水质总氮的测定(碱性过硫酸钾消解紫外分光光度法)复习过程

水质总氮的测定(碱性过硫酸钾消解紫外分光光度法)复习过程
水质总氮的测定(碱性过硫酸钾消解紫外分光光度法)复习过程

水质总氮的测定

——碱性过硫酸钾消解紫外分光光度法

1.目的

总氮是地面水,地下水含亚硝酸盐氨、硝酸盐氮、无机铵盐、溶解态氨及在消解条件下碱性溶液中可水解的有机氮及含有悬浮颗粒物中的氮的总和。水体总氮含量是衡量水质的重要指标之一。本方法适用于地面水和地下水含氮总量的测定。

2.测定原理

过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧:K2S2O8 + H2O 2 KHSO4 + [O]

分解出的原子态氧在120~140℃高压水蒸气条件下可将大部分有机氮化合

物及氨氮、亚硝酸盐氮氧化成硝酸盐。以CO(NH

2)

2

代表可溶有机氮合物,各形态

氧化示意式如下:

CO(NH2)2 + 2NaOH + 8[O] 2NaNO3 + 3H2O + CO2

(NH4)2SO4 + 4NaOH + 8[O] 2NaNO3 + Na2SO4 + 6H2O

2NaNO2 + [O] NaNO3

硝酸根离子在紫外线波长220nm有特征性的最大吸收,而在275nm波长则基本没有吸收值。因此,可分别于220和275nm处测出吸收光度。A220及A275按下式求出校正吸光度A:

A=A220-2A275 (1)

按A的值查校准曲线并计算总氮(以NO3-N)含量。

3.试剂

3.1无氮化合物的纯水

3.2氢氧化钠溶液20.0g/L:称取2.0g氢氧化钠(NaOH,A.R),溶于纯水中,

稀释至100mL。

3.3碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8 A.R),另称取15g氢氧

化钠(NaOH,A.R)溶于纯水中并稀释至1000mL,溶液存贮于聚乙烯瓶中最长可保存一周。

3.4盐酸溶液(1+9)HCl (A.R) (1+9)

3.5 硝酸钾标准溶液C N=100mg/L:硝酸钾(KNO3 A.R)在105-110℃烘箱中烘干3小时,于干燥器中冷却后,称取0.7218g溶于纯水中,移至1000mL 容量瓶中,用纯水稀释至标线在0~10℃保存,可稳定六个月。

3.6 硝酸钾标准使用液C N=10mg/L 用C N=100mg/L溶液稀释10倍而得,使用时配制。

3.7 硫酸溶液(1+35):H2SO4(A.R) (1+35)

4.仪器和设备

4.1紫外分光光度计及10nm石英比色皿。

4.2医用手提式蒸气灭菌器或家用压力锅(压力为1.1-1.4kg/cm2),锅内温度相

当于120-124℃。

4.3具玻璃磨口塞比色管,25mL。

4.4纱布和棉线

5 样品

5.1 采样在水样采集后立即放入冰箱中或低于4℃下保存,但不得超过24小时。水样放置时间较长时,可在1000mL水中加入约0.5 mL硫酸(ρ=1.84g/mL),酸化到pH=2,并尽快测定。

5.2 试样的制备

取样品(5.1)用氢氧化钠溶液(3.2)或硫酸溶液(3.7)调节到pH5-9。如果试验不含悬浮物按(6.1.2)步骤测定,试样含有悬浮物则按(6.1.3)步骤测定。

6 分析步骤

6.1 测定

6.1.1 用吸管取10.00ml试样(C N超过0.1mg时可减少取样量并加入纯水至10ml)于比色管中。

6.1.2 试样不含悬浮物时,按下列步骤进行。

a. 加入5ml碱性过硫酸钾溶液(3.3),上塞并用纱布和线包扎紧,以防弹出。

b. 将盛有试样的比色管置于医用高压蒸气灭菌器中,加热,使压力表指针到1.1-1.4kg/cm2,此时温度达120-140℃后开始计时,或将比色管置于家用高压锅中,热至顶压阀吹气时计时,保持半个小时。

c. 冷却至室温,取出比色管。

d. 加盐酸(3.4)1ml,用纯水稀释至标线,混匀。

e. 移取部分溶液至石英比色皿中,在紫外分光光度计上,以纯水作参比,分别在波长220和275nm处测定吸光度,并用(1)式计算出校正吸收度A。

6.1.3 试样含悬浮物时,先按上述6.1.2中a至d步骤进行。然后澄清后,移取上述清液同6.1.2 e步骤测定。

6.2 空白试验

空白试验除以10mL纯水代替样品外,采用与6.1.2完全一致的步骤进行。空白试验的A值不超过0.03。

6.3 校准

6.3.1 校准系列的配置

a. 用分度管向一组比色管分别加入硝酸盐标准溶液(3.6)0.0、0.50、1.00、2.50、

5.00、7.50、10.00mL,加纯水稀释至10.00mL。

b. 按6.1.2 a至e步骤进行测定。

6.4 标准曲线的绘制

标准溶液及空白溶液在220和275nm处测得的吸光值按下列公式计算

A S=A S220-2A S275 (2)

A b=A b220-2A b275 (3)

A r=A s-A b (4)

A S220——标准溶液在220nm波长的吸收光度。

A S275——标准溶液在275nm波长的吸收光度。

A b220——空白(零浓度)溶液在220nm波长的吸收光度。

A b275——空白(零浓度)溶液在275nm波长的吸收光度。

用A值与相应的NO3--N含量(ug)绘制校准曲线或用有相关统计功能的计数器进行相关回归统计。

7. 结果表

按式(1)计算得试样校正吸收光度A在校正曲线上或由计数器相关回归统计中查出相应的总氮ug数,总氮含量C N(mg/L)按下式计算。

C N=m/V (5)

m——试样测出含氮量ug;

V——测定用试样体积,mL。

8. 注意问题

8.1 溶解性有机物对紫外光有较强的吸收,虽使用了双波长测定扣除法以校正,但不同样品其干扰强度和特性不同,“2A275”校正值仅是经验性的,有机物中氮未能完全转化为NO3--N对测定结果有影响也使“2A275”值带有不确定性。样品消化完全者,2A275值接近于空白值。

8.2 溶液中许多阳离子和阴离子对紫外光都有一定的吸收,其中碘离子相对于总氮含量的2.2倍以上,溴离子相对于总氮含量的3.4倍以上有干扰。

8.3 评价标准,无机氮评价标准。总氮与凯氏氮不同样品中NO3--N含量差异较大时其值亦有较大差异。仅列出凯氏氮作评价标准。参考“参考标准6”。9. 思考题

9.1 本方法测定的氮属于水中哪些形态的氮?为什么使用220、275nm紫外光可以定量总氮?

