基于MATLAB的光伏发电研究及其仿真

基于MATLAB的光伏发电研究及其仿真
基于MATLAB的光伏发电研究及其仿真

基于MATLAB的光伏发电研究及其仿真

摘要:近些年来,随着社会生产的发展,对新能源光伏产业的要求越来越大。本文针对如何提高太阳能光伏发电系统的转换效率,利用MATLAB建模仿真部分对最大功率点跟踪(MPPT)的控制器进行了研究。论文分析了常用的蓄电池充电控制方法、光伏电池的特性及其最大功率点跟踪的原理和方法。通过MATLAB软件对不同环境下的光伏电池输出特性进行了建模、仿真。分析了最大功率点跟踪的工作原理,介绍了常用的最大功率点跟踪方法,并在此基础上提出了一种新的扰动观察法。最后,通过比较三种常用的DC/DC变换器的工作原理,提出利用BOOST型DC-DC变换器实现转换,对参数进行分析后建立了BOOST型DC/DC变换器的仿真模型。

关键词:太阳能光伏发电MATLAB仿真最大功率点跟踪Boost型DC-DC变换器

目录

摘要 (Ⅰ)

1课题背景 (2)

1.1能源与环境危机 (2)

1.1.1能源 (2)

1.1.2环境 (2)

1.2太阳能光伏发电技术发展简介 (2)

1.3太阳能光伏发电利用的优势 (3)

1.4光伏发电系统的分类级组成 (4)

1.5国内外研究产业现状及规划 (6)

2光伏发电系统 (7)

2.1光伏发电系统介绍 (7)

2.2 太阳能光伏发电系统的应用 (8)

2.2.1屋顶光伏发电系统 (8)

2.2.2户用光伏发电系统、小型光伏电站 (8)

2.2.3大型并网光伏发电系统 (9)

2.3带有最大功率跟踪功能的光伏发电系统的基本组成 (9)

3光伏阵列特性及其仿真模型的研究 (10)

3.1太阳能电池的等效电路分析 (10)

3.2电池板matlab仿真 (12)

3.3 蓄电池充电方法 (12)

4新型变步长MPPT控制方法研究 (15)

4.1 MPPT 原理研究 (15)

4.1.1MPPT (15)

4.1.2基于Boost拓扑的MPPT原理 (16)

4.2常见的两种MPPT控制技术 (18)

4.2.1扰动观察法 (19)

4.2.2电导增量法 (21)

5光伏充、放电控制器的硬、软件设计 (25)

5.1控制器的整体设计及预期技术指标 (25)

5.2 Boost电路实现光伏阵列MPPT的仿真模型 (26)

5.3软件设计 (26)

参考文献 (34)

致谢 (35)

1 课题背景

1.1能源与环境危机

1.1.1 能源

能源成为了新世纪发展的主要动力,他在经济发展中扮演着很重要的角色,能源的多少关系着一个国家的经济安全和国家安全。在上一个世纪中,煤、石油、天然气等成为最为普遍的传统能源,而在当时,人类还对能源影响环境之类问题的严重性没有给予足够的重视,由此导致了温室气体的急剧增加,气候异常,环境污染增多等,严重影响了人类的生存环境和日常生活质量。根据统计,我国在能源蕴藏量上位居世界前列,但同时也是目前世界第二大能源生产国和消费国。中国在能源开发利用方面呈现出一些主要特点:

(1)煤炭成为主要能源之一,他的可再性还有开发利用程度比较低。目前世界主要以煤炭还有石油为主要能源物质,并且正在由煤炭为主向汽油为主的的结构快速变化。然而,中国依然还是世界上即为少数几个国家依然以煤炭资源为主。

(2)我国的每年能源消耗总量处于递增状态,但是能源利用效率较低。伴随着中国经济规模的不断扩大,中国在能源消费跟开发方面呈持续上升趋势。

(3)我国的能源开发利用多数是以内供为主,由于设备科技质量跟不上世界发达国家的标准导致优质量的能源供应不足,再加上浪费严重导致环境污染变本加厉。随着社会发展,能源消费不断提高,石油、煤炭的废弃物给大气造成很大的污染,过度开发能源导致生态破坏,环境问题日益严重。

