风力机翼型的气动模型及数值计算

风力机翼型的气动模型及数值计算
风力机翼型的气动模型及数值计算

万方数据

兰州理工大学学报第36卷合风力机专用翼型的边界层网格与湍流模型.

1计算模型

1.1控制方程与拓扑结构

选取不可压缩的雷诺时均方程为主控方程,不

考虑体积力和外部热源.考虑到DU93一、弘210翼型

是为了克服气流流过相对厚度较大NACA翼型过

早的发生分离,导致翼型气动性能严重下降而设计的[10],而且该翼型几何形状简单,生成网格质量较好;模型计算量小,适于进行大量的数值计算,可以对网格分布、湍流模型的不同组合进行分析比较;国外已公布较全的实验数据,这些数据都是在弦长为o.6m时得到的.为了便于比较,本文取弦长为o.6m的翼型为研究对象.建立长度为45倍翼型弦长、宽度为40倍的翼型弦长的二维计算区域,如图1所示,把该计算域沿翼展方向拉伸1倍翼型弦长就可得到三维计算域.

de

图l二维拓扑结构

l毽l1’w州ir唧塔i帅aItop0Iogicalsh卫ctu他

1.2网格划分

因为在同一算法下均匀分布的正交计算网格可以获得最高的计算精度,所以本文利用CAD的表面构造技术以及多块网格技术生成了高质量、完全结构化的网格.该方法通过非均匀有理B样条插值(NURBS)将物理域映射到贴体坐标系下的求解域,进行流程计算域多块网格的构造与重构,最后生成的网格为贴体的、正交性很好的网格.由于翼型附近的流场参数变化梯度比远场的参数变化梯度大得多,且翼型前后缘的流动情况对翼型扰流数值模拟的影响很大,因此对翼型附近的网格进行了局部加密,图2为翼型附近的网格.

为比较翼型附近网格分布对边界层计算的影响,保持翼型表面周向网格节点不变,改变边界层内节点的法向分布以及第一层网格的高度,从而改变网格的纵横比,以确定适合于该翼型的边界层网格,网格划分方式见表1.流场方向半圆弧6fd上布置330个节点,直线拍、店、甜上各布置80个节点.在三维计算域中,翼展方向上布置60个节点.

图2翼型计算网格

Fi舀21ll册D刚dforairfon

表l边界层网格划分策略

Tab.1Methodofb伽ndarylay盯眦shdivisi加

1.3边界条件与离散格式

进口口6c如给定为速度进口,来流的湍流度为1%,湍流扩散长度为o.01札出口咖为压力出口,表压力给定为o,湍流度和湍流扩散长度与进口一样.翼型表面gm^九g满足壁面无滑移条件.除在DES和I正S模型中对动量方程的离散采用默认离散格式(boundedcentraldifferencing)外,其他模型中对连续方程、动量方程、雷诺时均方程等方程都用二阶迎风格式来离散,压力速度的耦合采用SIM—PI。EC算法.

2结果分析

速度由雷诺数或马赫数来确定,雷诺数为3.o×106、马赫数为o.22,弦长为o.60rIL为了跟实验数据做对比,用R已一肚c肛或胞一%/n。求得进口速度为76.56m/s.假设流动非定常,设定时间步长为o.001s,在每个时间步长内迭代20次,利用升力系数、阻力系数来监测解的收敛性,当升阻力系数稳定时认为计算收敛.

2.1边界层的比较计算

以三维直叶片为研究对象,研究不同边界层网格对翼型气动性能的影响.由图3a可以看出,当攻角a<7。时,不同边界层网格计算的升力系数无大差异,且与实验值相当吻合,这说明附体流动对边界层网格的要求较低.而当攻角口>7。时,第1种网格划分策略计算所得的升力系数的最大值相对最小,且远小于实验值,失速提前发生,而第2种划分策略计

算所得的最大升力系数相对最大,且大于实验的最

万方数据

万方数据

兰州理工大学学报第36卷

说脱体流动有很高的计算精度.

由图4b可知,当攻角口<8。时,所有模型计算的阻力系数都相对偏大且都大于实验值,但变化趋势相互吻合且与实验值吻合,其中LES的计算结果最大且远大于实验值,这表明亚格子模型放大了翼型附近的小尺度脉动对它的影响,此时的流动处于附体状态,翼型仅受到摩擦阻力的作用,这说明所有模型对摩擦阻力的模拟计算值均过大.当攻角口>8。时只有LES计算出的阻力系数大于实验值,而其他模型对阻力系数的计算结果都小于实验值,说明RANS和DES对压差阻力的计算能力较小,LES对气流分离造成的压差阻力有较高的计算精度.数值计算中,对流场的准确计算是翼型气动性能计算的基础,流场的形状及其变化规律反映了气流的客观流动规律,由图5可以看出,RANS方法得到的旋涡结构单一而平滑,没有捕捉到旋涡的脱落,而DES方法得到的绕流不仅在流向有旋涡的卷起和脱落,而且在展向还有大尺度的脉动,这是因为DES在分离区域d。=CDEs△,湍流模拟不再依赖当地网格单元中心到翼型壁面的最短距离d,即湍流的模拟与物体几何外形没有直接的关系,而与当地网格本身的尺度△直接相关,因此DES方法在流

图5旋涡等值面图

F嘻5Is循llrfao瞄ofvorticity

向和展向都能计算出旋涡的运动,从而能得到更复杂的旋涡结构,所以DES方法在数值模拟非定常大尺度分离流动方面具有明显的优势,它可以比RANS方法更真实地模拟出高雷诺数下分离旋涡破裂后的非定常流动特征.

