一种脉间混沌频率步进/退雷达信号设计与分析

一种脉间混沌频率步进/退雷达信号设计与分析
一种脉间混沌频率步进/退雷达信号设计与分析

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

一种新的步进频率编码信号及其处理

一种新的步进频率编码信号及其处理 王华强,罗丰 (西安电子科技大学,陕西省西安市 710071) 摘 要:提出一种高分辨测速和测距的步进频率编码信号形式---复合步进频信号。该信号交 替发射一组单载频脉冲信号和一组载频以固定频率步长步进的脉冲信号。用单载频脉冲回波 信号做FFT 综合对目标初测速,再用载频步进脉冲回波信号做去速度模糊处理,完成对目标 速度的侦测。对速度补偿后的载频步进脉冲回波做类IFFT 综合完成目标的高分辨测距。文中 同正负步进频率编码信号进行了性能比较,表明该信号形式有较好的测速、测距性能。 关键词:雷达;频率步进;编码信号;速度高分辨;距离高分辨 1 引 言 频率步进脉冲雷达是一种重要的高分辨率雷达体制,通过对同一距离单元多个不同频率脉冲 回波信号的非相干积累[1], 在接收端通过信号合成实现对目标的一维高分辨成像。步进频体制降 低了系统的瞬时带宽, 从而减轻了数字信号处理的负担。 步进频率信号一般用于高分辨测距雷达,高距离分辨特性使得目标运动特性不能被忽略,必 须先对目标运动参数加以精确补偿,再进行测距信号处理。目标同雷达平台间的径向速度会导致 合成目标的径向一维距离像产生距离徙动和波形失真。 如果使用一种距离与多普勒耦合小的 步进频信号形式则可以减弱步进频的速度多普勒影响。文献[2]所提出的就是一种同时具有较高 测速、测距分辨力,模糊函数为“图钉”形的正负步进频率编码信号形式,提高了目标距离-速 度联合分辨能力。 ]3[本文也提出了一种同正负步进频率步进频类似的频率编码步进频信号形式---复合步进频信 号,并对这种信号形式做了分析,给出了利用此种信号形式的步进频雷达的信号处理方法。比较 表明,这种信号编码形式在相近的工作参数下较正负步进频率编码信号有更宽的测速范围、更高 的测速分辨和相对短的相干积累时间。 2 常规步进频率编码信号 步进频率编码信号是一组载频按固定频率递增的信号,其信号形式为 ])0(2exp[)(1)(10t f k f j kT t u N t s r N k c ?+?=∑?=π (1) 式中为编码脉冲串个数,为递增频率,是步进频率编码信号的起始步进频率, N f ?0f ?????≤≤=thers 0t 0 1)(o T T t u p p c 是能量归一的矩形脉冲,为脉冲持续时间。 p T 步进频率编码体制雷达通过对相同距离单元不同频率脉冲回波的相干积累处理,获得高分辨 的距离信息。当目标与雷达平台有相对运动时,二者的径向速度对雷达测距的影响显著,使得目 标在一维距离像上出现目标距离像的平移即距离走动和像的波形展宽、峰值降低即目标发散,甚 至使目标成像失败。步进频率编码信号在目标距离像综合前一般要进行速度补偿。 王华强 男,1980年5月生,江苏南京人,西安电子科技大学信号与信息处理专业硕士在读。

怎么确定步进电机脉冲频率

怎么确定步进电机脉冲频率 步进电机驱动及控制技术解答 南京步进电机厂技术部 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器,必须与步进电机的型号相匹配。否则,将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG25 0A电机为例,列表说明: 电机固有步距角运行拍数细分数电机运行时的真正步距角 0.9°/1.8°8 2细分,即半步状态0.9° 0.9°/1.8°20 5细分状态0.36° 0.9°/1.8°40 10细分状态0.18° 0.9°/1.8°80 20细分状态0.09° 0.9°/1.8°160 40细分状态0.045° 可用看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

单片机脉冲信号测量

郑州工业应用技术学院 课程设计说明书 题单片机脉冲信号测量 姓名: 院(系):信息工程学院专业班级:计算 机科学与技术学号: 指导教师: 成绩: 时间:年月日至年月日

摘要 脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以 实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号;频率;宽度;单片机AT89C51