这几个环境问题是我国能源开发引起的主要问题,要实现中国的可持续发展就要提高能源的利用率,并加快步伐开发新的环保能源。

1.1.2环境

进入21世纪,世界经济突飞猛进,各国对能源的需求也日益增多,由于对煤炭石油等不可再生能源的过度开发利用,生态坏境日益严重。伴随着石油、煤炭等不可再生能源的濒危缺乏警告,新能源开发问题已经成为国际社会的共同话题,为了走能源的可持续发展道路并保护生态环境,很多新的环保能源相继开发,比如潮汐能、风能、沼气能还有太阳能,越来越多的国家开始开发新的环保能源并且实施“阳光计划”。由于太阳能作为可再生能源取之不尽用之不竭,而且对环境无污染等多种优势,各国正在加大力度开发太阳能资源,研发新的科技来开发太阳能资源,因此开发和利用太阳能对于减缓环境污染和替代不可再生能源有着重要意义。

1.2太阳能光伏发电技术发展简介

太阳能的开发和利用一共有四种主要的形式:光伏的利用、光热的利用、光化学的利用和光生物的利用。在应用领域里最重要的是以光伏电池技术为主要核

心的太阳能的光伏利用、直流-交流逆变器(DC/AC逆变器)和太阳能光伏

(DC/DC变换器)等。太阳能控制器是用来为蓄电池提供最佳充电电压和电流,然而其最主要的作用就便是最大功率跟踪(MPPT)的控制。MPPT通过控制调节负载的功率,从而改变光伏电池的输出电流和输出电压,光伏电池始终在受外界环境影响的最大功率点附近工作,从而实现输出功率的最大化。当直流输电的升降压变换器在光伏发电系统向配电房输送直流电时,我们需要使用的是升压变换器;当蓄电池或者太阳能电池往高压电的用电器输送电时,由于升压输出,所以也要选择升压变换器;控制光伏阵列的工作点、对蓄电池充电以及负载调节等,通常选用降压变压器。DC-AC逆变器分为无源式和有源式逆变器两类。在光伏发电系统中,逆变器就是将太阳能光伏阵列和蓄电池提供低压直流电。当逆变器向交流负载提供电能时,用光伏阵列把直流电转化为交流电来实现。在独立光伏发电系统中,通常把无源式逆变器为交流负载来供电。对于并网光伏发电系统,通常用有源式逆变器,通过开关电路,以PWM方式产生调制的正弦波交流电力。蓄能是光伏发电系统的重要组成部分,所以我们使用的蓄电池,便是独立光伏发电系统中必不可少的一部分。把光伏阵列发出多余的直流电储存起来,供负载使用。

1.3 太阳能光伏发电利用的优势

如今世界范围的能源危机和环境污染迫使我们去寻找新的可再生能源既能替代又能无污染。太阳能作为一种新能源,与煤炭、石油、天然气、核能等常规能源相比有如下优点:

(l)资源丰富。

太阳能是用之不竭,取之不尽的可再生能源,可供地球利用量巨大。根据统计,每年辐射到地球表面的能力大约相当于130万亿标保准煤炭。据估计,在之前漫长的11亿年中,太阳仅消耗了它本身能量的2%,相比较传统的化石能源相比,太阳能可以说是取之不尽,用之不竭。因此开发和利用太阳能是我们下一步开发研究的主要课题,也是人类解决能源污染与能源缺乏的重要途径。

(2)分布广泛。

虽然世界各地的太阳对地面辐射量存在着差异,每年地表辐射的太阳能力不等,这通常是由于地理位置还有时节的影响。但是与其他能源相比,太阳能可以被世界各地的人利用,分布极为广泛,对于某些交通不发达的地区更具有利用价值,而且没必要为能源运输问题考虑节省了很多花费。对于一些缺乏石油煤炭的国家来说,太阳能可以给他们解决能源问题。

(3)环保无污染。

太阳能的开发利用是对太阳辐射到地球表面的能力加以转换,变成电能储存起来,在这个转变过程中几乎不会产生任何污染,而且吸收太阳能的设备也很简洁不会影响环境的美观,对于日益加重的环境污染的今天来说,显得非常可贵。

