钢结构厂房实体模型的有限元模拟分析

钢结构厂房实体模型的有限元模拟分析
钢结构厂房实体模型的有限元模拟分析

钢结构厂房实体模型的有限元模拟分析

摘要:门式刚架轻型厂房近年来在我国取得了广泛的应用,本文运用有限元分析软件对门式厂房进行了整体有限元模拟分析,提出了在门式刚架厂房设计中应注意的一些问题。

关键词:厂房实体模型门式钢结构有限元模拟分析

轻型门式厂房是目前国内发展速度最快的新型钢结构形式,它以其强度高、施工速度快、受力性能好等优点被广泛地应用于工程建设中。本文通过对门式刚架厂房的模型设计与制作,对该种结构的设计与施工中应注意的问题作如下初步分析和探讨。

1.门式刚架轻型厂房的模型模拟与分析

模型的计算假定:(1)本模型所有构件假定为理想弹性材料,符合hooke定律;(2)刚架梁柱连接用3节点的beam189单元。厂房檐口高度6.2m,跨度9m,柱距6m,屋面活载0.65kn/m2,屋面恒载0.25kn/m2等。

有限元法将所研究的工程系统(engineering system)转化成一个有限元系统(finite element system),该有限元系统由节点(node)及单元(element)组合而成还包含工程系统本身所具有的边界条件(约束条件、外力荷载等),它可以转化成一个数学模式,并据此得到该有限元系统的解答,然后再通过节点单元表现出来。有限元分析流程的解题步骤如下:(1)结构离散化:结构离散化是有限元法分析的第一步,即将要分析的结构分割成有限个单元体,离散后单元与单元之间利用节点相互连接起来;单元节点的设

置、单元性质,以及单元的数目等都应视问题的性质、计算精度和所要描述的变形形态而定。有限元法中分析的结构已不是原有的物体或结构物,而是通过一定方式连接起来的同样属性材料的集合体。(2)单元特性分析:位移模式—单元属性—等效节点力。(3)整体刚度矩阵组装应用结构的平衡条件和边界条件把各个单元按

原结构重新组装起来,形成整体刚度矩阵:ku=f。(4)求解未知节点位移求解方程组,得出未知节点位移。应用弹塑性力学中的几何方程和物理方程,求出单元的应力、应变。一般完整的有限元程序(finite element program)包含前处理(preprocessing)、解题程序(solution)和后置处理。在前处理中,首先建立有限元单元模型所需输入的资料,单元内节点排序、材料特性等;划分网格,形成单元,再加入边界、荷载条件。在解题程序中计算出单元刚度矩阵{u}={f}求解。最后,在后置处理中,通过图形接口将解题部分得到的解答以等位移图、等应力图等方式显示出来。

2.门式刚架的分析结果

计算步骤:首先材料符合基本假定;有限元模型的单元属性选择;定义材料属性的定义;有限元的几何模型建立;有限单元的划分,如利用分网工具(mesh tool)依次拾取几何体素,分配相应的单元属性,包括材料号(mat)、实常数号(real)、单元类别号(type)和单元划分尺寸(size)等,然后选择全体(select all),进行划分(mesh);最后是求解设置,静力计算一般图门式刚架厂房的有限元模型分析选取preference为structural,对模型采用非线

性有限元分析,同时考虑材料非线性和几何非线性;采用von mises 屈服准则;按理想弹塑性考虑;采用牛顿-拉斐逊法自动不断修正弹塑性刚度矩阵,追踪非线性变化过程。有限元建模如图所示。3.结论

通过对门式刚架厂房进行有限元模拟分析,得出以下建议:(1)为了有效地增加门式刚架的受力稳定性,应合理地设置刚架支撑体系;

(2)采用变截面的梁和柱,能够有效地较少用钢量;

(3)可对梁柱连接采用半刚性连接,以改善其抗震性能。

本文运用有限元分析软件,对门式厂房进行了整体有限元模拟分析,提出了在门式刚架厂房设计中应注意的一些问题。

参考文献:

[1]黄鹏程.轻钢结构厂房设计的探讨[j].柳钢科技,2005,(03).