9.2 用紫外分光光度法测定时有哪些干扰因素?如何消除?

复混肥料中总氮含量的测定--蒸馏后滴定法

复混肥料中总氮含量的测定--蒸馏后滴定法 一.目的 确保使用蒸馏滴定法测定肥料中氮、磷、钾含量的方法的正确性与流程的规范化,及测定结果的准确性,从而保证肥料中氮、磷、钾的含量符合相关标准要求。 本标准不适用于含有机物(除尿素、氰氨基化合物外)大于7%的复混肥料。 二.范围 适用于公司内采用蒸馏滴定法对肥料中氮、磷、钾含量的测定 三.参考文件依据 GB/T8572 / HG/T2843 四.原理 在碱性介质中用定氮合金将硝酸根还原,直接蒸馏出氨或在酸性介质中还原硝酸盐成铵盐,在混合催化剂存在下,用浓硫酸消化,将有机态氮或酞胺态氮和氰氨态氮转化为铵盐,从碱性溶液中蒸馏氨。将氨吸收在过量硫酸溶液中,在甲基红一亚甲基蓝混合指示剂存在下,用氢氧化钠标准滴定溶液返滴定。 五.仪器 ①一般实验室仪器 ②消化仪器:1 000 ML圆底蒸馏烧瓶(与蒸馏仪器配套)和梨形玻璃漏斗; ③蒸馏仪器:按GB/T 2441. 1配备; ④防暴沸颗粒或防暴沸装置:后者由一根长约100 mm,直径约5mm玻璃棒连 接在一根长约25 mm聚乙烯管上; ⑤消化加热装置:置于通风橱内的1 500 W电炉,或能在7 min-8 min内使250 mL水从常温至剧烈沸腾的其他形式热源; ⑥蒸馏加热装置:1 000 W^-1 500 W电炉,置于升降台架上,可自由调节高度。 也可使用调温电炉或能够调节供热强度的其他形式热源。 六.试剂 本标准所用试剂和水,在未注明配制方法和规格时,均应符合HG汀2843的要求。 ⑴硫酸; ⑵盐酸; ⑶铬粉:细度小于250 μm; ⑷定氮合金(Cu: 50%,A1:45%,Zn:5%):细度小于850μm; ⑸硫酸钾; ⑹五水硫酸铜; ⑺混合催化剂制备:将1 000 g硫酸钾和50 g五水硫酸铜充分混合,并仔细研磨, ⑻氢氧化钠溶液:400 g/L; ⑼氢氧化钠标准滴定溶液:c (NaOH) =0. 5 mol/L; ⑽硫酸溶液:c(1/2H2S04)=0.5 mol/L或C (1/2 H2S04)=1 mol/L;

266污泥 总氮的测定 碱性过硫酸钾消解紫外分光光度法

污泥总氮的测定碱性过硫酸钾消解紫外分光光度法 1.适用范围 本方法规定了碱性过硫酸钾在120~124℃消解后,用紫外分光光度法测定城市污泥中的总氮。 本方法适用于城市污水处理厂污泥及城市其他污泥中总氮的测定。 本方法可测定污泥中的亚硝酸盐氮、硝酸盐氮、无机铵盐及大部分有机含氮化合物中氮的总和。 本方法污泥消解液的最低检出限为0.04mg/L。 2.方法原理 过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧: K2S2O8 + H2O2KHSO4 + [O] 分解出的原子态氧在120~140℃高压水蒸气条件下可将大部分有机氮化合物及氨氮、亚硝酸盐氮氧化成硝酸盐。以CO(NH2)2代表可溶有机氮合物,各形态氧化示意式如下: CO(NH2)2 + 2NaOH + 8[O]2NaNO3 + 3H2O + CO2 (NH4)2SO4 + 4NaOH + 8[O]2NaNO3 + Na2SO4 + 6H2O 2NaNO2 + [O]NaNO3 硝酸根离子在紫外线波长220nm有特征性的最大吸收,而在275nm波长则基本没有吸收值。因此,可分别于220和275nm处测出吸收光度。A220及A275按下式求出校正吸光度A: A=A220-2A275——————————(1) 按A的值查校准曲线并计算总氮(以NO3-N)含量。 3.试剂和仪器 3.1试剂 3.1.1无氮化合物的纯水 3.1.2氢氧化钠溶液20.0g/L:称取2.0g氢氧化钠(NaOH,A.R),溶于纯水中,稀释至100mL。 3.1.3碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8,A.R),另称取15g氢氧

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

04水质 总氮的测定 碱性过硫酸钾消解分光光度法

水质总氮检测标准操作规程 碱性过硫酸钾消解紫外分光光度法 一、目的 规范水中总氮的碱性过硫酸钾消解紫外分光光度法标准操作规程。 二、适用范围 1、适用于地表水、地下水、工业废水和生活污水中总氮的测定。 2、当样品量为10ml时,本方法的检出限为0.05mg∕L,测定范围为 0.20-7.00mg∕L。 三、责任者 实验室检验人员及负责人。 四、正文 1、术语和定义 总氮:指在规定的条件下,能测定的样品中溶解态氮及悬浮物中氮的总和,包括亚硝酸盐氮、硝酸盐氮、无机铵盐、溶解态氨及大部分有机含氮化合物中的氮。 2、方法原理 在120~124℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测定吸光度A220和A275,按公式(1)计算校正吸光度A,总氮(以N 计)含量与校正吸光度 A 成正比。 A=A220-2 A275 (1) 3、仪器 分析天平、紫外分光光度计、高压蒸汽灭菌器、25ml具塞磨口玻璃比色管、