目录 摘要............................................................... I 目录............................................................... II 第一章技术背景及意义 (1) 第二章设计方案及原理 (2) 第三章硬件设计任务 (3) 第四章软件结论 (12) 第五章参考文献 (13) 第六章附录 (14)

第一章技术背景及意义 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

步进电机驱动器控制信号接口说明

. .. 步进电机驱动器控制信号接口说明 驱动器是把计算机控制系统提供的弱电信号放大为步进电机能够接受的强电流信号,控制系统提供给驱动器的信号主要有以下三路: 1.步进脉冲信号CP:这是最重要的一路信号,因为步进电机驱动器的原理就是要把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说:驱动器每接受一个脉冲信号CP,就驱动步进电机旋转一步距角, CP的频率和步进电机的转速成正比, CP的脉冲个数决定了步进电机旋转的角度。这样,控制系统通过脉冲信号CP就可以达到电机调速和定位的目的。 2.方向电平信号 DIR:此信号决定电机的旋转方向。比如说,此信号为高电平时电机为顺时针旋转,此信号为低电平时电机则为反方 向逆时针旋转。此种换向方式,我们称之为单脉冲方式。另外,还有一种双脉冲换向方式:驱动器接受两路脉冲信号(标注为CW和CCW),当其中一路(如CW)有脉冲信号时,电机正向运行,当另一路(如CCW)有脉冲信号时,电机反向运行。用户使用何种方式,由拨位开关设定。 3.使能信号EN:此信号在不连接时默认为有效状态,这时驱动器正常工作。当此信号回路导通时,驱动器停止工作,这时电机处于无力矩状态(等同于本公司SH系列驱动器的FREE信号),此信号为选用信号。 为了使控制系统和驱动器能够正常的通信,避免相互干扰,我们在驱动器内部采用光耦器件对输入信号进行隔离,三路信号的内部接口电路相同,常用的连接方式为①共阳方式:把CP+、DIR+和EN+接在一起作为共阳端接外部系统的+5V,脉冲信号接入CP-端,方向信号接入DIR-端,使能信号接入EN-端;②共阴方式:把CP-、DIR-和EN-接在一起作为共阴端接外部系统的GND,脉冲信号接入CP+端,方向信号接入DIR+端,使能信号接入EN+端;③差动方式:直接连接。 驱动器输入信号内部接口示意图 如果驱动器输入信号为电压信号,要求:3.6V≤高电平≤5.5V; -5.5V≤低电平≤0.3V,最常用的为TTL电平。 如果驱动器输入信号为电流信号,要求:7mA≤高电流≤18mA; -18mA≤低电流≤0.2mA。 不管是电压信号还是电流信号,最终转化为光耦器件的输入电流以达到信号传输的目的(参考上图),如果电压信号的幅值超出以上要求的范围须在外部另加限流电阻R,保证给驱动器内部光耦提供7-18mA的驱动电流,参见下图和下表。 步进电机的运行是由脉冲信号控制的,步进电机在脉冲信号的有效沿到来的时刻移动一个步距角,本系列驱动器的有效沿是指:脉冲信号电流“由小到大”的时刻,或者说脉冲电平“由低到高”的时刻,或者说是驱动器内部光耦“由截止到打开”的时刻。 脉冲信号的频率要求不大于200KHz; 脉冲信号的宽度要求不小于2μS。 脉冲信号的驱动电流要求为7-18mA 电机换向时,一定要在电机降速停止后再换向。换向信号要求在前一个方向的最后一个脉冲有效沿结束至少5μS以上才能改变换向信号,且不滞后下一个脉冲信号的有效沿。 如果使用双脉冲CW/CCW方式,则要求下一个方向的第一个脉冲(如CCW)在前一个方向的最后一个脉冲(CW)有效沿后至少5μs才能有效。

脉冲信号

脉冲信号 在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs(微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。 CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU 的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能以较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。 CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高。 总线是将计算机微处理器与内存芯片以及与之通信的设备连接起来的硬件通道。前端总线将CPU连接到主内存和通向磁盘驱动器、调制解调器以及网卡这类系统部件的外设总线。人们常常以MHz表示的速度来描述总线频率。 前端总线(FSB)频率是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz几种,前端总线频率越大,代表着CPU 与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技