[2]宋宝东,王纳群.门式刚架轻型房屋钢结构设计中的若干问题[j].中国建筑金属结构,2005,(12).

[3]程习红.门式刚架优化设计[j].安徽建筑,2005,(06). [4]杨海明.门式刚架轻型钢结构的设计与思考[j].有色冶金设计与研究,2005,(03).

中间包结构有限元分析

中间包结构有限元分析 摘要介绍了某钢厂中间包结构存在的问题,简要论述了中间包产生变形和裂纹的机理。利用数值模拟的方法对中间包结构强度和刚度进行有限元分析,通过计算所得的中间包温度场和应力场,显示中间包结构高应力区和强度的薄弱位置,提出改进方案。此外还改变中间包的耐火材料层的厚度和综合导热系数,分析这些因素对中间包温度场和应力场的影响,为中间包结构的优化提供理论支持。 关键词中间包结构强度刚度有限元分析 Finite Element Analysis of the Tundish Structure NI Sai-zhen, LI Fu-shuai, TAO Jin-ming (Metallurgical technology research institute of Beijing in CCTEC , Beijing 100028, China) Abstract In this paper, we introduced the problems of the tundish structure in a steel work at first, and briefly discussed the mechanism for the occurring of the tundish deformation and crack. Using the finite element method to analyze strength and stiffness for the tundish structure, according to the temperature and stress field, we can find hot point and high stress region. The effects of the fireproof material thickness and the total conductive coefficient on the temperature and stress field are also studied. Key words tundish structure strength stiffness finite element analysis 1 前言 一直以来对中间包的研究都侧重于中间包内流场的分析,有关中间包流场研究的文章很多[1-5],而对于中间包包体本身结构分析,研究者却很少关注,在这方面的文献也较少。中间包的强度以及结构的稳定性对于浇注的顺利进行以及保证铸坯质量方面同样起到很重要的作用。在热应力以及外载荷作用下中间包会产生变形,改变水口间的相对位置。如果变形过大的话,会影响到水口对中操作。包体的变形还可能使其产生裂纹,严重破坏包体结构,从而发生事故,不利于安全生产的进行。 某钢厂中间包为七机七流,铸机断面尺寸为150mm×150mm,流间距为1250mm,浇注周期约为36min,主要生产碳素结构钢Q235B,优质碳素结构钢45#,低合金结构钢 25MnSiV、Q345B等钢种,该中间包为T形结构,容量为40吨。中间包内衬耐火材料由外向内依次为工作层、永久层、保温层。该中间包存在以下问题: (1)现场反应变形比较严重,而相应结构的六机六流的中间包变形问题不明显; (2)新的中间包在开始浇铸时,靠四个耳轴支撑,中间底部与中间罐车横梁不接触,但随着浇铸时间的不断增加,中间就会慢慢凹陷,浇铸大约5-6小时后,中间 底部就会与横梁接触; (3)旧中间包或多或少都存在中间凹陷的永久变形,有些变形较大,在浇铸前中间