10mm石英比色皿、实验室常用玻璃仪器等。 4、试剂 4.1、浓盐酸:ρ=1.19g/ml。 4.2、浓硫酸:ρ=1.84g/ml。 4.3、盐酸溶液:(1+9)。 将100ml浓盐酸沿烧杯壁慢慢加入到900ml蒸馏水中,搅拌均匀,冷却备用。 4.4、硫酸溶液:(1+35)。 将10ml浓硫酸沿烧杯壁慢慢加入到350ml蒸馏水中,搅拌均匀,冷却备用。 4.5、氢氧化钠溶液:ρ=200g/L 称取20.0g氢氧化钠溶于少量水中,稀释至100ml。 注:氢氧化钠含氮量应小于0.0005%。 4.6、氢氧化钠溶液:ρ=20g/L 量取ρ=200g/L氢氧化钠溶液10.0ml,用水稀释至100ml。 4.7、碱性过硫酸钾溶液 称取40.0g过硫酸钾溶于600ml水中(可置于50℃水浴中加热至全部溶解);另称取15.0g氢氧化钠溶于300ml水中。待氢氧化钠溶液冷却至室温后,混合两种溶液定容至1000ml,存放于聚乙烯瓶中,可保存一周。 注:氢氧化钠和过硫酸钾含氮量应小于0.0005%。 4.8、硝酸钾标准贮备液:ρ(N)=100mg/L 取硝酸钾(基准试剂或优级纯)在105~110℃下烘干2h,在干燥器中冷却至室温。称取0.7218g硝酸钾溶于适量(约100-200ml)水中,移至1000ml容量瓶中定容,混匀。加入1-2ml三氯甲烷作为保护剂,在0-10℃暗处保存,可稳定6个月。 4.9、硝酸钾标准使用液:ρ(N)=10.0mg/L 量取10.00ml硝酸钾标准贮备液至100ml容量瓶中,用水稀释至标线,混匀,临用现配。 4.10、5%盐酸羟胺溶液 称取5.0g盐酸羟胺溶于少量水中,加水稀释至100ml。

水质指标测定方法 简单版

水中总氮的测定(过硫酸钾氧化紫外分光光度法) (一)主要试剂: 碱性过硫酸钾溶液:称取4g过硫酸钾(K2S208)和1.5g氢氧化钠,溶于无氨水中,稀释至100mL。 1mol/L的HCL :取8.33 mL的浓盐酸稀释至100 mL。 (二)测定步骤: 水样加5mL碱性过硫酸钾溶液,包扎高温消解30min。于消解完全的试样中加入1mL 1mol/L的HCL,加水至刻度,充分混匀后,分别于220nm和275nm波长处测定吸光值,吸光度计算:A=A220nm-2A275nm。 水中总磷的测定(过硫酸钾氧化-钼锑抗比色法) (一)主要试剂: 6.5mol/L钼锑储备液:取180.6ml分析纯浓硫酸,缓缓加入到400ml蒸馏水中,不断搅拌,冷却。加入20g钼酸铵和0.5g酒石酸锑钾,搅拌,待溶液冷却后定容至1000ml。 钼锑抗混合显色剂:取100ml钼锑贮存液,加入1.5g抗坏血酸,此试剂宜现配现用。 5%的过硫酸钾溶液:5g过硫酸钾溶解于水,定容至100ml。 二硝基酚指示剂:称取0.2克2,6-二硝基酚溶于100ml水中。 (二)测定步骤: 水样加4ml 5%的过硫酸钾溶液,包扎高温消解30min。 测定:经消解后的样品加入2,6-二硝基酚指示剂2滴,用氢氧化钠和盐酸调节至微黄色。再加入2.5 ml 6.5mol/L钼锑抗显色剂,定容摇匀,放置30min后,在700nm波长处测量吸光度。 水中氨氮的测定(苯酚-次氯酸钠分光光度法) (一)主要试剂: 1%EDTA溶液:溶解1g EDTA于100ml水中,用浓氢氧化钠将pH调至10。 溶液B:溶解5g苯酚和25mg亚硝酰氰化钠(亚硝酰铁氰化钠)于水中稀释至500毫升,放棕色瓶中,置于冰箱中贮存。 溶液C:溶解2.5g氢氧化钠,18.7 g磷酸氢二钠和15.9g磷酸三钠于水中,加入含有效氯4.3ml次氯酸钠,定溶至500ml,放棕色瓶中,置于冰箱中贮存。 (二)测定步骤: 于抽滤过后的水样中加1ml 1%EDTA,加入5ml B溶液,5ml C溶液,摇匀,定容,置37℃恒温水浴中发色30分钟。在625nm处测定吸光度。 水中硝态氮的测定(紫外分光光度法) 测定方法:于抽滤后的试样中加入1mL 1mol/L的HCL,加水至刻度,充分混匀后,分别于220nm和275nm波长处测定吸光值,吸光度计算:A=A220nm-2A275nm。 水质高锰酸盐指数的测定 (一)试剂配制: 0.1mol/L KMnO4储备液:3.2g高锰酸钾溶解定容至1L。 0.1mol/L的草酸钠储备液: 称取0.6705g经120℃烘干2h并放冷的草酸钠溶解并定

过硫酸钾提纯过程

提纯过程:在1升广口瓶加入约800mL水,50摄氏度水浴锅加热,然后逐渐加入过硫酸钾,直至不能溶解为止,这个过程挺漫长. 然后把完全溶解的饱和溶液放在室温中自然冷却(选用广口瓶有盖,重结晶过程避免引入其他污染),再放进四度冰箱重结晶,建议同时用另一个广口瓶冰一瓶去离子水,重结晶一夜后,倒掉上清液然后用冰好的去离子水清洗几遍,我觉得这样效果更好(重结晶的晶体会结成一块沉在瓶底,但其实结构很松散,用钢勺什么的弄两下就离散开了,然后再清洗)。我一般都重结晶两次。 洗净后倒掉上清液,然后放入50摄氏度烘箱烘干即可(用广口瓶烘干比较慢,可以转移到烧杯)。 上次结晶了约170克回收了约60克,还比较满意,比买国外的便宜多了! 2、其他药品 去年有大人说氢氧化钠以及盐酸都有影响,但是我都是用的一般分析纯药品,没有造成特别大的影响,应该没问题。 3、消解过程 我选择消解温度为124摄氏度左右,有大人说要避免跟生物实验室公用灭菌锅,会混入污染,不过遗憾的是我们实验室就是生物实验室-_-|| 但是我这半年做的基本没啥问题,消解的时候比色管盖严,用布和绳子把盖子扎严实,基本问题不大。 4、测试 测试的时候要加入1ml 1:9盐酸,我觉得盐酸跟过硫酸钾的反应可能需要一段时间,所以我都是加入盐酸后过几个小时再测试,结果很稳定。 5、结果 现在测试的空白220与275相减后基本都在0.01-0.02(220在0.04 275在0.01左右),对于我的实验精度已经足够了,标准曲线r=0.9997,不算特别好,但是跟去年空白吸光度4相比,我已经非常非常满足了呵呵 6、其他 实验过程中加碱性过硫酸钾的时候一定要避免加在瓶口处,另外消解前混匀样品千万不要倒转比色管,否则消解后会导致比色管打不开,惨痛教训!建议使用50ml比色管,容易混匀! 另外,测试过程中发现比色管的质量影响实验结果!我在三年前买的比色管非常好用,但是不够,所以又买了一些新的,就发现新的测试数据偏大,而且没用几次,新比色管的盖子就出现了裂纹,有些在开盖子的时候直接就裂掉了,郁闷!唉,产品质量下降太多了!都是一个牌子的-_-|| 3、消解的控制 消解时,GB11894—89中要求达到规定温度压力后即开始计时,而我们的经验是,达到规定温度压力后应当先放气使压力表指针回零,再次达到规定温度压力后再计时。或者直接打开放气阀加热一段时间,待蒸气灭菌器内的冷空气被彻底赶尽、放出热蒸气后再关闭放气阀消解,并且将消解温度控制在123℃,同时将消解时间延长至1小时,使得过硫酸钾消解完全,这样测定结果最为理想。