实时三维频率步进式探地雷达技术介绍及应用案例分析

实时三维频率步进式探地雷达技术介绍及应用案例分析 ◆最快的步进频率雷达:利用数字频率信号源, 可以产生0.5-10 毫秒的扫描周期,一个同相接收机,使得整个扫描周期(一般为几个毫秒)100%可被有效利用。 ◆天线阵技术,可容纳21个天线阵子:覆盖范围从100MHz 到3GHz。实际工作时,用户无需更换天线就可采集从100MHz 到3GHz频率的数据。 ◆CMP(共中点)采集模式:这套系统可以设置为CMP(共中点)采集模式,可实时显示各层的厚度和对应的介电常数,并基于路基材料的介电常数与其密实度,含水量的相关曲线,评定路基质量。 ◆空前的区域勘察速度(工作效率):极其高的勘察效率和有效的采样方法使得 GeoScope TM采用2.4m天线阵可以以80km/h车速提供7.5×7.5cm网格完全三维图像。生产效率高达20亩/小时。 ◆数据采集过程中的三维实时显示技术:浏览器即可调用采集数据,实现实时三维显示(包括横向剖面、纵向剖面,水平切面)。 ◆软件处理能力超强:完整而快速的进行数据后处理,可加入注解及地理图像,且可以进行二次开发。 挪威3D-Radar公司成立于2001年,为国防、航空和安全高技术产品全球制造商——美国Chemring Sensors and Electronic Systems (Chemring SES)集团的子公司。3D-Radar公司拥有高质量三维雷达技术,从传统的脉冲信号雷达转为新的频率步进雷达,且具有丰富的GPR数据处理经验。 与市场上广泛使用的单通道脉冲式探地雷达系统相比,挪威3D-Radar公司的GeoScopeTM三维探地雷达系统具有如下特点: 频率步进雷达技术、实时三维显示、多通道天线阵技术、软件超强的处理能力 应用领域: ◆公路检测:面层厚度和质量、垫层和基层、桥梁检测 (脱空/剥离) ◆桥梁面板检测 ◆铁路路基检测:垫层厚度和质量、基层、电缆和管道 ◆机场跑道检测:沥青层厚度和质量、基层、脱空、电缆和管道 ◆地下公用设施 (管线/电缆):地下公用设施 ◆考古 ◆地雷和未爆炸物探测

雷达信号

摘要 雷达通过对回波信号进行接收检测处理来识别复杂回波中的有用信息.其中,雷达信号波形的选择与设计有着相当重要的作用,它直接影响到雷达发射机形式的选择、信号处理方式、雷达的作用距离及抗于扰、抗截获等很多重要问题。所以,为了选择或者设计出适合特定用途的雷达信号形式,在对雷达系统设计之前有必要研究各种雷达信号的性能。雷达信号模糊函数全面地反映了雷达所发射的信号在距离和速度二维上的测量精度和分辨率,因此,雷达信号模糊函数理论对于雷达最优波形设计具有非常重要的意义。 现代信息技术的发展对现代雷达系统在有效作用距离、分辨率、测量精度以及电子对抗诸多方面提出了越来越高的要求。针对现代雷达的特殊用途,模糊函数理论为系统研究最优波形提供了基本的研究平台。模糊函数把雷达接收机输出信号的复包络描述为雷达目标距离和径向速度的函数,它可以提供分辨力、测量精度和杂波抑制等重要信息。模糊函数可以作为单一目标距离和速度的精度与分辨率评估尺度参数,根据这些参数还可以可靠区分多个目标.采用仿真的方法对雷达信号及其性能进行研究具有许多优越性。首先,通过仿真可以在不更改主要的硬件和软件的情况下,灵活地选择和改变参数值。第二,仿真可使雷达信号的设计人员通过改变参数,评价不同作战环境下各种参数对雷达系统性能的影响。第三,对关键技术及参数在仿真中加以研究,可节省大量的人力、物力和财力,并且具有很高的灵活性和可重复性,从而达到节省研制费用、缩短研制周期的目的。 本文基于雷达信号波形设计,从几类雷达发射信号出发,推导出不同雷达信号的模糊函数的数学模型,并绘制出模糊函数图,根据模糊函数图分析各类信号特点。在此基础上,根据雷达系统的要求(如分辨力、精度、抗干扰等),对线性调频信号雷达进行了仿真实验,评估所设计雷达信号的实用的价值。本文在波形设计过程中主要采用Matlab对各模块进行功能建模和仿真,取得了较好的仿真效果。仿真研究表明,模糊函数全面反映了雷达所发射的信号在距离和速度上的测量精度和分辨能力。在给定目标环境的条件下,模糊函数可以作为设计和选择合适的雷达信号的重要方法。 关键词:雷达信号,波形设计,模糊函数。模糊函数图 第1章引言 随着我国科学事业的迅速发展,雷达研制已进入一个崭新的阶段。人造地球卫星、飞船、火箭、导弹的发射成功,都离不开高精度的雷达设备,目标分辨已成为雷达设计中突出的实际问题。模糊函数是对雷达信号进行分析研究和波形设计的有效工具,是雷达信号理论中极为重要的一个概念。模糊函数最初是在研究雷达目标分辨力问题时提出的,并从衡量两个不同距离和不同径向速度目标的分辨度出发提出了模糊函数的定义。但模糊函数不仅可以说明分辨力,还可以说明测量精度,测量模糊度以及抗干扰状况等问题。 1.1雷达信号模糊函数研究的重要意义

