丢失的部分。由于传统的对像素研究的图像修复是在没有额外信道信息的条件下进行的,所以通过Kinect获取深度图的修复可以被认为是部分修复。 投影后,我们可以只用彩色图像坐标系统。在一个通用的修复结构中,我们能够通过已知的附近的像素q的深度d(q)来预测未知的像

多媒体信息处理技术的发展现状

摘要:随着现在科学技术的发展,信息化时代已经成为现在社会的主流。信息化时代的实现主要来自于多媒体的发展。多媒体在给我们的生活带来便利的同时,也加快了社会发展的进程。多媒体具有更新快、系统复杂的特点。因此,要想适应现在社会的发展,跟上时代的脚步,必须对多媒体信息处理的技术进行探究,了解当代社会多媒体信息处理技术的发展现状。 关键词:多媒体;信息处理;发展现状 中图分类号:tp37 文献标识码:a 文章编号:1009-3044(2016)15-0214-02 当代社会已经进入信息化时代,信息化的发展离不开多媒体技术的进步。为了进一步了解多媒体的作用,最大限度的发挥多媒体的作用。我们就要对当前多媒体信息技术的发展现状进行研究。多媒体具有识别声、像、图的功能。多媒体是由单媒体组成的,主要包括感觉媒体、表示媒体、显示媒体、储存媒体和传输媒体五个部分。本文主要从多媒体的功能角度出发,探讨当代社会多媒体信息处理技术的发展。 1 多媒体与图像合成和编辑 图像合成是多媒体常用的一个信息处理技术。通过对多媒体的设置编程,构建出二维的图像空间。在实际的应用中,主要分为四个步骤。 1)要根据客户的需要,制定好图像的大小、颜色、版式。这一部分主要需要专业美术人员的参与制作。 2)采集图片素材。使用数码相机或摄影机,对所需的图片内容进行选景拍照。整个过程最好由专业的摄影人员进行操作。然后将所得到的素材传入到计算机中,并对多媒体图片素材进行筛选。 3)进行图片处理,合成和编辑。对筛选出的图片进行合成修饰和编辑。按照客户的需求,将二维的图片进行处理。 4)在图片中加入特效文字。图片处理完成后,可以按照客户的需要,加入一些特效的文字。特效的文字可采用透明、火焰等二维文字,也可采用立体的形象生动的三维文字。 利用多媒体进行图像合成与编辑可以应用在摄影图片、宣传广告和商业用途上。具有很高的应用价值。 2 多媒体与三维动画 现代动画的制作都离不开多媒体的制作合成。动画的制作过程主要包括二维或三维的动画图像、配音、字幕和背景音乐。通过动画制图软件,构建立体的三维动画,使其运用到商业广告、宣传片或动画片制作中。动画对于多媒体来说是一个不小的挑战。因为它所需要的素材内容信息量较大。而且现在对动画的需求越来越多,尤其是三维动画,让三维动画的虚拟空间更加接近现实空间,是现在多媒体动画制作的目标。为了实现这一目标,了解多媒体信息处理技术的发展现状成为了现在社会不可忽视的问题。 3 多媒体与教学 4 多媒体与管理信息系统 多媒体的发展给社会带来了许多的便利条件。多媒体给当代的许多管理方面带来了不小的价值。例如,利用多媒体,我们安装了电子监控系统。在刑事案件的破案中,这些系统发挥着重要的作用,是破案的关键。我们在出行时,各种售票服务窗口都与多媒体有着千丝万缕的联系。在办理银行业务时,金钱的存入与输出都离不开多媒体的服务。所以说,在信息化时代的今天,我们离不开多媒体,因此,了解多媒体信息处理技术的发展现状,是当近社会不可小觑的问题。 5 多媒体与经济发展 6 多媒体与科技的发展 众所周知,多媒体是促进科技发展的主要推动力,科技的发展也离不开多媒体的支持与运用。现在的一些科学技术,如航空航天的应用操作技术,都是是多媒体为基础的。多媒体