(4)经济性。

在之前由于科技落后,太阳能设备昂贵,很多人宁可使用廉价的煤炭石油能源,然而随着世界对环境保护的意识还有科技的进步,太阳能技术得到进一步发展,太阳能利用的成本持续降低。很多研究表明,开发太阳能来代替石油、煤炭等不可再生能源具有一定的经济性,开发太阳能既可以减少能源的消费又可以节省改善被污染环境的费用,从长期的可持续发展道路来看,开发利用太阳能非常经济实惠。

1.4光伏发电系统的分类及组成

太阳能光伏发电系统按大类可分为独立光伏发电系统和并网光伏发电系统两类。其中,独立光伏发电系统也可分为直流光伏发电系统和交流光伏发电系统以及交、直混合光伏发电系统,而直流光伏发电系统又可分为有蓄电池的系统和无蓄电池的系统。并网光伏发电系统可以分为有逆流光伏发电系统和无逆流光伏发电系统,并根据用途可分为有蓄电池系统和无蓄电池系统等[8]。

(1)独立型光伏发电系统

独立型光伏发电系统是光伏发电的最基本的发电形式,主要用于远离市区的海上灯塔、山顶的无线继电台等一些偏远无电地区,整个独立供电系统由太阳能电池板、控制器、蓄电池、逆变器等组成,太阳能电池板作为核心部分,作用是由将太阳能光伏阵列转换的直流形式的电能,一般只在白天有太阳光照的情况下输出能量,根据负载要求,系统一般选铅酸蓄电池作为储能环节,供给直流负载,当发电量大于负载时,太阳能电池通过充电器对蓄电池充电,当发电量不足时,太阳能电池和蓄电池同时对负载供电,控制器一般由充电电路、放电电路和最大功率跟踪控制组成的,另外可以将直流电逆变为交流电供给交流负载使用,由于光伏发电受天气等多种因素的影响,供电不稳定,所以需要另加蓄电池和充放电控制器环节,作用是能量在夜间和阴雨天气供给负载[21]。

(2)并网光伏发电系统

并网光伏发电系统直接与电网连接,其中逆变器起很重要的作用,要求具有与电网连接的功能,目前常用的并网光伏发电系统具有两种结构形式,其不同之处在于是否带有蓄电池作为储能环节,带有蓄电池环节的并网光伏发电系统称为可调式并网发电系统,由于此系统中逆变器配有主开关和重要负载开关,使得系统具有不间断电源的作用,这对于一些重要负荷甚至某些家庭用户来说具有重要意义;此外,该系统还可以充当功率调节器的作用,稳定电网电压、抵消有害高次谐波分量从而提高电能质量。不带有蓄电池环节的并网光伏发电系统称为不可

基于Matlab的光伏电池建模及MPPT方法研究

基于Matlab的光伏电池建模及MPPT方法研究 自工业化以来的近三百年间,世界能源工业飞速发展,有力支撑了全球经济与社会发展。在这个发展的过程中,传统化石能源的大量开发及使用导致了资源紧张、环境污染、气候变化等问题日益突出,严重的威胁了人类生存和可持续发展。近年来,太阳能作为一种高效无污染的新能源,逐渐受到各国乃至全球的广泛关注。本文首先简要介绍了光伏发电的背景及意义,对光伏发电历史以及国内外光伏发电发展现状进行了综述,然后阐述了光伏并网发电系统及其基本工作原理,并详细描述了运用Matlab/Simulink 建立光伏阵列仿真模型的过程,最后对光伏发电系统最大功率点跟踪的理论依据以及工作原理进行了分析,介绍了常见的MPPT方法及仿真分析,并根据文献[6]详细描述了一种改进的基于最优梯度的滞环比较法的原理,并对改进的基于最优梯度的扰动观察法与传统的扰动观察法做了仿真对比,验证了改进算法的优越性。 目录 1 绪论 (2) 1.1 光伏发电的背景及意义 (2) 1.1.1 研究背景 (2) 1.1.2 我国太阳能资源的分布 (3) 1.2太阳能发电发展概况 (4) 1.2.1 光伏发电的历史 (4) 1.2.2 太阳能发电的国内外发展概况 (4) 1.3 本文研究的主要内容 (5) 2 光伏并网发电系统及基本原理 (5) 2.1 光伏发电系统的分类 (5) 2.2光伏并网发电系统组成 (5) 2.3光伏电池 (7) 2.3.1光伏电池的工作原理 (7) 2.3.2 光伏电池的种类 (7) 3 光伏电池建模与仿真分析 (8) 3.1光伏电池数学模型 (8) 3.2 光伏电池模型 (10) 3.3 光伏电池仿真分析 (12) 4 光伏阵列最大功率点跟踪方法研究 (14) 4.1 最大功率点跟踪的理论依据 (14) 4.2 基于DC/DC 变换电路MPPT的实现 (15) 4.2.1 BOOST电路的基本工作原理 (16) 4.2.2 BOOST电路实现MPPT的理论依据 (16) 4.3常用最大功率点跟踪算法及其仿真 (17) 4.3.1 恒定电压法 (17)