水质在线监测仪器发展现状(DOC)

水质在线监测仪器发展现状 水质在线监测仪器作为水质在线自动监测系统的核心,运用现代传感器技术、自动测量技术、自动控制技术等,采用化学法、电化学法、光谱法等分析方法,能对水质参数进行实时连续在线测量和分析。水质在线监测仪器主要监测对象有:化学需氧量(COD)、氨氮、总氮、总有机碳(TOC)、总磷、锑、砷、铜、汞、铬、金属离子、pH值、电导率、浊度、溶解氧等。 1 COD在线监测仪器发展现状 化学需氧量(COD)是指水体中易被强氧化剂氧化的还原性物质所消耗的氧化剂的量,以氧的mg/L来表示,反映了水体中受还原性物质污染的程度,这个指标是为了了解水中的污染物将要消耗多少氧。 1.1 COD在线监测仪器的技术原理 目前COD在线监测仪器的主要技术原理有6种: 1)重铬酸盐法-光度比色法; 2)重铬酸盐法-库仑滴定法; 3)重铬酸盐法-氧化还原滴定法; 4)电化学氧化法-氢氧基及臭氧(混合氧化剂)氧化法; 5)电化学氧化法-臭氧氧化法; 6)紫外吸收法(UV法)。 为便于比较,可将以上6种技术原理归为三类:重铬酸盐法、电化学氧化法和紫外吸收法(UV法)。 1.1.1 重铬酸盐法 1)重铬酸盐法根据测得数值的方法不同分为光度比色法、库仑滴定法、氧化还原滴定法。通常在一定的温度下,在强酸溶液中用一定量的重铬酸钾氧化水样中还原性物质,经过高温消解后,Cr6+被水中还原性物质还原为Cr3+。再使用分光光度计、库仑滴定、氧化还原等方法测得数值,利用该数值与试样中氧化还原物质浓度的关系进行定量分析。

2)该类是国家推荐使用的方法,有测量准确、测量范围广、技术成熟等优点。 3)但该类仪器也存在以下问题:①测量时间相对较长,一旦水质突变,有可能无法及时监测;②通常采用加温或加压的办法提高消解速度,增加了设备的复杂性,易故障;③产生强腐蚀性、含有毒的重金属离子废液,易腐蚀管路,同时会产生二次污染。 1.1.2 电化学氧化法 1)电化学氧化法根据所使用的氧化剂不同分为氢氧基及臭氧(混合氧化剂)氧化法和臭氧氧化法。电化学氧化法采用三电极设计,包括工作电极、辅助电极和参比电极。工作电极(即阳极):该电极头表面镀PbO2,接电源正极,发生的是氧化还原反应。在一定的工作电压下,溶液中的OH-在PbO2的表面放电产生OH 基,具有很强的氧化性。辅助电极(即阴极):该电极也是铂电极,接电源负极,发生的是还原反应。信号电流通过阴、阳两极。参比电极:该电极独立于信号电流以外,自身电位稳定,作为工作电极的电位参照,当水样与电解液定量进入测量池时,有机物被工作电极表面所产生的OH基所氧化,而氧化过程所消耗的电流大小与水样的COD值的大小成线性关系。只要将氧化所消耗的电流信号通过检测、放大与处理就可知与水样浓度相对的COD值。 2)电化学氧化法测量时间较短,运行可靠,OH基通常能将有机物100%氧化,不存在选择性问题,测量范围较广,适用于各种场合的废水。采用该原理的在线监测仪器结构相对简单,由于是链式反应,基本上不消耗电解液。 3)电化学氧化法不属于国标或推荐方法,在应用时,需要将其分析结果与国标方法进行比对试验并进行适当的校正。同时电化学氧化法的在线监测仪器需要添加温度补偿。 1.1.3 紫外吸收法(UV法) 1)UV是Ultraviolet Ray(紫外线)的简称,UV计是应用紫外线吸光度原理,用双波长吸光度测定法测量水中的有机污染物浓度的一种自动在线监测仪器。由于各种有机物对254nm的紫外光大多有吸收,通过测定污水对UV254的吸收程度得到UV吸收值,在通过UV值与COD之间的线性关系式就可以自动换算出所测水样的COD值。同时UV计利用波长为550nm的参比光可以自动校正浊度、电源的波动、元器件老化等因素对测量结果的干扰,从而提高测量精度。 2)UV法不用试剂,不用取样,对样品条件没有任何限制,不需要样品的预处理,因此结构简单,故障率低。适用于市政污水宏观监测、水质变化比较稳定的环境,对水中的一大类芳香族有机物和带双键有机物尤为灵敏,对苯类、苯环