视频传输方式优缺点

传输方式优缺点 常见的有视频基带传输、光纤传输、网络传输、微波传输、双绞线平衡传输、宽频共缆传输方式,且还有一种CDMA监控。 ①视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差。 ②光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能最好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易升级扩容。 ③网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,有Internet网络安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 ④微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:省去布线及线缆维护费用,可动态实时传输广播级图像。其缺点是:由于采用微波传输,频段在1GHz以上常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间很容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;Ku波段受天气影响较为严重,尤其是雨雪天气会有严重雨衰。 ⑤双绞线传输(平衡传输):是解决监控图像1Km内传输,电磁环境复杂场合的解决方式之一,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输;双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 ⑥宽频共缆传输:是解决几公里至几十公里监控信号传输的最佳解决方案,采用调幅调制、伴音调频搭载、FSK数据信号调制等先进技术,可将四十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,四十路音视频及控制信号在同一根电缆中双

多媒体信息处理技术(5)教学文稿

多媒体信息处理技术 (5)

多媒体信息处理技术 1 多媒体数据的分类 媒体是承载信息的载体,是信息的表示形式。信息媒体元素是指多媒体应用中可以显示给用户的媒体组成元素,目前主要包括文本、图形、图像、声音、动画和视频等媒体。 一、多媒体数据的特点 多媒体数据具有数据量巨大、数据类型多、数据类型间差别大、数据输入和输出复杂等特点。多媒体数据类型多,包括图形、图像、声音、文本和动画等多种形式,即使同属于图像一类,也还有黑白、彩色、高分辨率和低分辨率之分,由于不同类型的媒体内容和格式不同,其存储容量、信息组织方法等方面都有很大的差异。 二、多媒体数据的分类 1.文字 在计算机中,文字是人与计算机之间信息交换的主要媒体。文字用二进制编码表示,也就是使用不同的二进制编码来代表不同的文字。 文本是各种文字的集合,是人和计算机交互作用的主要形式。 文本数据可以在文本编辑软件里制作,如Word编写的文本文件大都可以直接应用到多媒体应用系统中。但多媒体文本大多直接在制作图形的软件或多媒体编辑软件时一起制作。 2.音频 音频泛指声音,除语音、音乐外,还包括各种音响效果。将音频信号集成到多媒体中,可提供其他任何媒体不能取代的效果,从而烘托气氛、增加活力。 3.图形、图像

凡是能被人类视觉系统所感知的信息形式或人们心目中的有形想象都称为图像。 图形文件基本上可以分为两大类:位图和向量图。 位图图像是一种最基本的形式。位图是在空间和亮度上已经离散化的图像,可以把一幅位图图像看成一个矩阵,矩阵中的任一元素对应于图像的一个点,而相应的值对应于该点的灰度等级。 图形是指从点、线、面到三维空间的黑白或彩色几何图形,也称向量图。图形是一种抽象化的图像,是对图像依据某个标准进行分析而产生的结果。 向量图形文件则用向量代表图中的文件,以直线为例,在向量图中,有一数据说明该元件为直线,另外有些数据注明该直线的起始坐标及其方向、长度或终止坐标, 图形文件保存的不是像素点的值,而是一组描述点、线、面等几何图形的大小、形状、位置、维数等其他属性的指令集合,通过读取指令可以将其转换为屏幕上显示的图像。由于大多数情况下不需要对图形上的每一个点进行量化保存,所以,图形文件比图像文件数据量小很多。图形与图像是两个不同的概念。 4.动画 图像或图形都是静止的。由于人眼的视觉暂留作用,在亮度信号消失后亮度感觉仍可保持1/20s~1/10s。利用人眼视觉惰性,在时间轴上,每隔一段时间在屏幕上展现一幅有上下关联的图像、图形,就形成了动态图像。任何动态图像都是由多幅连续的图像序列构成的,序列中的每幅图像称为一帧,如果每一帧图像是由人工或计算机生成的图形时,称为动画;若每帧图像为计算机产生的具有真实感的图像时,称为三维真实感动画;当图像是实时获取的自然景物图像时就称为动态影像视频,简称视频。 用计算机制作动画的方法有两种:一种称为造型动画,另一种称为帧动画。帧动画由一幅幅连续的画面组成图像或图形序列,是产生各种动画的基本方法。造型动画则是对