3结论

1)翼型气动性能的计算精度跟壁面网格分布的情况有关,从应用的角度出发,壁面法向网格布置应该适宜.如果近比网格太稀,边界层内网格节点数不够,就无法准确地捕捉黏性效应;另外,也不能盲目增加网格节点数,还应兼顾网格的纵横比.

2)翼型气动性能的计算精度与湍流模型有关,不同的湍流模型针对特定的物理模型才有较理想的计算结果,在计算三维直叶片时,DES模型能够捕捉到分离旋涡的非定常特征,得到更为真实的流场.

参考文献:

[1]GuIuⅥINEAu

E,PlQu盱J,QuEuTRYP.T、Ⅳo—dimell.siorIalturbulentvis∞usnowsimulationp昌Lstairfoilsatfixed

incidence[J].(加lputers&Fluides,1997,26(2):135—162.[2]王汉青,王志勇,寇广孝.大涡模拟理论进展及其在工程中的应用口].流体机械,2004,32(7):23—27.

[3]邓枫,伍贻兆,刘学强.用Dl强数值模拟分离扰流中的旋涡运动[J].计算物理,2008,25(6):683—688.

[4]sn强ANs,FRANKT.De诅chededdysimulationofnow扣roullda_airfbil口].F10wtTurbuIenceandCombustion,2003,71(1/2/3/4):26l一278.

[5]李栋,焦予秦,IGORM,等.Detached-Eddysimulation方法模拟不同类型翼型的失速特性[J].航空学报,2005,26(4):406—410.

[6]

钉REIErsMDetached

eddysimulationof眦ssivelySep8珀一tedflows[R].Rello:AIAA,2001.

[7]zINGGDw.compa—sonofseveralspatialdiscretizatio∞fortheN—Sequations[R].Ren0:AIAA,1999.

[8]覃文洁,胡春光,郭良平,等.近壁面网格尺寸对湍流计算的影响口].北京理工大学报,2006,26(5):388—392.

[9]齐学义,冯俊豪,李纯良,等.三维湍流流动计算在混流式转轮水力设计中的应用[J].兰州理工大学学报,2006,32(5):48-52.

[10]1rIMMERWA,VANRoOURPjO№summaryofthedelftuniversity耐ndturbinededicatedair{bils[J].Joumal0f

s01arenergy

engine—ng,2003,125(4);488—497.万方数据

海洋平台结构设计与模型制作计算书

海洋平台结构设计与模型制作 理论方案 浙江大学结构设计竞赛组委会 二○一二年

第一部分:方案设计摘要 根据学长“简单、粗犷”的原理,在实践中抛 弃了很多复杂、沉重的构件,最终展现在我们面前 的是一个四棱台与四棱柱结合的简单作品。 自下而上的构件分别为: 底部为深入沙中的底柱,长为10cm。通过一次 实验,为利于柱子插入细沙中而将柱子削尖。 联结底柱的是四棱台,高42cm、底边长45cm、 顶边长28cm。为抵抗风荷载的力矩而增大重力的力 臂,在保证质量较轻的条件下增大底部长度。初时 对竖向荷载过分估计以致四周承重柱以及斜撑杆过 重,但稳重的底部在加载过程汇中也有可取之处。 之所以将高度定为28cm,是因为伊始准备在四棱台 中间安置塑料片筒体。但在实际操作中我们放弃了 这个设想。 联结四棱台的是被斜杆分成三部分的四棱柱。 借鉴了别人的轻质理念,一改底座的笨重,上部桁 架的布置简明,但纤细的杆件也使整体遭受了风荷 载的极大挑战。在实验加载中发现荷载箱稍小,因 此改进顶部边长、露出四个小柱。本欲在与水面相 切处设置420*420的塑料片则可以利用水的吸附 力,可惜塑料片质量稍重、效果也不太明显。改进 后,四棱台留在空中的部分受风荷载较大,布置了 较密的桁架。 在构件联结处,我们尽力增大构件的接触面积,同时也做了些小木段与木片作为加固。 总结来看,在最初的设计思考中我们还是有一些新的想法,比如筒体,比如利用水的吸附力,但在实践制作过程中我们缺乏对可操作性的理性认识;同时我们过分估计竖向荷载以致质量过重,轻视水平风荷载而在试验中多次面临剧烈的扭转。最终我们的结构形式归于简单,但过程并不平淡。在否定与自我否定中,我们已有收获。

风力机设计原理

第二章风力机设计理论 2.1 翼型基本知识 翼型几何参数: 如图所示在风轮半径:处取一宽度为dr的叶素,翼型的气动性能直接与翼型外形有关。通常,翼型外形由下列几何参数确定: (l)翼的前缘: 翼的前头A为一圆头; (2)翼的后缘: 翼的尾部B为尖型; (3)翼弦:翼的前缘左与后缘B的连线称翼的弦,左B的长是翼的弦长 (4)翼的上表面: 翼弦上面的弧面; (5)翼的下表面: 翼弦下面的弧面; (6)翼的最大厚度h: 翼上表面与下表面相对应的最大距离; (7)叶片安装角e: 风轮旋转平面与翼弦所成的角; (8)迎角(攻角)a: 翼弦与相对风速所成的角度; (9)入流角功: 旋转平面与相对风速所成的角。