废水中总氮的测定

过硫酸钾氧化紫外分光光度法测废水中总氮 1 方法原理 在60℃以上的溶液中,过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O---2KHSO4+1/2O2 KHSO4---K++HSO4- HSO4----H++SO42- 加入氢氧化钠中和掉氢离子,使过硫酸钾完全分解。 在120-140℃的碱性介质条件下,用过硫酸钾做氧化剂。不仅可以将水样中的氨氮和亚硝酸盐氧化为硝酸盐,同时将水样中大部分有机氮也氧化为硝酸盐。硝酸根离子对220nm波长光有特征吸收,用标准溶液定量。 溶解性的有机物在220nm处也有吸收,故根据实践,引入一个经验校正值。该校正值是在275nm处测得吸光度的2倍2A275。在220nm 处的吸光值减去经验校正值即为硝酸盐离子的净吸光值(A=A220-2A275)。 2 干扰及消除 (1)水样中有六价铬及三价铬时,加入5%盐酸羟胺溶液1-2ml消除。(2)碳酸盐和碳酸氢盐对测定的影响,在加入一定盐酸后可消除。 3 方法的测定范围 适用于地面水,测定范围为0.05-4mg/l。 4 仪器 (1)紫外分光光度计 (2)压力锅,压力1.1-1.3kg/cm2,相应的温度为120-124℃ (3)25ml具塞比色管。每组3个,2各组作曲线16只,共38个。(4)移液管、容量瓶等玻璃仪器。 5 试剂

1)无氨水:用新制备的去离子水。或每升水中加入0.1ml浓硫酸,蒸馏。 2)20%的氢氧化钠:称取20g氢氧化钠,于无氨水中至100ml。(调pH) 3)碱性过硫酸钾溶液:称取40g过硫酸钾(K2S2O8),15g氢氧化钠,溶于无氨水中,至1000ml。存于塑料瓶中,可存一周。 4)1+9盐酸。 5)硝酸钾标准溶液: (1)储备液:称取0.7218g经105-110℃烘干4小时的优级纯硝酸钾(KNO3)溶于无氨水中,移至1000ml容量瓶定容。此溶液为100ug/ml 硝酸盐氮。加入2ml三氯甲烷为保护剂,稳定6个月。 (2)使用液:将储备液稀释10倍。取10ml稀释至100ml,含硝酸盐氮10ug/ml 6 步骤 6.1 校准曲线绘制(2个组) (1)分别吸取0、0.5、1.00、2.00、3.00、5.00、7.00、8.00ml硝酸钾标准使用液于25ml比色管中,用无氨水稀释至10ml标线。 (2)加入5ml碱性过硫酸钾溶液,塞紧磨口塞,用纱布和纱绳裹紧管塞,以防溅出。 (3)将比色管置于压力锅中,升温至120-124℃(或顶压阀放气时)开始计时,加热0.5h。 (4)自然冷却,开阀放气,移去外盖,取出比色管冷至室温。(5)加入(1+9)盐酸1ml,用无氨水稀释至25ml标线。 (6)在紫外分光光度计上,以无氨水作参比,用10mm比色皿分别在220nm和275nm波长处测定吸光度,用校正的吸光度(A=A220-2 A275)绘校准曲线。 6.2 样品测定

COD、总氮、氨氮、硝氮测定方法

重铬酸钾法测定COD 一、方法的适用范围:用0.25mol/L的重铬酸钾溶液可测定大于50mg/L的Cod 值,未经稀释的水样的测定上限是700mg/L。用0.025mol/L的重铬酸钾溶液可测定5-50mg/L的Cod值。 二、仪器: 1、加热管、配套冷凝管 2、COD恒温加热器JK205-A 3、250ML锥形瓶、20mL移液管 4、50Ml酸式滴定管 三、试剂: 1、重铬酸钾标准溶液(0.25Mol/L):称取预先在120°烘干2H的基准或优级 纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。 2、试亚铁灵指示液:称取1.458g邻菲罗啉(C12H8N2·H2O),0.695g硫酸亚 铁(FeSO4·7H2O)溶于水中,稀释至100ml,贮于棕色瓶中。 3、硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O]标准溶液(约0.1mol/L):称取39.5g硫 酸亚铁铵溶于水中,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml 容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。注:标定方法:于空白试验滴定结束后的溶液中,准确加入10.00ml、0.25mol/l 。重铬酸钾溶液,混匀,用硫酸亚铁铵标准液标定,记录消耗的标准液的体积V 标4、硫酸-硫酸银溶液:于2500ml浓硫酸中加入25g硫酸银。放置1-2d,使其 溶解。(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。 5、硫酸汞:粉末 四、实验步骤: 1、取约0.4g硫酸汞于加热管中,用移液管取20.00ml水样于加热管中,加入10.00ml重铬酸钾标准溶液,加沸石几粒,晃动均匀,并用纯净水作空白样。 2、于加热管中加入30ml的硫酸-硫酸银溶液,盖上冷凝管,放于恒温加热器上,179度加热2h(待温度上升为179°后开始计时2h)。 3、待冷却后加入90ml纯净水(可先用少许纯净水由冷凝管上部缓缓加入,冲洗管壁后移入锥形瓶中,并用剩余纯净水冲洗加热管),移入锥形瓶内,加3滴试亚铁灵指示剂,用硫酸亚铁铵滴定,至溶液由黄绿色变为酒红色,记录消耗的体积,V空白、V1、V2、、、、 4、用滴定后的空白样加入10mL的重铬酸钾,滴定至变色,记录数据V标,用来标定硫酸亚铁铵标准溶液的浓度。 注:1、水样的COD大体值在70-600,用0.25mol/L的重铬酸钾,0.01mol/L的硫酸亚铁铵滴定,CDO值为200-300时,消化反应进行最完全,一般是根据水样的大体COD值稀释到COD约为200-300左右,取稀释后的水样来测。 2、COD值低于50mg/L,用0.025mol/L重铬酸钾,0.001mol/L的硫酸亚铁铵滴定。 3、关于加热是指加热到179度后恒温加热2h。 5、计算:硫酸亚铁铵标准溶液的浓度 C标=0.25(或0.025)×10/V标 COD=(V空白-V水样)×C标×8×1000/V水样

TN-(过硫酸钾氧化紫外分光光度法)