视频信息处理与传输课题研究报告

西南科技大学 课程研究报告 课程名称:视频信息处理与传输 班级: 姓名: 学号: 指导老师: 2016年11月日

课程学习目的: 《视频信息处理与传输》是数字媒体技术方向中的一门专业必选课,学习的目的是让我们系统地理解和掌握视频信息的采集、压缩编码视频信息传输等数字视频技术,并灵活应用。为我们补充TCP/IP,UDP,RTP等视频信息在网络中传输所必需的协议。老师为我们讲解了视频信息处理与传输概述,视频信息采集技术,以及传输协议。我将分别叙述我从中学习到的知识。

第一部分视频信息处理与传输概述 随着科学技术,视频信息处理与传输的技术也成了人们关注的一个热点。从采集到应用系统,每步都在提升。信息安全与信息垃圾就如人们的生活中的隐私与生活垃圾一样重要,如何维护信息的安全和如何处理信息垃圾已成为一个热点。 信息安全是指信息网络硬件、软件及其系统中的数据受到保护,不受偶然或者恶意的原因而遭到破坏、更改、泄露。系统连续可靠正常地运行,信息服务不中断。信息安全主要包括以下五方面:保证信息的保密性、真实性、完整性、未受权拷贝和所寄生系统的安全性。信息安全的根本目的就是使内部信息不受外部威胁,因此信息通常要加密。为保障信息安全,要求有信息源认证、访问控制,不能有非法软件驻留,不能有非法操作。信息垃圾就是那些混在大量有用信息中的无用信息、有害信息,以及对人类社会的各个方面带来危害的信息。它对信息安全应用和转播构成了威胁。 这一部分就是老师讲的关于这个课程的一些概述,也没用从中获取太多的知识。

第二部分视频信息采集技术 从这一部分,我从中学到了视频是怎么样组成的,以及视频的采集技术。 我们所看到的视频信息都是由一帧一帧的静态图像构成的,再加上每一帧图像的时间信息,通过连续播放而成.。 视频分为模拟视频和数字视频,而数字视频是模拟视频的数字化。模拟信号对应于时间轴有连续的无穷多个值,它完全准确地表示信号电平,如话音、图像等均是模拟信号。以模拟信号传输或处理的电视称为模拟电视。模拟电视的讯号广播公司通常是使用NTSC、PAL或SECAM的模拟制式把它们的信号进行调频后,调节这些信号并放进VHF或者UHF的载波上。数字视频就是以数字形式记录的视频,和模拟视频相对的。数字视频有不同的产生方式,存储方式和播出方式。比如通过数字摄像机直接产生数字视频信号,存储在数字带,蓝光盘或者磁盘上,从而得到不同格式的数字视频。然后通过PC,特定的播放器等播放出来。为了存储视觉信息,模拟视频信号的山峰和山谷必须通过模拟/数字(A/D)转换器来转变为数字的“0”或“1”。这个转变过程就是我们所说的视频捕捉(或采集过程)。如果要在电视机上观看数字视频,则需要一个从数字到模拟的转换器将二进制信息解码成模拟信号,才能进行播放。模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV信号方式,而计算机工作在RGB空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。 可见光是波长在380 nm~780 nm 之间的电磁波,我们看到的大多数光不是一种波长的光,而是由许多不同波长的光组合成的。如果光源由单波长组成,就称为单色光源。该光源具有能量,也称强度。实际中,只有极少数光源是单色的,大多数光源是由不同波长组成,每个波长的光具有自身的强度。这称为光源的光谱分析。 研究表明,人的视网膜有对红、绿、蓝颜色敏感程度不同的三种锥体细胞。红、绿和蓝三种锥体细胞对不同频率的光的感知程度不同,对不同亮度的感知程度也不同。自然界中的任何一种颜色都可以由R,G,B 这3 种颜色值之和来确定,以这三种颜色为基色构成一个RGB 颜色空间,基色的波长分别为700 nm(红色)、546.1nm(绿色)和435.8 nm(蓝色)。颜色=R(红色的百分比)+G(绿色的百分比)+B(蓝色的百分比),只要其中一种不是由其它两种颜色生成,可以选择不同的三基色构造不同的颜色空间,即三基色原理。 模拟视频的数字化包括不少技术问题,如电视信号具有不同的制式而且采用复合的YUV 信号方式,而计算机工作在RGB 空间;电视机是隔行扫描,计算机显示器大多逐行扫描;电视图像的分辨率与显示器的分辨率也不尽相同等等。因此,模拟视频的数字化主要包括色彩空间的转换、光栅扫描的转换以及分辨率的统一。 模拟视频一般采用分量数字化方式,先把复合视频信号中的亮度和色度分离,得到YUV 或YIQ 分量,然后用三个模/数转换器对三个分量分别采样并进行数字化,最后再转换成RGB 空间。对彩色电视图像进行采样时,可以采用两种采样方法。一种是使用相同的采样频率对图像的亮度信号(Y)和色差信号(Cr,Cb)进行采样,另一种是对亮度信号和色差信号分别采用不同的采样频率进行采样。如果对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(subsampling)。由于人的视觉对亮度信号的敏感度高于对色差的敏感度,这样做利用人的视觉特性来节省信号的带宽和功率,通过选择合适的颜色模型,可以使两个色差信号所占的带宽明显低于Y 的带宽,而又不明显影响重