2.2叶片设计的空气动力学理论 2.2.1贝茨理论 世界上第一个关于风力发电机叶轮叶片接受风能的完整理论是1919年由德国的贝茨(Bee)建立的。贝茨理论的建立,是假定叶轮是“理想”的:全部接受风能(没有轮毂),叶片无限多;对空气流没有阻力;空气流是连续的、不可压缩的;叶片扫掠面上的气流是均匀的;气流速度的方向不论在叶片前或叶片后都是垂直叶片扫掠面的(或称平行叶轮轴线的),这时的叶轮称“理想叶轮”。其计算简图如图。

V1——距离风力机一定距离的上游风速; V ——通过风轮时的实际风速; V2——离风轮远处的下游风速。 风力贝茨理论计算模型: 风作用在风轮上的力可由Euler 理论(欧拉定理) )(12V V SV F -=ρ 风轮所接受的功率为: )(122V V SV FV P -==ρ 经过风轮叶片的风的动能转化: )(2 12221V V SV T -=?ρ 由2和3式得到 221V V V += 因此风作用在风轮叶片上的力F 和风轮输出的功率P 分别为 )(2 1 2221V V S F -=ρ

阿尔法资产模型及计算方法

阿尔法资产模型及计算方法 阿尔法资产(Alpha investment)是一种风险调整过的积极投资回报。它是根据所承担的超额风险而得到的回报,因此经常用来衡量基金经理的管理和表现水平。通常会在计算时,将基准的回报减去,以便看出它的相对水平。 阿尔法资产是资本资产定价模型中的一个量效率市场假说阿尔法系数为零 计算公式: 其中的阿尔法系数(αi)是资本资产定价模型中的一个量,是证券特征线与纵坐标的截距。在效率市场假说中,阿尔法系数为零。 阿尔法系数(α系数,Alpha(α)Coefficient) α系数的定义:α系数是一投资或基金的绝对回报(Absolute Return) 和按照β系数计算的预期回报之间的差额。绝对回报(Absolute Return)或额外回报(Excess Return)是基金/投资的实际回报减去无风险投资收益(在中国为1年期银行定期存款回报)。绝对回报是用来测量一投资者或基金经理的投资技术。预期回报(Expected Return)贝塔系数β和市场回报的乘积,反映投资或基金由于市场整体变动而获得的回报。 一句话,平均实际回报和平均预期回报的差额即α系数。 α系数计算方法 α系数简单理解 α>0,表示一基金或股票的价格可能被低估,建议买入。亦即表示该基金或股票以投资技术获得平均比预期回报大的实际回报。 α<0,表示一基金或股票的价格可能被高估,建议卖空。亦即表示该基金或股票以投资技术获得平均比预期回报小的实际回报。 α=0,表示一基金或股票的价格准确反映其内在价值,未被高估也未被低估。亦即表示该基金或股票以投资技术获得平均与预期回报相等的实际回报。 例子分析

风力机组气动特性分析与载荷计算-1

目录 1前言错误!未定义书签。 2风轮气动载荷............................................... 错误!未定义书签。 2.1动量理论.................................................................................................. 错误!未定义书签。 2.1.1不考虑风轮后尾流旋转 .................................................................. 错误!未定义书签。 2.1.2考虑风轮后尾流旋转...................................................................... 错误!未定义书签。 2.2叶素理论.................................................................................................. 错误!未定义书签。 2.3动量──叶素理论.................................................................................. 错误!未定义书签。 2.4叶片梢部损失和根部损失修正 .............................................................. 错误!未定义书签。 2.5塔影效果.................................................................................................. 错误!未定义书签。 2.6偏斜气流修正.......................................................................................... 错误!未定义书签。 2.7风剪切...................................................................................................... 错误!未定义书签。3风轮气动载荷分析........................................... 错误!未定义书签。 3.1周期性气动负载...................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3..................................................................................... 错误!未定义书签。 4.2载荷情况DLC1. 5..................................................................................... 错误!未定义书签。 4.3载荷情况DLC1.6..................................................................................... 错误!未定义书签。 4.4载荷情况DLC1.7..................................................................................... 错误!未定义书签。 4.5载荷情况DLC1.8..................................................................................... 错误!未定义书签。 4.6载荷情况DLC6.1..................................................................................... 错误!未定义书签。 风力发电机组气动特性分析与载荷计算 1前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S方程的CFD方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD求解N-S方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1不考虑风轮后尾流旋转 首先,假设一种简单的理想情况:

气动特性分析

飞行器总体设计课程设计 150座客机气动特性分析 计算全机升力线斜率C L : 为机翼升力线斜率:CL -_^ = 2 AR 2 d h 2C L :._W S gross 该公式适用于d h /b < 0.2的机型 Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度;b 为机翼的展长; S net 为外露机翼的平面面积;S gross 为全部机翼平 面面积。 由于展弦比A R =90 算出C La_w =514( 1/rad ) 又因为Z 为校正常数,通常取值为3.2; d h 为飞机机身的最大宽度,等于3.95m ; b 为机翼的展长,等于34.86m; C L: C La_W 1 dh b 丿 S gpss