钢结构厂房开题报告书

附件B: 毕业设计(论文)开题报告 1、课题的目的及意义(含国外的研究现状分析或设计方案比较、选型分析等)1.1 国外钢结构的应用和研究现状 钢结构是土木工程的主要结构种类之一,它在房屋建筑、地下建筑、桥梁、水工建筑、气柜油罐和容器管道中都得到广泛采用。与其他结构如钢筋混凝土结构、砌体结构、木结构等相比,钢结构具有材料强度高、塑性韧性好、重量轻、材质均匀、工业化程度高、施工周期短、密闭性好等综合优势。 钢结构在国外的发展:钢结构建筑在欧美等国家和地区发展较早。18 世纪欧洲革命兴起后, 由于工业上钢铁冶炼技术的发展,钢产量和质量不断提高和改善,钢结构在欧美的应用增长很快,陆续出现了采用钢结构的工业和民用建筑物,不但在数量上日渐增多,而且应用围也不断地扩大,美国、瑞典、日本等国家钢结构建筑用钢量已占钢材产量的30%以上,钢结构建筑面积已占到总建筑面积的40%以上。世界上许多发达国家都非常重视发展钢结构技术,以建造超高层的钢结构摩天大厦及造型优美、功能完善的大跨度公用建筑和高度高、跨度大的钢结构工业厂房, 来显示其经济实力和现代化的建筑技术水平。 钢结构在国的发展:我国钢结构的发展历史比较悠久,早在公元一世纪五六十年代,就成功的建造了一些铁链桥。近代又建造了一些拱桥、跨度较大的铁链桥和一些铁塔。近百年来。在我国各地也出现了少量的工业建筑钢结构和铁路、公路桥梁结构,但这些同欧美等国家和地区相比,差距还是比较大的。新中国成立伊始,百废待兴,当时钢产量很低,每年仅135万吨(2012年已达9.5亿吨以上)。钢结构建设只能依靠联经济及技术援助,当时联援建156项重型工业工厂,包括冶金、重型机械、飞机汽车等工业。上世纪60年代中后期至70年代是钢结构发展的低潮阶段。这个时候国家各部门刚才需求量增多,但钢产量仍然不多,国家提出节约钢材的政策,当时有人片面理解为不用钢结构,于是钢结构工程数量少了。在文化大革命时期更是一切都停下来了。接下来的20年应当是钢结构发展的兴盛时间,由于钢结构具备一些独特优点,已成为建设工程中的主要结构,特别是钢产量持续上升,在1997年达到了1亿吨,给我们发展钢结构创造了有利条件。1998年我国已能生产轧制H型钢,为钢结构提供了新的钢型系列。近10年是钢结构发展的强盛时期,在全国各地已经建造了许多规模巨大而且结构复杂的钢结构厂房、大跨度钢结构民用建筑及铁路桥梁等,我国的人民大会堂钢屋架,和等地的体育馆的钢网架,始皇兵马佣列馆的三铰钢拱架和的鸟巢等。其发展之快、围之广,是空前的,中国也堪称是世界钢结构大国。钢结构建筑的多少,标

钢结构有限元分析

2 受料仓与给料机的钢结构有限元分析 2.1建立有限元模型 如图2.1破碎站主视图和图2.2破碎机布置图,它的工作过程是:卸料卡车间歇把最大入料粒度为1500mm的煤块倒入受料仓,受料仓存储大粒度煤块。刮板给料机把受料仓的大粒度的煤块连续的刮给破碎平台的破碎机。破碎机把最大入料粒度为1500mm 的煤块破碎成最大排料粒度为300mm的煤块,煤块由底部的传送带传出。 图2.1 破碎站主视图 图2.2 破碎机布置图

破碎站钢结构的弹性模量E=200000MPa,泊松比μ=0.3,质量密度ρ=7.8×10-3kg/cm3。破碎站由支撑件H型钢和斜支撑(角钢)组成。在结构离散化时,由于角钢和其它部位铰接,铰接是具有相同的线位移,而其角位移不同。承受轴向力,不承受在其它方向的弯矩,相当于二力杆,所以H型钢用梁单元模拟,角钢用杆单元模拟。破碎站是由受料仓与给料机和破碎平台与控制室两部分组成,故计算时是分别对这两部分进行的。离散后,受料仓和给料机共686个单元,其中梁单元598 个,杆单元88个,节点总数为597个,有限元模型如图2.3和图2.4所示。 图2.3 受料仓与给料机有限元模型 图2.4 受料仓与给料机有限元模型俯视图