多媒体信息处理考试答案

1.多媒体:融合两种或两种以上媒体的人——机互动的信息交流和传播媒体。 2.超链接:两个对象或文档元素之间的定向逻辑链接,也称为“热链接”或称 为“超文本链接”。 3.超文本:包含指向其他文档或文档元素的指针的电子文档。 4.无损压缩:用压缩后的数据进行重构(也还原或解压缩),重构后的数据与原 来的数据完全相同的数据压缩技术。无损压缩用于要求重构的数据与原始数据完全一致的应用,如磁盘文件压缩就是一个应用实例。根据当前的技术水平,无损压缩算法可把普通文件的数据压缩到原来的1/2~1/4。常用的无损压缩算法包括哈夫曼编码和LZW等算法。 5.有损压缩:用压缩后的数据进行重构,重回后的数据与原来的数据有所不同, 但不影响人对原始数据资料表达的信息或造成误解的数据压缩技术。 6.LZ77算法和LZ78算法的差别在哪里? LZ77 算法针对过去的数据进行处理,而LZ78 算法却是针对后来的数据进行处理。 LZ77算法通过使用编码器或者解码器中已经出现过的相应匹配数据信息替换当前数据从而实现压缩功能。LZ78 通过对输入缓存数据进行预先扫描与它维护的字典中的数据进行匹配来实现这个功能,在找到字典中不能匹配的数据之前它扫描进所有的数据,这时它将输出数据在字典中的位置、匹配的长度以及找不到匹配的数据,并且将结果数据添加到字典中。 7.LZ78算法和LZW算法的核心思想是什么?它们之间有什么差别? 核心思想:如果匹配串的长度比指针本身的长度长就输出指针,否则就输出真实字符。 差别:LZ78是每读入一个字符的同时,将其编入自己的字典,然后,再读入字符的同时,则在已有的字典里查找,没有的话该字符就在新编入辞典。如此循环。LZW是先建立了ASCII 码的字典,这样就事先花费了8个字节(256个ASCII码)的存储空间,然后再像LZ78一样读入字符,没有的再进行编入字典,如此循环。 8.量化:幅值连续的模拟信号转化成为幅值离散的数字信号的过程。 线性量化:在量化时,信号幅度的划分是等间距的量化。 非线性量化:在量化时,信号幅度的划分是非等间距的量化。 9.样本精度为8位的信噪比等于多少分贝?SNR=6.02n=6.02*8=48位 10.选择采样频率为22.050kHz和样本精度为16位的录音参数。在不采用压缩技 术的情况下,计算录制2分钟的立体声需要多少MB(兆字节)的存储空间 (1MB=1024*1024B)。(22.050*1000*16/8*2*2*60)/(1024*1024)=10.09MB 11.均匀量化:采用相等的量化间隔对采样得到的信号进行量化.它是线性量化的另一种说法.非均匀量化:采用非相等的量化间隔对采样得到的信号进行量化。例如,对大的输入信号采用大的量化间隔,对小的输入信号采用小的量化间隔。它是非线性量化的另一种说法。12.(1)什么叫μ率压扩?(2)什么叫A率压扩? (1)在脉冲编码调制(PCM)系统中,一种模拟信号和数字信号之间进行转换的CCITT压扩标准。在北美PCM电话网中使用该算法。(2) 在脉冲编码调制(PCM)系统中,一种模拟信号和数字信号之间进行转换的CCITT压扩标准。在欧洲电话网中使用该算法。 13.G.711标准定义的输出数据率是多少?T1的数据率是多少?T2的数据率是多少? 答:(1)G.711使用μ率和A率压缩算法,信号宽带为3.4kHz,压缩后的数据率为64kb/s (2)T1总传输率:1.544Mb/s (3)T2总传输率:6.312Mb/s 14.一个像素的RGB分量分别用3,3,2位表示的图像,问该幅图像的颜色数目最大的多少?如果有一幅256色的图像,问该图的颜色深度是多少?2^(3+3+2)=256(2)8位 15.α通道的作用:在计算机环境下,α通道可存储在帧缓冲存储器中的附加位平面上。对32位帧缓冲存储器,除高8位是α通道外,其余24位是颜色位,红绿蓝各占8位。