S net为外露机翼的平面面积,估算等于119.65m2;S gross为全部机翼平面面积,等于134.9 m2;算出E为因子等于1.244. 所以可以算出全机升力线斜率缶等于6.349 二.计算最大升力系数C Lmax C Lmax =14 1'0-064regs C L? ①regs为适航修正参数,按适航取证时参考的不同失速速度取值。 由于设计的客机接近于A320,所以取①regs等于1 所以代入上面公式得到C Lmax等于1.662 三.计算增升装置对升力的影响 前面选择了前缘开缝襟翼 c LE /c为前缘缝翼打开后机翼的弦长与原弦长 的比例,它与机翼外露段的相对展长有一定对应关系。

70 20 30 40 SO 60 70 &0 100 Wing ¥Ngwl span 所以先计算机翼外露段的相对展长 等于(1-机身宽/展长)% 机身宽为3.95m ,展长为34.86m, 代入公式,算出机翼外露段的相对展长 等于88.67%,对应到上图,纵坐标 C 'LE lc 等于 1.088 。 絲翌娄型 克鲁格標資 0.3 前缘 前缘缝翼 0.4 c 中缝 1.3 后缘 < 无面积延伸〉 L6 二缝 1.9 单繼 1.3 / e 后缘(何而积絃仲) 蚁缝 1,6 c 三缝 1 9強々 1.0&

广厦通用计算GSSAP新规范计算模型的合理选取

广厦通用计算GSSAP 新规范计算模型的合理选取一个结构CAD包括3部分:前后处理、计算和基础CAD。如下介绍前处理中的结构模型和一天学会广厦结构CAD。 1前处理中的结构模型 如下高度概括我们天天面对的结构模型。 一个结构模型包括2部分:总的信息和构件信息,总的信息包括总体信息和各层信息,构件信息包括墙柱梁板的位置和属性,属性包括设计属性、截面材料属性和荷载属性。 1.1GSSAP总体信息 1)地下室有3个参数控制 地下室层数控制地下室无风,嵌固层最大结构层号控制地下室嵌固,有侧约束地下室层数控制地下室弹性约束。 1下上层刚度比≥2,可设为嵌固层,否则设为有侧约束层; 2其它计算如SATWE少了一个参数:有侧约束层,所以首层柱根判定有错; 如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,错误判定结构1层为首层。

3嵌固层的梁不应自动放大1.3倍,下柱不应小于地上1.1倍,加上梁的贡献,一般情况下已经满足下柱加梁的承载力大于上柱1.3倍的要求; 4如下嵌固在0层(基础层),结构1和2层有侧土约束,结构3层为首层。 5如下结构1为地梁和防水板,考虑土的摩擦作用1层有侧约束,结构2层为首层。 2)裙房层数 1要准确输入裙房层数,包括地下室部分的层数; 2影响裙房上塔楼层风荷载的自动计算; 3影响裙房上塔楼结果的输出,如刚重比、周期比等。 3)薄弱的结构层号 1除层间抗侧力结构的承载力比值外,其它自动判定的薄弱层都自动处理相应的放大系数,不需在这人工指定; 2多层自动放大1.15,高层自动放大1.25。 4)加强层所在的结构层号 1加强层是刚度和承载力加强的层,与墙的加强部位层是两个不同概念的层; 2加强层及相邻层核心筒可在墙设计属性中人工设置约束边缘构件。

风力发电机组气动特性分析与载荷计算

风力发电机组气动特性分析与载荷计算 目录 1前言 (2) 2风轮气动载荷 (2) 2.1 动量理论 (2) 2.1.1 不考虑风轮后尾流旋转 (2) 2.1.2 考虑风轮后尾流旋转 (3) 2.2 叶素理论 (4) 2.3 动量──叶素理论 (4) 2.4 叶片梢部损失和根部损失修正 (6) 2.5 塔影效果 (6) 2.6 偏斜气流修正 (6) 2.7 风剪切 (6) 3风轮气动载荷分析 (7) 3.1周期性气动负载................................................................................... 错误!未定义书签。 4.1载荷情况DLC1.3 (10) 4.2载荷情况DLC1.5 (10) 4.3载荷情况DLC1.6 (10) 4.4载荷情况DLC1.7 (11) 4.5载荷情况DLC1.8 (11) 4.6载荷情况DLC6.1 (11)