蔡氏混沌非线性电路的分析研究

研究生课程论文(2018-2018学年第二学期> 蔡氏混沌非线性电路的研究 研究生:***

蔡氏混沌非线性电路的研究 *** 摘要:本文介绍了非线性中的混沌现象,并从理论分析和仿真两个角度研究非线性电路中的典型混沌电路-蔡氏电路。只要改变蔡氏电路中一个元件的参数,就可产生多种类型混沌现象。利用数学软件MATLAB对蔡氏电路的非线性微分方程组进行编程仿真,就可实现双蜗卷和单蜗卷状态下的同步,并能准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract:This paper introduces the chaos phenomenon in nonlinear circuits. Chua’scircuit was a typical chaos circuit,and theoretical analysis and simulation was made to research it.Many kinds of chaos phenomenonenwould generate as long as one component parameter was altered in Chua’s circuit.On the platform of Matlab ,mathematical model of Chua’s circuit were programmed and simulatedto realize the synchronization of dual and single cochlear volume.At the same time, behavior characteristics of chaos attractor is able to be observed correctly. Key words:chaos phenomenon;Chua’S circuit;simulation 引言: 混沌是一种普遍存在的非线性现象,随着计算机的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。混沌行为是确定性因素导致的类似随机运动的行为,即一个可由确定性方程描述的非线性系统,其长期行为表现为明显的随机性和不可预测性。混沌中蕴含着有序,有序的过程中也可能出现混沌。混沌的基本特征是具有对初始条件的敏感依赖性,即初始值的微小差别经过一段时间后可以导致系统运动过程的显著差别。混沌揭示了自然界的非周期性与不可预测性问题而成为20 世纪三大重要基础

直流斩波电路建模仿真

目录 一、降压式直流斩波电路(Buck) (1) 1 原理图 (1) 2 建立仿真模型 (1) 3 仿真波形 (5) 4 小结 (6) 二、升压式直流斩波电路(Boost) (7) 1 原理图 (7) 2建立仿真模型 (7) 3 仿真波形 (8) 4 小结 (9)

一、 降压式直流斩波电路(Buck ) 1 原理图 在控制开关IGBT 导通t on 期间,二极管VD 反偏,电源E 通过电感L 向负载R 供电,此间i L 增加,电感L 的储能也增加,导致在电感两端有一个正向电压Ul=E-u 0,左正右负,这个电压引起电感电流i L 的线性增加。 在控制开关IGBT 关断t off 期间,电感产生感应电势,左负右正,使续流二极管VD 导通,电流i L 经二极管VD 续流,u L =-u 0,电感L 向负载R 供电,电感的储能逐步消耗在R 上,电流i L 线性下降,如此周而复始周期变化。如图1-1。 + -U0E 图1 -1降压式直流斩波电路的电路原理图 2 建立仿真模型 根据原理图用MATLAB 软件画出正确的仿真电路图,如图2。

图1-2降压式直流斩波电路的MATLAB仿真模型 仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0.0结束时间2.0如图1-3。 图1-3 仿真时间参数 电源参数,电压100v,如图1-4。

图1-4 交流电源参数晶闸管参数,如图1-5。 图1-5 晶闸管参数电感参数,如图1-6。 图1-6 电感参数

电阻参数,如图1-7。 图1-7 电阻参数二极管参数设置,如图1-8。 图1-8 二极管参数电容参数设置,如图1-9。

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

BUCK电路闭环控制系统的MATLAB仿真..