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

多媒体-名词解释及填空

◆多媒体:指信息表示媒体的多样化,常见的多媒体有文本、图像、图形、声音、音乐、视频、动画等多种形式。 ◆多媒体技术:是利用计算机技术把文本、声音、视频、动画、图形和图像等多种多媒体进行综合处理,使多种信息之间建立逻辑连接,集成一个完整的系统。 ◆多媒体(从本质上)的重要特征:多维化、继集成性、交互性、实时性。 ◆多媒体及多媒体技术产生于20世纪80年代 ◆多媒体计算机(MPC)标准:MPC1 1990年诞生;MPC2 1993年5月;MPC 1995年6月 ◆多媒体的核心任务:获取、处理、转发或分发多媒体信息,使多媒体信息之间建立逻辑链接 ◆多媒体信息处理的最终目标:能跨越各种网络和设备,透明的、强化的使用多媒体资源 ◆多媒体系统的关键技术:多媒体数据的处理、多媒体数据的存储、多媒体数据的传输、多媒体输入/输出技术 ◆多核处理器:指将多个运算核封装在一个芯片内部。 ◆多媒体信息以3种模式相互集成:制约式、协作式、交互式 ◆超媒体:是超文本和多媒体信息浏览坏境下的结合。它采用面向对象的信息组织与管理形式。 ◆超媒体信息网络:将多媒体各个信息单元组成一个由节点和各种链构成的网络。

◆虚拟现实(UR)就是采用计算机技术生成一个逼真的视觉、听觉、触觉及嗅觉的感觉世界,用户可以用人的自然技能对这个生成的虚拟实体进行交互考察 ◆人机界面设计目的:通过对用户需求的解释大道一种人机之间较好的通信能力 ◆高速多媒体通信技术:指为满足新一代信息系统中实时多媒体信息传输的需要。 ◆多媒体技术的应用:①音频/视频流点播;②电子出版物;③医疗卫生;④游戏与娱乐;⑤计算机视频会议;⑥多媒体展示和信息查询系统;⑦管理信息系统(MIS)和办公自动化系统(OA);⑧传媒、广告;⑨教学管理系统;⑩移动卫星。 ◆多媒体技术未来将朝着智能化和多维化方向发展 ★多媒体计算机硬件组成:主机、音频/视频处理设备、光盘驱动器、媒体输入/输出设备 ★CPU(central processing unit)中央处理器,其内部结构可分为控制单元、逻辑单元、存储单元 ★多媒体I/O设备可分为:输入设备、输出设备、用于网络通信的通信设备 ★触摸屏分类:电阻式、电容式、红外线式、声表面波式 ★视频捕捉卡:把输入的模拟视频信号通过内置芯片提供的捕捉功能转换成数字信号设备

相关文档
最新文档