1 前言 风力发电机是靠风轮吸取风能的,将气流动能转为机械能,再转化为电能输送电网,风力机气动力学计算是风力机设计中的一项重要工作。特别是对于大、中型风机,其意义更为重大。风力机处于自然大气环境中,大气紊流、风剪切、风向的变化(侧偏风)和塔影效应等,这些现象使叶片受到非常复杂气动载荷的作用,对风力机的气动性能和结构疲劳寿命产生很大的影响。对一台大型风力发电机组来说,除风轮叶片产生机组的气动载荷外,机舱和支撑风轮和机舱的塔筒也产生气动载荷,这些都对机组的载荷产生影响。 2 风轮气动载荷 目前计算风力发电机的气动载荷有动量—叶素理论、CFD 等方法。动量—叶素理论是将风轮叶片沿展向分成许多微段,称这些微段为叶素,在每个叶素上的流动相互之间没有干扰,叶素可以认为是二元翼型,在这些微段上运用动量理论求出作用在每个叶素上的力和力矩,然后沿叶片展向积分,进而求得作用在整个风轮上的力和力矩,算得旋翼的拉力和功率。动量—叶素理论形式比较简单,计算量小,便于工程应用,估算机组初始设计时整机的气动性能,被广泛用于风力机的设计和性能计算,而且还用来确定风力机的动态载荷,不断地被进一步改进和完善。CFD 数值计算不需要对数学模型作近似处理,直接对流体运动进行数值模拟,从物理意义上说,数值求解N-S 方程的CFD 方法应该是最全面准确计算风力机气动特性的方法。但是,由于极大的计算工作量,数值计算的稳定性等原因,目前CFD 求解N-S 方程方法还远不能作为风力机气动设计和研究的日常工具。作为解决工程问题的工具还不太实际。为此在计算中应用动量—叶素理论方法来计算机组的气动载荷。 2.1 动量理论 动量理论是经典的风力机空气动力学理论。风轮的作用是将风的动能转换成机械能,但是它究竟能够吸收多大的风的动能就是动量理论回答的问题。下面分不考虑风轮后尾流旋转和考虑风轮后尾流旋转两种情况应用动量理论。 2.1.1 不考虑风轮后尾流旋转 首先,假设一种简单的理想情况: (1)风轮没有偏航角、倾斜角和锥度角,可简化成一个平面桨盘; (2)风轮叶片旋转时不受到摩擦阻力; (3)风轮流动模型可简化成一个单元流管; (4)风轮前未受扰动的气流静压和风轮后的气流静压相等,即p 1 = p 2; (5)作用在风轮上的推力是均匀的; (6)不考虑风轮后的尾流旋转。 将一维动量方程用于风轮流管,可得到作用在风轮上的轴向力为 ()21V V m T -= (1) 式中 m 为流过风轮的空气流量 T AV m ρ= (2) 于是 ()21V V AV T T -=ρ (3) 而作用在风轮上的轴向力又可写成 () -+-=p p A T (4) 由伯努利方程可得 ++=+p V p V T 222121ρρ (5) -+=+p V p V T 22222ρρ (6) 根据假设,p 1 = p 2,(5)式和(6)式相减可得

midas_civil简支梁模型计算

第一讲 简支梁模型的计算 工程概况 20 米跨径的简支梁,横截面如图 1-1 所示。 迈达斯建模计算的一般步骤 1- 理处 前 第五步:定义荷载工况 第六步:输入荷载第四步:定义边界条件 第三步:定义材料和截面 第二步:建立单元 第一步:建立结点

具体建模步骤 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件。这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。 第 02 步:启动 Midas ,程序界面如图 1-2 所示。 图 1-2 程序界面 第 03 步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图 1-3 所示。

图 1-3 新建工程 第04 步:选择菜单“文件(F)->保存(S) ”,选择目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,输入工程名“简支梁.mcb”。如图 1-4 所示。 图 1-4 保存工程

第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01,新建一个 excel 文件,命名为“结点坐标”。在 excel 里面输入结点的 x,y,z 坐标值。如图 1-5 所示。 图 1-5 结点数据 第 06 步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存。如图 1-6 所示。

使用STAR-CCM+计算二维翼型气动性能

使用STAR-CCM+计算二维翼型气动性能 Andrew Moa STAR-CCM+是CD-adapco公司开发的通用CFD软件,采用先进的连续介质力学数值技术,支持非结构网格,集成了高效的CFD求解器及前、后处理单元。STAR-CCM+支持导入复杂形状的几何数据,可进行表面修复,根据导入的几何自动生成高质量的非结构网格。 本文采用STAR-CCM+ 9.02.005 R8,以NACA 63(3)-218翼型为例,简单介绍使用STAR-CCM+进行二维翼型气动性能计算的一般步骤。 1、建立翼型几何 在多数情况下,翼型的气动性能计算一般采用二维网格模型。二维网格能够满足计算的需求,同时又不至于消耗过多的计算资源,一定程度上了提高计算的效率。STAR-CCM+虽然支持对二维网格模型的求解,但不支持导入二维几何实体,也无法生成二维网格。该软件可以导入二维网格,同时也提供了三维网格到二维网格的转换。本文利用STAR-CCM+三维网格转换成二维网格的功能,先在STAR-CCM+中生成三维的翼型绕流网格,在将该三维网格转换成二维网格,最后利用二维网格进行求解。 A、生成翼型三维模型 打开STAR-CCM+,软件界面如下: 点击File->New Simulation,OK确认建立新的模拟器。

右键单击树状图中Geometry下的3D-CAD Models,选择New,在3D设计模式中建立三维翼型实体。右键点击3D-CAD Model 1,选择Import->3D Curve,选择翼型数据文件。必须确保翼型数据文件为以下形式: 翼型数据应为.CSV格式文件,每行依次为各数据点的x、y、z三点坐标,中间以英文半角逗号分隔。

风力机空气动力学

第三章风力机气动力学 §3.1 总论 风力机功率的产生依赖于转子和风的相互作用。 风由平均风和附加于上的强烈的湍流脉动合成。 风力机的平均功率输出和平均载荷等主要性能由平均气流的气动力决定。周期性的气动力是疲劳载荷源和风力机峰值载荷的一个因素。周期性的气动力可以由切变风、偏轴风(off-axis winds)、转子旋转、由空气紊流和动力学影响诱发的随机脉动力引起。 本章首先关注的是稳态运行的空气动力学现象,关于非稳态空气动力学的复杂现象将在本章结尾简要介绍。 本章为读者提供理解翼型产生功率的背景,以计算一个优化的叶片形状作为设计叶片的起点,对已知翼型特性线和叶型的转子分析其气动性能。 本章的大部分内容详细说明了采用古典分析方法分析水平轴风力机。动量理论和基元叶片理论(blade element theory)构成了片条理论(strip theory)或基元叶片动量理论(BEM)。以此计算转子环形截面的特性,然后通过积分就可以获得整个转子的特性。 内容分为:1、理想风力机的分析(Betz极限) 2、翼型的运行和一般气动力概念 3、重点放在水平轴风力机的经典分析方法和一些应用和例子 §3.2 一维动量理论和贝兹极限 控制体积和理想透平如图,气流通过透平只产生压力不连续,并假设 ●气流均匀,不可压缩,定常流 动 ●气流无磨擦阻力 ●透平具有无限多叶片 ●推力均匀作用在转子叶轮旋转 面上