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

最新非线性电路课程报告-蔡氏电路的Matlab仿真研究资料

西安交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路中通过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分内,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和李雅普诺夫不稳定性)有着密切关系,它具有不同属性的内外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子内的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统内部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间内系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

直流斩波PWM控制Matlab仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流斩波PWM控制Matlab仿真 初始条件: 输入200V直流电压。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、要求得到0~100V直流电压。 2、在Matlab/simulink中建立电路仿真模型; 3、对电路进行仿真; 4、得到结果并对结果进行分析; 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 概述及设计要求 (2) 1.1 概述 (2) 1.2 设计要求 (2) 2 降压斩波电路拓扑分析 (3) 2.1 降压斩波器基本拓扑 (3) 2.2 buck开关型调整器拓扑分析 (3) 2.3 降压斩波电路的重要参数计算方法 (4) 2.3.1 buck调整器的效率 (4) 2.3.2 buck调整器的理想开关频率 (4) 2.3.3 输出滤波电感的选择 (5) 2.3.4 输出滤波电容的选择 (5) 3 电路设计 (6) 3.1 buck主电路设计 (6) 3.2 脉宽调制电路设计 (7) 3.3 MOS管驱动电路设计 (8) 3.4 系统工作总电路 (8) 4 Matlab建模仿真及分析 (9) 4.1 Matlab仿真模型的建立 (9) 4.2 Matlab仿真结果及分析 (10) 结束语 (14) 参考文献 (15)

基于MATLAB的光伏电池通用数学模型

本文由qpadm贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 25 卷第 4 期 2009 年 4 月 电 力 For personal use only in study and research; not for commercial use 科 学 与 For personal use only in study and research; not for commercial use 工 程 Vol.25, No.4 Apr., 2009 11 For personal use only in study and research; not for commercial use Electric Power Science and Engineering 基于 MATLAB 的光伏电池通用数学模型 王长江 For personal use only in study and research; not for commercial use (华北电力大学电气与电子工程学院,北京 102206)摘要:针对光伏电池输出特性具有强烈的非线性,根据太阳能电池的直流物理模型,利用 MATLAB 建立了太阳能光伏阵列通用的仿真模型。利用此模型,模拟任意环境、太阳辐射强度、电池板参数、电池板串并联方式下的光伏阵列 I-V 特性。模型内部参数经过优化,较好地反应了电池实际特性。模型带有最大功率点跟踪功能,能很好地实现光伏发电系统最佳工作点的跟踪。关键词:光伏电池;MPPT;I-V 特性中图分类号:TM615 文献标识码:A 引 言 1 光伏电池特性 随着化石能源的消耗,全球都在面临能源危机,太阳能依靠其清洁、分布广泛等特点成为当今发展速度居第二位的能源 [1] 。光伏阵列由多个单体太阳能电池进行串并联封装而成,是光伏发电的能源供给中心,其 I V 特性曲线随日照强度和太阳能电池温度变化,即 I=f ( V, S, T ) 。目前而厂家通常仅为用户提供标准测试的短路电流 I sc 、开路电压 Voc、最大功率点电流 I m 、最大功率点电压 V m 值,所以如何根据已有的标准测试数据来仿真光伏阵列在不同日照、温度下的 I V,P V 特性曲线,在光伏发电系统分析研究中显得至关重要 [2] 。文献 [ 3~4 ] 介绍了一些光伏发电相关的仿真模型,但这些模型都需要已知一些特定参数,使得分析研究有一些困难。文献 [ 5 ] 介绍了经优化的光伏电池模型,但不能任意改变原始参数。文献 [ 6 ] 给出了光伏电池的原理模型,但参数选用典型值,会造成较大的误差。本文考虑工程应用因素,基于太阳能电池的物理模型,建立了适用于任何条件下的工程用光伏电池仿真模型。

非线性电路课程报告-蔡氏电路的Matlab仿真研究

交通大学电气工程学院 非线性电路报告蔡氏电路的Matlab仿真研究 Administrator

蔡氏电路的Matlab仿真分析 摘要:对一种典型的产生混沌现象的电路——蔡氏混沌电路进行了分析研究。从理论分析和仿真两个角度分别研究蔡氏电路中的混沌现象。蔡氏电路是一个典型的混沌电路,只要改变其中一个元件的参数,就可产生多种类型混沌现象。在Matlab 的平台上编制相关系统 对蔡氏电路进行了仿真研究。 关键词:蔡氏电路,非线性负电阻;混沌电路;吸引子