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 - 0 - 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: - 1 -

- 2 - (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: ( 2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中

步进电机脉冲数计算

步进电机一个脉冲运动距离怎么算? 步进电机一个脉冲运动距离怎么算?能不能给个公式在举个例子? 答案: 用360度去除以步距角,就是电机转一圈的脉冲数,当然如果细分的话,还要乘以细分倍数。电机转一圈丝杠前进一个导程,用导程除以一圈的脉冲数就是脉冲运动距离。 第一步确定步进电机的步距角,这个电机上会标明的。比如说,1.8度,则一个圆周360/1.8=200,也就是说电机旋转一周需要200个脉冲。第二步确定电机驱动器设了细分细分没有,查清细分数,可以看驱动器上的拨码。比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。第三步确定电机轴一周的长度或者说导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/脉冲个数=一个脉冲的线位移。什么是细分呢?和几相是一个意思吗?和 几相没关系吗? 细分和相数没关系。以1.8度为例,原来一个脉冲走1.8度,现在改为4细分,那么现在一个脉冲只能走1.8/4度了。细分越多,每个脉冲的步进长度越短。细分的多少可由驱动器设置。 控制步进电机转多少最主要你得通过步进电机步距角度计算出电机转一圈需要多少脉冲,比如步距角度为0.9°则电机转一圈需要给步进电机驱动器360/0.9=400个脉冲,转半圈就是200个脉冲。步进电机驱动器资料你先了解下! 步进电机转速则通过改变脉冲频率来控制,用plc的pwm输出控制是比较方便的,速度的快慢不影响步进电机的行程,行程多少取决于脉冲数量。 注意一点步进电机速度越快转矩越小,请根据你的应用调节速度以防失步,造成走位不准确。步进电机是接收步进驱动器给过来的脉冲信号,比如两相的步进,AB相分别轮流输出正反脉冲(按一定顺序),步进电机就可以运行了,相当于一定的脉冲步进马达对应走一定旋转角度。而PLC也可以发出脉冲,但脉冲电压不够,所以需要把PLC输出的脉冲给步进驱动器放大来驱动步进驱动器,相当于PLC的脉冲就是指令脉冲。一般PLC驱动步进时候有两路信号,一路是角度脉冲,另外一路是方向脉冲,PLC里边一般配所谓位移指令,发梯形脉冲给步进驱动器,这样可以缓冲启动带来的力冲击。

脉冲信号参数测量仪

2016年TI杯江苏省大学生电子设计竞赛题目: 脉冲信号参数测量仪 题目编号: E题 参赛队编号: 参赛队学校: 参赛队学生: 二○一六年七月

目录 摘要 (1) 1.设计方案工作原理 (1) 1.1方案选择 (1) 1.2总体方案设计 (2) 2.核心部件电路设计 (3) 2.1高速缓冲电路 (3) 2.2自动增益电路 (3) 2.3高速比较器电路 (4) 2.4放大电路 (5) 3.系统软件设计分析 (5) 3.1 CPLD数据处理 (5) 4.竞赛工作环境条件 (6) 4.1设计分析软件环境 (6) 4.2仪器设备硬件平台 (6) 5.作品成效总结分析 (6) 5.1脉冲信号频率测量 (6) 5.2脉冲信号占空比测量 (7) 5.3脉冲信号幅值测量 (7) 5.4脉冲信号上升时间测量 (8) 6.参考文献 (8) 附录.................................................................................................. 错误!未定义书签。