总氮(TN)测定方法 (过硫酸钾氧化—紫外分光光度法) 一、实验原理 在120℃~124℃的碱性基质条件下,用过硫酸钾作氧化剂,不仅可将水样中氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后,用紫外分光光度法分别于波长220nm与275nm出测定其吸光度,按下式计算硝酸盐氮的吸光度,A=A220-2A275,从而算出总氮含量,其摩尔吸光度系数为1.47×103。 二、方法适用范围 方法检测下限为0.05mg/L,测定上限为4mg/L。 三、试剂 1.碱性过硫酸钾溶液:40g K2S2O8+15NaOH →溶于无氨水中→稀释至 1000ml定容即可。溶液放在聚乙烯瓶内,可贮存一周。 2.1+9盐酸 3.硝酸钾标准溶液: (1)硝酸钾标贮备液:0.7218g以烘干4小时(105~110℃)硝酸钾溶 于无氨水中,定容至1000ml,加入2ml三氯甲烷作为保护剂,可至少可 稳定6个月。此溶液含硝酸盐氮100ug/ml。 (2)硝酸钾标准使用液:将贮备液稀释10倍即可。此溶液含硝酸盐氮 10ug/ml。 四、实验步骤 (一)标准曲线的绘制 1.分别吸取0、0.5、1.00、2.00、3.00、5.00、7.00、8.00ml的硝酸钾标准使用溶液于25ml比色管中,用无氨水稀释至10ml标线。 2.加入5ml碱性过硫酸钾溶液,塞紧磨口塞,用纱布及纱绳裹紧管塞,以防蹦出。 3.比色管置于压力蒸汽消毒器中,加热0.5h,放气使压力指针回零。然后升温至120~124℃开始计时。 4.自然冷却,开阀放气,移去外盖。取出比色管并冷却至室温。 5.加入1+9盐酸1ml,用无氨水稀释至25ml标线。 6.在紫外分光光度计上,以新鲜无氨水作参比,用10mm石英比色皿分别在220nm及275nm波长处测定吸光度。用校正的吸光度绘制标准曲线。 (二)样品的测定步骤

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

水中总氮的测定(标准操作规程作业指导书)

1.适用范围 本测定规程规定了碱性过硫酸钾消解紫外分光光度法测定水中的总氮。 当样品量为10ml时,本方法的检出限为0.05mg/L,测定范围为0.20~7.00mg/L。2.测定原理 在120-124℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测定吸光度A220和A275,按下面公示计算校正吸光度A,总氮(以N计)含量与校正吸光度A成正比。 A=A220-2A275 3.仪器设备 3.1 紫外分光光度计:配有10mm石英比色皿。 3.2高压蒸汽灭菌器:最高工作压力不低于1.1~1.4kg/cm2,;最高工作温度不低 于120~124℃。 3.3玻璃具塞比色管:25ml。 3.4 分析天平:精度0.01g。 3.5一般实验室常用仪器和设备。 4.试剂 除另有说明,分析时均使用符合国家标准的的分析纯试剂,试验用水为蒸馏水。 4.1 蒸馏水。 4.2 碱性过硫酸钾溶液:称取10.0g过硫酸钾(进口试剂)溶于150ml水中(可置于50℃水浴中加热至全部溶解);另称取3.75g氢氧化钠溶于75m水中。待氢氧化钠溶液温度冷却至室温后,混合两种溶液定容至250ml,存放于聚乙烯瓶中。可保存一周。 4.3 (1+9)盐酸溶液:取100ml浓度为1.19g/ml的盐酸于900ml蒸馏水中混匀。 4.4 (200g/L)氢氧化钠溶液:称取20.0g氢氧化钠溶于少量水中,用水稀释至100ml。 4.5 (20g/L)氢氧化钠溶液:取200g/L氢氧化钠溶液10.0 ml,用水稀释至100ml。 4.6 浓硫酸:ρ(H2SO4)=1.84g/ml

过硫酸钾重结晶

过硫酸钾重结晶 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1、过硫酸钾提纯 我觉得这个方法测总氮的主要问题就是过硫酸钾含氮去年我测试的时候,吸光度甚至达到了4 -_-|| 现在想想真是太恐怖了 听说国外的过硫酸钾没问题但是实在太贵,另外我也不是完全确定肯定是过硫酸钾的问题,所以我选择重结晶提纯过硫酸钾(英明阿~~呵呵自美下) 提纯过程:在1升广口瓶加入约800mL水,50摄氏度水浴锅加热,然后逐渐加入过硫酸钾,直至不能溶解为止,这个过程挺漫长-_-|| 然后把完全溶解的饱和溶液放在室温中自然冷却(选用广口瓶有盖,重结晶过程避免引入其他污染),再放进四度冰箱重结晶,建议同时用另一个广口瓶冰一瓶去离子水,重结晶一夜后,倒掉上清液然后用冰好的去离子水清洗几遍,我觉得这样效果更好(重结晶的晶体会结成一块沉在瓶底,但其实结构很松散,用钢勺什么的弄两下就离散开了,然后再清洗)。我一般都重结晶两次。 洗净后倒掉上清液,然后放入50摄氏度烘箱烘干即可(用广口瓶烘干比较慢,可以转移到烧杯)。 上次结晶了约170克回收了约60克,还比较满意,比买国外的便宜多了! 2、其他药品 去年有大人说氢氧化钠以及盐酸都有影响,但是我都是用的一般分析纯药品,没有造成特别大的影响,应该没问题。 3、消解过程 我选择消解温度为124摄氏度左右,有大人说要避免跟生物实验室公用灭菌锅,会混入污染,不过遗憾的是我们实验室就是生物实验室-_-|| 但是我这半年做的基本没啥问题,消解的时候比色管盖严,用布和绳子把盖子扎严实,基本问题不大。 4、测试 测试的时候要加入1ml 1:9盐酸,我觉得盐酸跟过硫酸钾的反应可能需要一段时间,所以我都是加入盐酸后过几个小时再测试,结果很稳定。 5、结果 现在测试的空白220与275相减后基本都在0.01-0.02(220在0.04 275在0.01左右),对于我的实验精度已经足够了,标准曲线r=0.9997,不算特别好,但是跟去年空白吸光度4相比,我已经非常非常满足了呵呵 6、其他 实验过程中加碱性过硫酸钾的时候一定要避免加在瓶口处,另外消解前混匀样品千万不要倒转比色管,否则消解后会导致比色管打不开,惨痛教训!建议使用50ml比色管,容易混匀! 另外,测试过程中发现比色管的质量影响实验结果!我在三年前买的比色管非常好用,但是不够,所以又买了一些新的,就发现新的测试数据偏大,而且没用几次,新比色管的盖子就出现了裂纹,有些在开盖子的时候直接就裂掉了,郁闷!唉,产品质量下降太多了!