引言 随着计算机和计算科学的快速发展,混沌现象及其应用研究已成为自然科学技术和社会科学研究领域的一个热点。而非线性电路是混沌及混沌同步应用研究的重要途径之一,其中一个最典型的电路是三阶自治蔡氏电路。在这个电路中观察到了混沌 吸引子。蔡氏电路是能产生混沌行为最简单的自治电路,所有从三阶自治常微分方程描述的系统中得到的分岔和混沌现象都能够在蔡氏电路过计算机仿真和示波器观察到。经过若干年的研究及目前对它的分析,无论是在理论方面、模拟方面还是实验方面均日臻完善。在理论和实践不断取得进展时, 人们也不断开拓新的应用领域,如在通信、生理学、化学反应工程等方面不断产生新的技术构想,并有希望很快成为现实。 1混沌概念及其相关特征 1.1混沌和吸引子的定义 混沌至今没有统一的定义,但人们一致的看法是:一个确定的非线性系统,如果含有貌似噪声的有界行为,且又表现若干特性,便可称为混沌系统,此处所说的若干特性主要是如下三个方面:(1)振荡信号的功率连续分布,且可能是带状分布的,这个特征表明振荡为非周期的,也就是说明信号貌似噪声的原因。(2)在相空间,该系统的相邻近的轨道线彼此以指数规律迅速分离,从而导致对初始值得极端敏感性,这使得系统的行为长期不可预测。(3)在轨道线存在的相空间的某一特定的有界部分,轨道线具有遍历性和混合性。遍历性是指任何一条轨道线会探访整个特定的有界部分,混合性是指初始间单关系将弥漫的动力学行为所消除。 混沌吸引子:吸引子是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它。若吸引子的轨线对初始条件高度敏感依赖,该吸引子就称为混沌吸引子。吸引子无外乎两种状态,即单个点和稳定极限环。系统的吸引子理论是关于吸引子的科学理论,它是混沌学的重要组成部分。 奇异(怪)吸引子:具有分数维结构的吸引子称为奇异吸引子。奇异吸引子是反映混沌系统运动特征的产物,也是一种混沌系统中无序稳态的运动形态。它具有自相似性,同时具有分形结构。奇异吸引子是混沌运动的主要特征之一。奇异吸引子的出现与系统中包含某种不稳定性(不同于轨道不稳定性和雅普诺夫不稳定性)有着密切关系,它具有不同属性的外两种方向:在奇异吸引子外的一切运动都趋向(吸引)到吸引子,属于“稳定”的方向;一切到达奇异吸引子的运动都互相排斥,对应于“不稳定”方向。 1.2混沌的基本特征 混沌具有两个基本的特征:一是运转状态的非周期性,即混沌系统输出信号的周期为无穷大,且在功率上与纯粹噪声信号难以分辨,因而是随机信号,然而混沌系统是确定性动力学系统,本身并不包含任何随机因素的作用,其产生随机输出信号的原因完全是因为系统部各变量之间的强非线性耦合。因此,其输出的随机信号在理论上是可以精确重复的。二是对初始条件的高度敏感性,即若存在对初始条件的任何微小的偏离(扰动),则此偏离随着系统的演化将迅速以指数率增长,使得在很短的时间系统的状态与受扰前便失去任何的相关性,因此,混沌仅具有极为短期的预测性。混沌状态具有以下三个关键(核心)概念:即对初始条件的敏感性、分形、奇异吸引子。 2蔡氏电路与非线性负电阻的实现

直流升压变换器的MATLAB仿真

学号 天津城建大学 控制系统仿真 大作业 直流升压变换器的MATLAB仿真 学生姓名 班级 成绩 控制与机械工程学院 2014年6 月20 日

目录 一、绪论1 二、仿真电路原理图及原理1 三、所使用的Matlab工具箱与模块库2 四、模块参数设定2 五、模块封装与仿真框图搭建2 六、仿真结果6 七、结论6 八、参考文献7