脉冲信号参数测量仪 摘要:本作品以美国德州仪器(TI)生产的16位超低功耗单片机MSP430F169作为主控芯片,利用CPLD技术实现矩形脉冲信号的频率、占空比、上升时间的测量,并且利用CPLD产生一个标准矩形脉冲信号。本设计外围硬件电路主要由高速缓冲降压模块、AGC自动增益模块、幅度测量模块组成,通过对上述模块的合理整合,设计并制作了一个性能较好的脉冲信号参数测量仪。由于采用了AGC模块,系统实现了全程自动增益控制,稳定输出电压。 针对矩形脉冲信号的特点,本设计采用多种抗干扰措施,对电路布线进行优化,并合理运用低噪声芯片OP07、OPA690、VCA810、THS3001、TLV3501。后期,利用ADS1115及Matlab,对测试数据进行合理的分析,以优化算法系统,进一步提高了精度。 该脉冲信号参数测量仪结构简单,性能稳定,功能完善,达到了各项设计指标。关键词:脉冲信号参数测量仪;CPLD ;AGC ;TLV3501 ;Matlab; 1.设计方案工作原理 1.1方案选择 本方案主要由THS3001缓冲模块、AGC自动增益模块、TLV3501高速比较模块、ADS1115模块组成,实现脉冲信号频率、占空比、幅度、上升时间测量。 1、主控部件选择 方案一:采用CPLD作为参数测量仪的主控芯片,完成参数测量及实时显示等全部功能。CPLD具有可编程和大规模集成的特点,此方案可以使电路大为简化,但此设计仅使用PLD不能充分发挥其特点及优势,导致系统性能降低。因此不采用此方案。 方案二:采用FPGA作为主控芯片,FPGA外围拓展功能更多,但在运行速度、编程灵活性以及使用方便性上CPLD优于FPGA,即在电路结构上FPGA更复杂,因此不采用此方案。 方案三:采用CPLD和单片机相结合的方案。分别利用CPLD在信号处理高速稳定方面以及单片机在逻辑运算、智能控制方面的优越性,使得电路不仅能够简化,而且能够达到设计要求,因此选择方案三。 2、频率测量 方案一:采用周期法。需要有标准倍的频率,在待测信号的一个周期内,记录标准频率的周期数,这种方法的计数值会产生±1个脉冲误差,并且测试精度与计数器中的记录的数值有关,为了保证测试精度,测周期法仅适用于低频信号的测量。

步进电机脉冲数计算

步进电机一个脉冲运动距离怎么算 步进电机一个脉冲运动距离怎么算能不能给个公式在举个例子 答案: 用360度去除以步距角,就是电机转一圈的脉冲数,当然如果细分的话,还要乘以细分倍数。电机转一圈丝杠前进一个导程,用导程除以一圈的脉冲数就是脉冲运动距离。 第一步确定步进电机的步距角,这个电机上会标明的。比如说,度,则一个圆周360/=200,也就是说电机旋转一周需要200个脉冲。第二步确定电机驱动器设了细分细分没有,查清细分数,可以看驱动器上的拨码。比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。第三步确定电机轴一周的长度或者说导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/脉冲个数=一个脉冲的线位移。什么是细分呢和几相是一个意思吗和 几相没关系吗 细分和相数没关系。以度为例,原来一个脉冲走度,现在改为4细分,那么现在一个脉冲只能走4度了。细分越多,每个脉冲的步进长度越短。细分的多少可由驱动器设置。 控制步进电机转多少最主要你得通过步进电机步距角度计算出电机转一圈需要多少脉冲,比如步距角度为°则电机转一圈需要给步进电机驱动器360/=400个脉冲,转半圈就是200个脉冲。步进电机驱动器资料你先了解下! 步进电机转速则通过改变脉冲频率来控制,用plc的pwm输出控制是比较方便的,速度的快慢不影响步进电机的行程,行程多少取决于脉冲数量。 注意一点步进电机速度越快转矩越小,请根据你的应用调节速度以防失步,造成走位不准确。步进电机是接收步进驱动器给过来的脉冲信号,比如两相的步进,AB相分别轮流输出正反脉冲(按一定顺序),步进电机就可以运行了,相当于一定的脉冲步进马达对应走一定旋转角度。而PLC也可以发出脉冲,但脉冲电压不够,所以需要把PLC输出的脉冲给步进驱动器放大来驱动步进驱动器,相当于PLC的脉冲就是指令脉冲。一般PLC驱动步进时候有两路信号,一路是角度脉冲,另外一路是方向脉冲,PLC里边一般配所谓位移指令,发梯形脉冲给步进驱动器,这样可以缓冲启动带来的力冲击。