● 尾流无旋转 ● 转子远上游和远下游静压等于无干扰时环境的静压 设T 为风作用于风力机上的力,由动量定理可知,透平对风的作用力为: 4114()()T mU mU m U U ??? =---=- (3.2.2) 对于稳态流动,14()()AU AU m ρρ==,m 是质量流量,这里ρ是空气密度, A 是横截面,U 是空气速度。 此外,还由理想流体伯努利方程可知: 22 11221122 p U p U ρρ+=+ (3.2.3) 22 33441122 p U p U ρρ+=+ (3.2.4) 因为14p p =,且通过透平的前后速度一样(23U U =)。 由实际作用力223()T A p p =- (3.2.5) 利用3.2.3式和3.2.4式求得23()p p -,将其带入3.2.5式,得到: 222141 ()2 T A U U ρ= - (3.2.6) 从式3.2.2和式3.2.6得到推力值,设质量流量是22A U ,得到: 14 22 U U U += (3.2.7) 定义诱导速度(induction factor )a 为: 12 1 U U a U -= (3.2.8) 21(1)U U a =- (3.2.9) 且 41(12)U U a =-

风速对大型海上风力机的气动弹性影响研究

风速对大型海上风力机的气动弹性影响研究 发表时间:2017-10-25T17:58:34.210Z 来源:《基层建设》2017年第17期作者:张婷婷 [导读] 摘要:海上风力机是未来风电技术发展的重要方向。通常海上风力机风轮尺度较大、叶片弹性特征明显,这给风力机的气动弹性分析带来了极大挑战。 西南科技大学城市学院土木工程系四川绵阳 621000 摘要:海上风力机是未来风电技术发展的重要方向。通常海上风力机风轮尺度较大、叶片弹性特征明显,这给风力机的气动弹性分析带来了极大挑战。利用BEM气动力计算模型及模态叠加结构动力计算模型构建了大型海上风力机气动弹性分析模型,该模型具有计算效率高、计算结果准确的特征。利用该模型对不同风速条件下NREL 5MW海上风力机的气动弹性特征进行了计算和分析。结果显示,风力机的叶尖位移与风速条件直接相关,呈周期性特征。风速越高风力机功率波动频率越低。 关键词:大型海上风力机;气动弹性;BEM;模态叠加模型 0 研究背景 海上风力机为海上风能利用提供了有效的手段。根据“十三五”规划,海上风能资源的开发,将成为未来风能利用的重要发展方向。目前海上风力机技术仍处于发展过程中,部分海上风电强国已拥有部分示范工程,如挪威Hywind项目、葡萄牙WindFloat项目等。此外,近年来日本在海上风电技术领域投入较大,且已逐步形成海上风力机设计能力[1]。 海上风力机具有单机高功率等特点,通常设计为5MW-20MW[2],相应的风力机的风轮半径将大幅增加。在海上复杂的环境下,气动力、波浪作用力、结构作用力等将形成复杂的耦合作用力体系,给海上风力机的结构响应分析带来了极大的困难。 本文通过动量叶素理论(BEM)计算风力机的气动力,采用模态叠加理论对NREL 5MW海上风力机进行了计算。对风力机的气动力特征及气弹耦合特性进行了系统地讨论。 1气动力计算BEM模型 复杂条件下风力机气动性能的求解是分析风力机气动弹性特征的关键。BEM理论模型将风力机叶片沿展向划分为多个独立的控制单元,假设相互单元之间的流场并不存在气动干扰,从而将三维问题化简为二维问题。极大地提高了计算效率,为风力机的气动弹性响应分析提供了条件。 通过将动量理论与叶素理论耦合并迭代求解,可获得当前翼型条件下的轴向及周向诱导因子和的量值,进而确定当前翼型的作用力。在此基础上将各控制单元的受力沿展向积分即可获得叶片的整体气动特性。 2结构动力学计算模态叠加模型 风力机结构动力学计算模型整体上可以分为模态叠加法、多体动力学计算方法及有限元分析方法。其中模态叠加法通过将叶片的各阶振型乘以响应系数后叠加起来计算其动力学响应,具有快速、高效等特征,是目前风力机气动弹性分析使用的主要方法。本文基于广义作用力方程,利用Duhamel积分可以求得叶片运动数值解,再将各阶模态对应的广义位移转换到物理空间可以得到以下位移结果:

设计计算

设计 一.现有一教学管理系统,ER模型如下: 逻辑模型如下: 学生(学号,姓名,性别,民族) 教师(教师号,姓名,民族,职称) 课程(课号,课名,课程介绍,课程类型,先导课号) 教学班(课号,班级号,学年,学期,限制人数) 教师教学(教师号,课号,班级号,学年,学期,周学时,开始周,结束周) 选课(学号,课号,班级号,学年,学期,成绩) 说明: 1、“周学时”、“开始周”、“结束周”、“限制人数”字段的取值类型为整数型。“成绩”字段的取值类型为实数型。其它字段的取值类型为字符型。 2、“成绩”字段可以取NULL值。 请用SQL语句做如下操作: 1、查询学号为’200617001’的学生,选修课程类型为’专业课’且不及格的课程的课号、课名。 2、统计教师号为‘2002016’的教师,在2008年,上课名为“数据库原理”课的总学时。 3、查询选课门数超过5门的学生学号、选课门数、平均分。 4、请为自己选上‘2008’学年、第‘2’学期、课号为‘180012’、班级号为‘02’的课。 5、把‘2008’学年、第‘1’学期,选修课名为‘数据库原理’、成绩低于60分的“蒙古族”学生的成绩提高10分。 6、删除2004级,所选课的课程都及格的学生的选课信息。 参考答案: 1. Select 课号,课名 From 选课,课程 Where 选课.课号=课程.课号and 学号=’200617001’and 课程类型=’专业课’and 成绩<60 2、 Select 周学时×(开始周-结束周+1)as 总学时 From 教师教学,课程 Where 教师教学.课号=课程.课号and 教师号=’2002016’and学年=’2008’and 课名=’数据库原理’ 3、

2MW风电机组叶片气动性能计算方法的研究_刘勋

新能源专题 2009年第8期 68 2MW 风电机组叶片气动性能计算方法的研究 刘 勋 鲁庆华 訾宏达 孙伟军 (北京北重汽轮电机有限责任公司,北京 100040) 摘要 本文以某2MW 风电机组的叶片为实例,总结出一套工程上实用的叶片气动性能分析的方法。使用XFOIL 和Fluent 软件,对叶片不同截面的翼型计算了小攻角范围内的气动性能,并对两种计算结果进行对比分析;在翼型小攻角气动性能的基础上,利用Viterna-Corrigan 修正将翼型的气动性能扩展到±180°全攻角范围。使用这些全攻角翼型气动性能数据,在Bladed 软件中建立风电机组的叶片模型,分析计算该叶片的气动性能、整机功率曲线等性能。通过最终计算结果与原设计值对比,表明采用该方法分析风电机组叶片的气动性能是可行的。 关键词:风力发电机;叶片;气动性能 The Research of Aerodynamics Performance Calculation Method of 2MW Horizontal Wind Turbine Blades Liu Xun Lu Qinghua Zi Hongda Sun Weijun (Beijing Beizhong Steam Turbine Generator Co., Ltd, Beijing 100040) Abstract A suit of aerodynamics performance analyses method in the practical engineering calculation is obtained by research the blade of a 2MW horizontal axis wind turbine. With the software of XFOIL and Fluent, the aerodynamic performances of airfoil in the small angle of attack arrange are calculated in the different radial location. The XFOIL and Fluent calculation results are compared. On the base of the small angle of attack arrange, using the Viterna-Corrigan post stall modified, the aerodynamic performances of the airfoil are extended from -180°to +180°angle of attack range. With the XFOIL calculation data of all angle of attack range, the blade models of this wind turbine are founded in the software of bladed. The simulation results of the blade root load and the power curve of aerodynamic performance on the wind turbine are obtained. The Comparison between simulation results and original design shows the aerodynamics performance analyses method is viable. Key words :wind turbine ;blade ;aerodynamics performance 1 引言 风能是一种清洁、用之不竭的能源。风能不仅储量丰富,而且分布广泛。2006年国家气候中心对我国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下,全国陆地上离地面10m 高度层风能资源技术可开发量为25.48 亿kW [1] 。此外,风能的开发相较与其他新能源也更为容易。因此,近年来,风力发电得到了国家、社会、各投资研发机构的高度关注,而风电产业也进入了高速发展的时期。 风力发电机组通过叶片吸收风能,将其转化为传动链的机械能。风机叶片的设计是兆瓦级大型风电机组的最为重要的关键技术之一。而叶片气动性能计算是风机叶片及风电机组设计和校核中的重要环节。目前比较成熟叶片气动分析方法是基于叶素动量理论(BEM ),并针对风机叶片特点在该理论 上作了相应的经验修正。而Bladed 软件正是以该方 法为基础开发的风机性能计算商用软件,已广泛用于风机叶片及风机机组的设计、认证。 通过这些方法及软件作风机叶片的气动性能分析,都需要获得叶片所用翼型的气动特性曲线,如 升力、阻力系数曲线等。通常,各类翼型的这些气动特性都是在风洞中实验获得,其实验过程需要专业的设备,且周期长费用高。此外,风机专用低速翼型,如DU 系列、FFA-W 系列、Ris?-A1系列, 其气动特性通常是不公开的。 本文以某2MW 变速变桨风电机组为实例,通过数值模拟的方法得到该机组叶片所用翼型的气动特性曲线,弥补了实验方法的不足。在此计算结果的基础上,通过Bladed 软件建模分析,获得该风电

风力机的基本参数与理论

风力发电机风轮系统 2.1.1 风力机空气动力学的基本概念 1、风力机空气动力学的几何定义 (1)翼型的几何参数 翼型 翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。下面是翼型的几何参数图 1)前缘、后缘 翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。 2)弦线、弦长 连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。 3)最大弯度、最大弯度位置 中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。 4)最大厚度、最大厚度位置 上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。