一、绪论 在电力电子技术中,将直流电的一种电压值通过电力电子变换装置变换为另一种固定或可调电压值的变换,成为直流-直流变换。直流变换的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其它领域的交直流电源。 根据电力电子技术原理,升压式(Boost )斩波器的输出电压0u 高于输入电源电压s u ,控制开关与负载并联连接,与负载并联的滤波电容必须足够大,以保证输出电压恒定,储能电感也要很大,以保证向负载提供足够的能量。 若升压式斩波器的开关导通时间on t ,关断时间off t ,开关工作周期off on t t T +=。定义占空比或导通比/T t D on =,定义升压比S o /U U =α。根据电力电子技术的原理,理论上电 感储能与释放能量相等,有s s off o u 1 u t T β = = U ,升压比的倒数T t 1 off = = α β。还有,1D =+β 。由此可见,当s u 一定时,改变 β就可以调节0u 。当const T =时,调β就 是调off t ,或调on t 也是调β,也就改变了0u ,这就是升压式斩波器的升压工作原理。 二、仿真电路原理图及原理 原理图如图1所示:假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为1 I ,同时C 的电压向负载供电,因C 值很大,输出电压0u 为恒值,记为0u 。设V 通的时间为on t ,此阶段L 上积蓄的能量为on 1t EI 。 图1 V 断时,E 和L 共同向C 充电并向负载R 供电。设V 断的时间为off t ,则此期间电感L 释放能量为 ()off 10t I E -u ,稳态时,一个周期T 中L 积蓄能量与释放能量能量相等。化简得 ()off 10on 1t I E -u t EI =,E t T E t t t off off off on o =+=U ,1T/t off ≥,输出电压高于电源电

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

升、降压直流斩波电路及matlab仿真

目录 绪论 (3) 一.降压斩波电路 (6) 二.直流斩波电路工作原理及输出输入关系 (12) 三.D c/D C变换器的设计 (18) 四.测试结果 (19) 五.直流斩波电路的建模与仿真 (29) 六.课设体会与总结 (30) 七.参考文献 (31)

绪论 1. 电力电子技术的内容 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。 它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。 实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。 变换器共有四种类型: 交流-直流(AC-DC)变换:将交流电转换为直流电。 直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。 交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压

有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。 2. 电力电子技术的发展 在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。 1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。 70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。 控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。 微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可利用软件编程,既方便又灵活。 各种新颖、复杂的控制策略和方案得到实现,并具有自诊断功能,并具有智能化的功能。将新的控制理论和方法应用在变换器中。 综上所述可以看出,微电子技术、电力电子器件和控制理论则是现代电力电子技术的发展动力。 3.电力电子技术的重要作用 (1) 优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效

蔡氏电路matlab仿真报告

蔡氏电路仿真分析 学院:电气工程学院 班级:硕6036 姓名:张东海 学号:3116312053

目录 1.基本分析 (2) 2.MATLAB仿真 (5)

蔡氏电路 蔡氏电路是著名的非线性混沌电路,结构简单,但却出现双涡卷奇怪吸引子和及其丰富的混沌动力学行为。 1.基本分析 蔡氏电路是一个典型的混沌电路,最早由著名华裔科学家、美国加州大学蔡少堂教授设计。他证明了在满足以下条件时能够产生混沌现象。 (1) 非线性元件不少于1 个; (2) 线性有效电阻不少于1 个; (3) 储能元件不少于3 个。 根据以上条件,在图1.1中给出蔡氏电路方框图。图中R 为线性有效电阻,L 、C 1、C 2为储能元件,R N 为非线性元件。图2.2给出非线性电阻伏安特性曲线。 图1.1 蔡氏电路方框图 图1.2 非线性电阻伏安特性曲线 对于图2.1提出的蔡氏电路,其状态方程推导如下 12112122121()()1()(1)C C C C C C C L L C du C u u g u dt R du C u u i dt R di L u dt ?=--???=-+???=-?? 其中函数1()C g u 是分段线性函数,其形式为:

11111()()()2 C b C a b C C g u G u G G u E u E =+-?+-- 作变量代换: 12 22 221,,,,1 C C L u u i x y z E E EG C C tG C C LG G R ταβ=== ==== 式(1)可以写为如下形式 [] ()(2)dx y x f x d dy x y z d dz y d αττ βτ?=--???=--???=-?? 式(2)即是蔡氏电路的标准方程形式。 其中()f x 可表示为如下形式 10101 01(),1(),1(),1m x m m x f x m x x m x m m x +-≥??=≤??--≤-? 其中 01,a b m G E m G E == 蔡氏电路的三个状态方程式在状态空间的三个子空间为 101={(,,)| 1} ={(,,)| 1}={(,,)| 1} D x y z x D x y z x D x y z x -≥≤≤- 在状态空间的三个子空间内分别具有唯一平衡点如下 1011(,0,), (0,0,0), (,0,).P k k D Q D P k k D +--=-∈=∈=-∈ 其中, 1011 m m k m -=+ 在P +、1P -和Q 处的雅可比矩阵分别为:

直流斩波电路的MATLAB仿真实验

直流斩波电路的MATLAB 仿真实验 降压式直流斩波电路 一、实验内容 降压斩波原理: R E U I E E T t t t E t U M on off on on -= ==+=000α 式中on t 为V 处于通态的时间;off t 为V 处于断态的时间;T 为开关周期;α为导通占空比,简称占空比火导通比。 根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式: (1)保持开关周期T 不变,调节开关导通时间on t 不变,称为PWM 。 (2)保持开关导通时间on t 不变,改变开关周期T ,称为频率调制或调频型。 (3)on t 和T 都可调,使占空比改变,称为混合型。 t t t O O O b) T E i G t on t off i o i 1i 2I 10 I 20t 1 u o O O O t t t T E E c) i G i G t on t off i o t x i 1i 2 I 20 t 1 t 2 u o E M E V + -M R L VD a) i o E M u o i G 图1 降压斩波电路原理图

2 二、实验原理 (1)t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o按指数曲线上升 (2)t=t1时刻控制V关断,负载电流经二极管VD续流,负载电压u o近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小通常使串接的电感L值较大 三、实验过程 1、仿真电路图 图2 降压斩波的MATLAB电路的模型 2、仿真模型使用模板的参数设置 IGBT参数的设置如图

图3 Diode参数的设置如图 图4

蔡氏电路MATLAB混沌仿真

蔡氏电路MATLAB混沌仿真

————————————————————————————————作者:————————————————————————————————日期: 2

3 蔡氏电路的Matlab 混沌 仿真研究 班级: 姓名: 学号:

4 摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB 仿真 Abstract This paper introduces the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in Chua’s circuit .On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words :chaos phenomenon ;Chua’s circuit ;Simulation

实验二、基于Simulink的直流斩波电路的仿真实验报告

自动化(院、系)自动化专业112 班组电力电子技术课实验二、基于Simuilink的直流斩波电路仿真实验 一、实验目的 (1)加深理解直流斩波电路的工作原理。 (2)学会应用Matlab的可视化仿真工具Simulink以及元器件的参数设置。 二、实验内容 2.1理论分析 2.1.1直流降压斩波电路 直流降压斩波电路原理图如图1(a)所示。图中用理想开关S代表实际的电力电子开关器件;R为纯阻性负载。当开关S在ton时间接通时,加到负载电阻上的电压Uo等于直流电源Ud。当开关S在toff时间断开时,输出电压为零,直流变换波形如图1(b)所示。输出电压平均值为:Uo=ton/Ts*Ud= D*Ud(1) 式中:ton为斩波开关S在一个周期内的导通时间;toff为斩波开关S在一个周期内的关断时间;Ts为斩波周期,Ts= ton+toff;D为占空比,D = ton/Ts。由此可见,改变导通占空比D,就能够控制斩波电路输出电压Uo的大小。由于D是在0~1之间变化的系数,因此输出电压Uo总小于输入电压Ud,即为降压输出。

(院、系)专业班组课2.1.2直流升降压斩波电路 升降压斩波电路输出电压平均值为:Uo=-ton/toff*Ud=-D/(1-D)*Ud 式中:负号表示输出电压与输入电压反相。当D =0.5时,Uo=Ud;当D>0.5时,Uo>Ud,为升压变换;当D<0.5时,Uo

相关文档
最新文档