有机肥料总氮含量的测定蒸馏后滴定法

FNCPFL0188 有机肥料 总氮含量的测定 蒸馏后滴定法 F_NCP_FL_0188 有机肥料-总氮含量的测定-蒸馏后滴定法 1 范围 本方法适用于非泥质有机肥料中全氮含量的测定。 2 原理 有机肥料中的有机氮,经硫酸-过氧化氢消煮,转化为铵态氮。碱化后蒸馏出来的氨用硼酸溶液吸收,以酸标准滴定溶液滴定,计算样品中全氮含量。 3 试剂 3.1 硫酸, ρ约1.84g/mL 3.2 过氧化氢,质量分数为30% 3.3 硼酸溶液,20g/L 称取20g 硼酸溶于1L 约60℃热水中,冷却后再用稀碱在酸度计上调节溶液pH4.5。 3.4 氢氧化钠,400g/L 3.5 定氮混合指示剂溶液 称取0.5g 溴甲酚绿和0.1g 甲基红溶于100mL95%(体积分数)乙醇中。 3.6 甲基红指示剂溶液,1g/L 称取0.10g 甲基红,溶于95%(体积分数)乙醇,用95%(体积分数)乙醇稀释至100mL 。 3.7 硫酸标准滴定溶液,c (1/2H 2SO 4)=0.05mol/L 3.7.1 配制 量取1.5mL 硫酸(ρ约1.84 g/mL )慢慢注入盛有400 mL 水的600mL 烧杯内,混匀。冷却后转移至1L 容量瓶中,用水稀释至刻度,混匀。贮存于密闭的玻璃瓶内。 3.7.2 标定 称取已在250℃干燥过4h 的基准无水碳酸钠0.11g ±0.001g (准确至0.0001g ),置于250mL 锥形瓶中,加50mL 水溶解,再加2滴甲基红指示剂溶液,用硫酸溶液滴定至红色刚出现,小心煮沸溶液至红色褪去,冷却至室温。继续滴定、煮沸、冷却,直至刚出现的微红色在再加热时不褪色为止。 3.7.3 计算 硫酸标准滴定溶液浓度按下式计算: V m c ×=05299.0)SO 1/2H (42 式中: c (1/2H 2SO 4) ——硫酸标准滴定溶液之物质的量浓度,mol/L ; m ——称取的无水碳酸钠质量,g ; V ——滴定用去硫酸溶液实际体积,mL ; 0.05299——与1.00mL 硫酸标准滴定溶液[c (1/2H 2SO 4)=1.000mol/L]相当的以克表示的无水碳酸钠的质量。 计算结果取四位有效数字。 3.7.4 精密度 做五次平行测定,取平行测定的算术平均值为测定结果。 五次平行测定的极差,应小于0.000200 mol/L 。 3.7.5 稳定性 硫酸标准滴定溶液每月重新标定一次。 4 仪器设备 通常实验室用仪器和

碱性过硫酸钾-总氮测试方法经验

1、过硫酸钾提纯 我觉得这个方法测总氮的主要问题就是过硫酸钾含氮去年我测试的时候,吸光度甚至达到了4 -_-|| 现在想想真是太恐怖了 听说国外的过硫酸钾没问题但是实在太贵,另外我也不是完全确定肯定是过硫酸钾的问题,所以我选择重结晶提纯过硫酸钾(英明阿~~呵呵自美下) 提纯过程:在1升广口瓶加入约800mL水,50摄氏度水浴锅加热,然后逐渐加入过硫酸钾,直至不能溶解为止,这个过程挺漫长-_-|| 然后把完全溶解的饱和溶液放在室温中自然冷却(选用广口瓶有盖,重结晶过程避免引入其他污染),再放进四度冰箱重结晶,建议同时用另一个广口瓶冰一瓶去离子水,重结晶一夜后,倒掉上清液然后用冰好的去离子水清洗几遍,我觉得这样效果更好(重结晶的晶体会结成一块沉在瓶底,但其实结构很松散,用钢勺什么的弄两下就离散开了,然后再清洗)。我一般都重结晶两次。 洗净后倒掉上清液,然后放入50摄氏度烘箱烘干即可(用广口瓶烘干比较慢,可以转移到烧杯)。 上次结晶了约170克回收了约60克,还比较满意,比买国外的便宜多了! 2、其他药品 去年有大人说氢氧化钠以及盐酸都有影响,但是我都是用的一般分析纯药品,没有造成特别大的影响,应该没问题。 3、消解过程 我选择消解温度为124摄氏度左右,有大人说要避免跟生物实验室公用灭菌锅,会混入污染,不过遗憾的是我们实验室就是生物实验室-_-|| 但是我这半年做的基本没啥问题,消解的时候比色管盖严,用布和绳子把盖子扎严实,基本问题不大。 4、测试 测试的时候要加入1ml 1:9盐酸,我觉得盐酸跟过硫酸钾的反应可能需要一段时间,所以我都是加入盐酸后过几个小时再测试,结果很稳定。 5、结果 现在测试的空白220与275相减后基本都在0.01-0.02(220在0.04 275在0.01左右),对于我的实验精度已经足够了,标准曲线r=0.9997,不算特别好,但是跟去年空白吸光度4相比,我已经非常非常满足了呵呵 6、其他 实验过程中加碱性过硫酸钾的时候一定要避免加在瓶口处,另外消解前混匀样品千万不要倒转比色管,否则消解后会导致比色管打不开,惨痛教训!建议使用50ml比色管,容易混匀! 另外,测试过程中发现比色管的质量影响实验结果!我在三年前买的比色管非常好用,但是不够,所以又买了一些新的,就发现新的测试数据偏大,而且没用几次,新比色管的盖子就出现了裂纹,有些在开盖子的时候直接就裂掉了,郁闷!唉,产品质量下降太多了!都是一个牌子的-_-||

(完整word版)铅水质自动在线监测仪技术要求和检测方法作业指导书

ZY 环境保护部环境监测仪器质量监督检验中心 作业指导书 HJC-ZY62-2014 铅水质自动在线监测仪技术要求和 检测方法作业指导书 参考《铅水质自动在线监测仪技术要求和检测方法(送审稿)》 自2014年03月01日起实施编写:贺鹏审核:王强批准:杨凯