5)前缘半径 翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。 6)后缘角 翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。 7)中弧线 翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 8)上翼面凸出的翼型表面。 9)下翼面平缓的翼型表面。 (2)风轮的几何参数 1)风力发电机的扫风面积 风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。 下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。 根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速

midas_civil简支梁模型计算

第一讲简支梁模型的计算 1.1工程概况 20米跨径的简支梁,横截面如图1-1所示。 图1-1横截面 1.2迈达斯建模计算的一般步骤 第一步:建立结点 前第二步:建立单元 处 第三步:定义材料和截面 理 第四步:定义边界条件 第五步:定义荷载工况 第六步:输入荷载 第七步:分析计算 后 处 理 第八步:查看结果 1.3具体建模步骤 第01步:新建一个文件夹,命名为Model01,用于存储工程文件。这里,在桌面的 “迈达斯”文件夹下新建了它,目录为C:\Documentsand 桌面迈达斯模型01。 第02步:启动MidasCivil.exe,程序界面如图1-2所示。

图1-2程序界面 第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。 图1-3新建工程 第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documentsand

桌面迈达斯模型01,输入工程名“简支梁.mcb”。如图1-4所示。 图 1-4保存工程 第05步:打开工程目录C:\Documentsand 桌面迈达斯模型01, 新建一个excel文件,命名为“结点坐标”。在excel里面输入结点的x,y,z坐标 值。如图1-5所示。 图 1-5结点数据 第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。如图1-6所示。

图1-6建立节点 第07步:打开工程目录桌面迈达斯模型01,再新建一个excel文件,命名为“单元”。在excel里面输入单元结点号。如 图1-6所示。

风力机叶片翼型的研究现状与趋势

风力机叶片翼型的研究现状与趋势 风能作为一种可再生能源,在煤、石油和天然气等非可再生能源日益耗竭以及全世界对可持续发展要求的情况下,正越来越来受到世界各国的关注。风电技术复杂,风力发电机组的叶片作为捕获风能最直接的部件,其价值占到整机价值的25%左右。叶片的直径、弦长、各截面翼型选择、纵向的扭角分布等都会影响到叶片的气动性能,进而影响风轮的功率输出。而叶片的结构、材料和工艺直接影响风机的强度、疲劳、震动、载荷及成本等。因此,设计良好的叶片,翼型应该具有较佳的空气动力学性能,良好的结构和制造工艺,这样风力发电机组才能稳定运行并具有高的功率输出[1-3]。目前,因为风力发电机组向着更高的额定功率发展,最大的叶轮直径已经达到125m,风电机组对叶片的气动性能、结构和工艺提出了更高的要求。 一、国外发展与研究状况 风机翼型的设计分析理论从根本上决定风机整体的功率特性和载荷特性。因为其重要性,翼型设计分析理论的研究一直是世界各国专家和学者的科研热情所在。风机翼型的发展来源于低速应用的翼型,如滑翔机翼型。早期的低速翼型运用在风机上有WortmannFX-77翼型和NASALS翼型。在20世纪80年代,因为美国国家可再生能源实验室(NREL)的Tangler和Somers发展了许多的NREL翼型,对促进风机翼型的发展做出了很大贡献。同时,他们也提出了翼型的反设计方法。对NREL系列翼型的相关阐述可以在NREL一系列报告中找到。后续的瑞典的Bj·rkA发展了FFA-W系列的翼型,荷兰代尔夫特理工大学的TimmerWA和vanRooij也对风机翼型的发展做出了贡献,发展了DU系列的翼型。20世纪90年代中期,丹麦Risφ风能重点实验室开始研制新的风机翼型,到目前为止已经发展出了Risφ-A1,Risφ-P和Risφ-B1三种翼型系列。 翼型研究包括两方面,翼型分析和翼型优化设计。翼型分析是研究翼型气动性能,是翼型优化设计的基础。翼型设计有两种方法,包括直接数值优化设计方法和反设计方法。直接数值优化设计方法将CFD跟最优化设计理论结合起来,以升力或者升阻比为目标函数,通过不断修正翼型的几何形状,获得目标函数所要求的气动性能最佳的翼型几何形状。反设计方法的目标函数主要是目标压力分布,首先要给定一个基础翼型,通过翼型几何和流体控制方程,不断逼近所需的目标压力分布,从而得到满足给定流场分布的翼型几何。Jacobs的翼型设计方法是最早的翼型反设计方法,用这种方法设计的NACA6系列的翼型至今都在用。德国的学者Mangler(1938)和英国学者Lighthill(1945)首先提出基于保角变换的翼型反设计方法,但是计算冗长。Mangler和Lighthill的方法而且有三个重要缺点:基于保角变化的翼型反设计方法只能指定需要的翼型表面速率分布作为翼型保角变换后圆角坐标的一个函数,而不是翼型表面弧长的一个函数;并且因为指定的速率分布有三个积分限,需要定义三个自由参数,会导致不合理的速率分布和不合理的翼型形状;理论本身是单点反向翼型设计方法(速率分布只能在单个攻角下获得),不满足多点反设计的需要。20世纪60年代后,随着计算机技术的发展,翼型反设计方法更多地强调通过计算机辅助翼型设计。美国NREL的Eppler和Somers编了一个

相关文档
最新文档