脉冲信号发生器检定规程范文

脉冲信号发生器检定规程范文(JJG490-93) 本规程适用于新制造、使用中和修理后的XC-13A、XC-14A、XC-16A、XC -19A 等同类型脉冲信号发生器的主要工作特性的检定。 一概述 XC43A、XC-14A、XC-16A、XC-19A等型号的脉冲信号发生器是全晶体化的仪器,具有性能稳定、使用方便、波形失真小、重复频率范围宽、上升沿和下降沿可变或固定等特点,是研究脉冲电路、逻辑电路、集成电路等方面不可缺少的仪器; 二技术要求 1. 2. 上冲〈过冲〉≤5% 预冲≤5% 衰减振荡≤5% 倾斜≤5% 3.可选择正脉冲、正倒置、负脉冲、负倒置四种波形中的任意一种. 4.直流偏移: -1~+1V连续可调. 5.触发输出脉冲 5.1 频率与输出脉冲相同. 5.2 幅度: 小于1.5V〈负脉冲〉. 6.外触发: 具有由外部信号源触发和单次触发两种工作方式. 6.1 频率范围: 10 Hz~50 MHz. 6.2波形:负脉冲. 6.3触发幅度: 以说明书给出指针为准. 7.单次: 在前面板上用手动控制. 三检定条件 (一)坏境条件 8.环境温度: 220±5℃. 9.相对湿度: 45~80%. 10.大气压力: 86~106kpa 11.电源电压: 22OV±2% 50±1 Hz (二)检定用设备 12.检定用设备见表2

四检定项目及检定方法 (一)外观及电性能检查 13.被检脉冲信号发生器不应有影响仪器正常工作及读数的任何机械损伤,各个 旋钮要调节平滑,接触良好,各波段开关跳步清晰. 14.按说明书规定接通电源,经过预热,用双踪宽带示波器进行观察,被检脉冲信 号发生器应能正常工作,所有控制开关及有关旋钮能起控制作用,各输出端均应有输出. 15.将重复频率波段开关置于“外”位置,脉冲输出接到示波器或计数器的输入 端,按下"单次"功能按钮,每按一次在示波器屏幕上或计数器上均能观测到单脉冲或双脉冲[将双脉冲信号发生器的种类开关置于“A+B”时,在频率计上读到的频率值是单脉冲(A或B)状态下的频率值的2倍]其按动次数不得少于10次. (二)工作特性的检定 16.脉冲重复频率〈周期〉的检定本规程对脉冲重复频率〈周期〉的检定,采用 数字频率计法和示波器法均可. 16.1数字频率计法 16.1.1检定连接线路如图1所示. 图1 注:本文凡标有*号者是表示匹配负载为500. 16.1.2将被检脉冲信号发生器的延迟时间置于最小,脉冲宽度于相应位置,被检 脉冲信号发生器的频率微调旋钮顺时针方向或逆时针方向旋到底. 16.1.3将数字频率计功能开关置于"测频"位置,调节数字频率计触发电平,使数 字频率计工作正常.将被检脉冲信号发生器的重复频率分别置于被检 文件位置,记录数字频率计所显示的频率值,此值即为被检脉冲信号发生 器重复频率的实际值.

脉冲频率的选择

脉宽调制(PWM:(Pulse Width Modulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM 信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 [编辑本段] 优点 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 PWM控制技术一直是变频技术的核心技术之一。1964年A.Schonung和H.ste mmler首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。 从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SP WM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍在主导地位,并一直是人们研究的热点。 由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以为为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),

脉冲分频信号产生器.