1、适用范围 本作业指导书规定了铅水质自动在线监测仪的技术要求、性能指标及检测方法。针对应用于不同场合的铅水质自动在线监测仪(以下简称“仪器”),规定了两型仪器的检测范围。 I型仪器的检测范围为:(0.005~0.2)mg/L,??型仪器的检测范围为:(0.2~2)mg/L。 2、规范性引用文件 本作业指导书内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。 GB 4208 外壳防护等级(IP代码) GB/T 13306 标牌 HJ/T 212 污染源在线自动监控(监测)系统数据传输标准 3、术语和定义 下列术语和定义适用于本标准。 3.1 标样核查check with standard solution 仪器测量标准溶液,判定测量结果的准确性。 3.2 定量下限limit of quantification 在满足示值误差要求的前提下仪器能够测定待测物质的最小浓度。 3.3 记忆效应memory effect 仪器完成某一标准溶液或水样测量后对下一个测量结果的影响程度。 3.4 标样加入试验回收率recovery 仪器分别测量加入一定浓度的标准溶液前后的实际水样,计算加入标准浓液后测定值的增加量相对于理论加入量的百分率。 3.5 零点漂移zero drift 在未对仪器进行计划外的人工维护和校准的前提下,按规定周期连续测量浓度值为检

水质总氮的测定

水质总氮的测定 ——碱性过硫酸钾消解紫外分光光度法 1 目的 1.1 了解碱性过硫酸钾消解紫外分光光度法测定总氮的原理 1.2 掌握水样消解的方法 1.3 了解总氮的来源 1.4 掌握紫外光度计的使用 1.5 掌握工作曲线的制作方法,区别工作曲线与标准曲线。 2 测定原理 本方法适用于地面水,地下水含亚硝酸盐氮、硝酸盐氮无机铵盐、溶解态氨及在消解条件下碱性溶液中可水解的有机氮的总和。水体总氮含量是衡量水质的重要指标之一。 过硫酸钾是强氧化剂,在60℃以上水溶液中可进行如下分解产生原子态氧: K2S2O8+H2O 2KHSO4+[O]

分解出的原子态氧在120—140℃高压水蒸气条件下可将大部分有机氮华合物及氨氮、亚硝酸盐氮氧化成硝酸盐。以CO(NH2)2代表可溶有机氮合物,各形态氮氧化示意式如下:CO(NH2)2+2HaOH+8[O]→2NaNO3+3H2O+CO2 (NH4)2SO4+4NaOH+8[O] 2NaNO3+Na2SO4+6H2O NaNO2+[O] →NaNO3 硝酸根离子在紫外线波长220nm有特征性的量大吸收,而在275nm波长则基本没有吸收值。因此,可分别于220和275nm处测出吸光度。A220及A275按下式求出校正吸光度A:A= A220—2A275 (1) 按A的值扣除空白后用校准曲线计算总氮(以NO3——N计)含量。 3 试剂 3.1 无氮化合物的纯水 3.2 氢氧化钠溶液20.0g/L: 称取2.0氢氧化物(NaOH A.R),溶于纯水中,稀释至100ml。 3.3 碱性过硫酸钾溶液 称取40g过硫酸钾(K2S208 A.R),另称取15g氢氧化钠(NaOH A.R)溶于纯水中并稀释至1000ml,溶液贮存于聚乙烯瓶中最长可保存一周。 3.4 盐酸溶液(1+9) 量取1份HCl(A.R)与9份水混合均匀。 3.5 硝酸钾标准溶液(以计),100mg/L:NNO3 硝酸钾(KNO3 ,A.R)在105—110℃烘箱中烘干3h,于干燥器中冷却后,称取0.7218g 溶于纯水中,移至1000ml溶量瓶中,用纯水稀释至标线在0~10℃保存。可稳定六个月。 3.6 硝酸钾标准使用溶液(以计),10.0mg/L NNO3 用硝酸钾标准溶液(3.5)稀释10倍而得,使用时配制。 3.7 硫酸溶液(H2SO4,A.R)ρ=1.84 3.8 硫酸,(1+35) 1体积硫酸(3.7)与35体积水混合均匀。 4 仪器和设备 4.1 紫外分光光度计及10mm石英化色皿。 4.2 医用手提式蒸气灭菌器或家用压力锅(压力为1.1—1.4kg/cm2),锅内温度相当于120—140℃。 4.3 具玻璃磨口塞比色管,25ml。

水质在线检测教程

一水质监测分析方法 1 COD cr 定义:是指水体中易被强氧化剂氧化的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。 意义:测COD是为了了解水中的污染物将要消耗多少氧. 水中的还原性物质:有机物、亚硝酸盐、亚铁盐、硫化物等. 测量原理:在强酸性溶液中,用一定量的K2Cr2O7氧化水样中还原性物质,过量的K2Cr2O7以试亚铁灵作指示剂,用(NH4)2Fe(SO4)2`6H2O 回滴(黄-蓝-红褐色即为终点).根据(NH4)2Fe(SO4)2`6H2O的用量算出水中还原性物质消耗氧的量. 测量过程中一般以Ag2SO4作为催化剂,HgSO4掩蔽CL-干扰. 公式: COD cr(o2,mg/L,)=(V0-V1).C×8×1000/V 2 NH3-N 定义:水容易中的NH3-N是以游离氨或离子氨形式存在的氮. 氮的种类:硝酸盐氮、亚硝酸盐氮、NH3-N、和有机氮. 意义:鱼类对非离子氨比较敏感,为保护淡水水生物,水中非离子<0.02 mg/L. 实验室测量方法:①纳氏试剂光度法②水杨酸-次氯酸盐比色法

3 TN:指水中可溶性及悬浮颗粒中的含氮量 测定方法: 碱性过硫酸钾消解紫外分光光度法 原理:在水样中加过硫酸钾并高温消解,然后在220nm紫外光处测量吸光度,通过吸光度计算TN浓度的方法. 4 TP:P几乎都以各种磷酸盐的形式存在 测定TP的意义:防止水质”富营养化” 检测分析方法:第一步可由氧化剂K2S2O8将水样中不同形态的P转化为磷酸盐;第二步测定正磷酸,从而求的TP含量. 测定方法:K2S2O8-钼蓝法 ①K2S2O8消解 原理:K2S2O8溶液在高压釜内经120℃加热,产生如下反应: K2S2O8+H2O→2KHSO4+?O2 从而将水中存在的有机P、无机P和悬浮P氧化成正磷酸. ②钼蓝分光光度法 方法原理:在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常即称磷钼蓝. 保存:由于磷酸盐可能吸附于塑料瓶壁上,故不可用塑料瓶储存,所有

相关文档
最新文档