沈阳航空航天大学 课程设计 (说明书) 脉冲分频信号产生器设计 班级24020103 学号2012040201131 学生姓名郁健 指导教师关庆阳

沈阳航空航天大学 课程设计任务书 课程名称电子技术综合课程设计____ 课程设计题目脉冲分频信号产生器 课程设计的内容及要求: 一、设计说明与技术指标 设计一个脉冲分频信号产生器,技术指标如下: ①能够输出1KHz脉冲信号; ②能够输出10KHz脉冲信号; ③能够输出100Hz脉冲信号; 二、设计要求 1.在选择器件时,应考虑成本。 2.根据技术指标,通过分析计算确定电路和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年 五、按照要求撰写课程设计报告

成绩评定表: 序号评定项目评分成绩 1 设计方案正确,具有可行性,创新性(15分) 2 设计结果可信(例如:系统分析、仿真结果)(15分) 3 态度认真,遵守纪律(15分) 4 设计报告的规范化、参考文献充分(不少于5篇)(25分) 5 答辩(30分) 总分 最终评定成绩(以优、良、中、及格、不及格评定) 指导教师签字: 2015 年01 月14日

一、概述 该脉冲分频信号产生器可以实现10KHZ 、1KHZ 、100HZ 三路频率输出,电路结构相对简单,输出频率相对稳定,且能够有效的实现频率间的转变,具有节能,经济,功能具备的特点。 二、方案论证 设计一个脉冲分频信号产生器,技术指标如下: ①能够输出1KHz 脉冲信号; ②能够输出10KHz 脉冲信号; ③能够输出100Hz 脉冲信号; 方案一: 方案一原理框图如图1所示。 降频 降频 图1 方案一脉冲分频电路的原理框图 方案二: 方案二原理框图如图2所示。 升频 降频 图2 方案二脉冲分频电路的原理框图 由555定时器组成的多谐振荡器产生频率为10KHZ 的脉冲信号 由74LS160组成的十分频电 路 由74LS160组成的十分频电路 输出 1KHZ 输出 100HZ 输出 10KHZ 由555定时器组成的多谐振 荡器产生频率 为1KHZ 的脉冲信号 锁相环升频 74LS160降频 输出10KHZ 输出100HZ 输出1KHZ

PLC脉冲控制步进电机技术

PLC脉冲控制步进电机技术 一、步进电机、脉冲与方向信号 步进电机作为一种常用的电气执行元件,广泛应用于自动化控制领域。步进电机的运转需要配备一个专门的驱动电源,驱动电源的输出受外部的脉冲信号和方向信号控制。每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。脉冲的数量决定了旋转的总角度,脉冲的频率决定了旋转的速度。方向信号决定了旋转的方向。就一个传动速比确定的具体设备而言,无需距离、速度信号反馈环,只需控制脉冲的数量和频率即可控制设备移动部件的移动距离和速度;而方向信号可控制移动的方向。因此,对于那些控制精度要求不是很高的应用场合,用开环方式控制是一种较为简单而又经济的电气控制技术方案。 另外,步进电机的细分运转方式非常实用,尽管其步距角受到机械制造的限制,不能制作得很小,但可以通过电气控制的方式使步进电机的运转由原来的每个整步分成m个小步来完成,以提高设备运行的精度和平稳性。控制步进电机电源的脉冲与方向信号源常用数控系统,但对于一些在运行过程中移动距离和速度均确定的具体设备,采用PLC(可编程控制器)是一种理想的技术方案。 二、控制方案 图1 PLC脉冲控制步进电机系统示意图 在操作面板上设定移动距离、速度和方向,通过PLC的运算产生脉冲、方向信号,控制步进电机的驱动电源,达到对距离、速度、方向控制的目的,见图1。操作面板上的位置旋钮控制移动的距离,速度旋钮控制移动的速度,方向按钮控制移动的方向,启/停按钮控制电机的启动与停止。 在实际系统中,位置与速度往往需要分成几挡,故位置、速度旋钮可选用波段开关,通过对波段开关的不同跳线进行编码,可减少操作面板与PLC的连线数量,同时也减少了PLC的输入点数,节省了成本。一个n刀波段开关的最多挡位可达到2n。在对PLC选型前,应根据下式计算系统的脉冲当量、脉冲频率上限和最大脉冲数量。 根据脉冲频率可以确定PLC高速脉冲输出时需要的频率,根据脉冲数量可以确定PLC的位宽。同时,考虑到系统响应的及时性、可靠性和使用寿命,PLC应选择晶体管输出型。 步进电机细分数的选择以避开电机的共振频率为原则,一般可选择2、5、10、25细分。 编制PLC控制程序时应将传动系统的脉冲当量、反向间隙、步进电机的细分数定义为参数变量,以便现场调整。 三、应用实例

相关文档
最新文档