2.2载荷等效计算 2.2.1主要结构截面几何参数 破碎站主要结构采用H型钢梁,截面尺寸如图2.5所示,各截面横截面积A,截面 惯性矩I y ,I z 和极惯性矩I如下。 图2.5 截面尺寸 料仓及给料机支撑结构 料仓及给料机六根支撑立柱(H500×400×12×20) A= 215.2mm2,I y=101947×104mm4,I z=21340×104mm4,I=240×104mm4料仓B-B面横梁和给料机E-E、F-F面横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4料仓C-C面和D-D面横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4给料机两根纵梁(H550×400×12×20) A=22120mm2,I y=125678×104mm4,I z=21341×104mm4,I=243×104mm4给料机六根横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4其它横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4 斜支撑的横截面积 ∠125×12:A=2856mm2 ∠75× 6:A=864mm2

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

钢结构厂房结构设计分析

钢结构厂房结构设计分析 王玥 (大地工程开发(集团)有限公司天津分公司300381) 【摘要】随着经济的发展与社会的进步,传统的建筑技术已经慢慢被淘汰了,取而代之的是新型建筑技术的兴起。在现实中,我们常常会看到这样的现象:许多商人投资建厂,用的建筑材料不是传统的红砖绿瓦,取而代之的是钢结构,而且这种建房的思想越来越普及了。为什么投资商们愿意建造钢结构厂房,而不愿意建造砖结构的厂房呢?我认为钢结构的厂房抗震能力好,利于企业发展。除此之外,它还有自己独特的优势。笔者经过近几年的观察与思考并参考了大量的资料,了解到了钢结构的普及程度及具体表现,并对钢结构厂房的结构进行了设计与分析。 关键词:钢结构厂房的普及、钢结构厂房结构设计与分析 中图分类号:TU391文献标识码:A文章编号: 一、钢结构厂房的普及及原因 1.钢结构厂房的普及 走在大街小巷,穿行于城市之间,越来越多的钢结构厂房会映入眼帘,传统的砖瓦结构厂房数量越来越少,这些足以说明钢结构厂房的普及度之大,它已经成为了投资建厂的首选。 2.钢结构厂房受欢迎的原因 (1)钢结构厂房抗震能力强 在现在这个社会,地震频发,企业要想永葆生机,首先要未雨绸缪,预防地震的袭击。而建设钢结构厂房就是首选。汶川地震期间,

一些土砖结构的瓦房经不住地震的破坏,基本都坍塌了,而钢结构的厂房完好无损,这足以说明钢结构厂房抗震能力之强。 (2)钢结构厂房容易拆卸,节省人力物力,非常方便 当企业不能维持发展时,钢结构厂房容易拆除,节省人力物力,能更好的支持企业转型。 (3)钢结构厂房建造方便 传统的建造方式既麻烦又费力耗时,而钢结构厂房的建造非常方便,节省人力物力与时间,成为了建厂的首选。 二、钢结构厂房的结构设计分析 1.撑体系是钢结构厂房的重要组成部分。 该支撑体系包括刚性系杆、屋盖支撑、柱间支撑和隅撑。(1)刚性系杆在刚架转折处。 众所周知,钢架转折处对整栋建筑物的支撑起着至关重要的作用。因此刚性系秆应设置在钢架转折处。而刚性系杆的设置原则是:沿房屋全长设置刚性系杆。 (2屋盖支撑应设置在柱间支撑的开间 使用设有驾驶室且起重量大于一定标准的桥式吊车,在屋盖边缘设纵向支撑,屋盖支撑用符合要求的的圆钢。 (3柱间支撑一般做成交叉支撑。 下柱有门洞时,最好不要设交叉支撑,取而代之的是设立人字撑,柱间支撑夹角应控制在十度到五十度之间。有吊车时,下柱支撑用双角钢,上柱支撑用单角钢;无吊车时柱间支撑用符合一定要求的

GARTEUR 有限元模型修正与确认研究

收稿日期:2003207207;修订日期:2004203225 基金项目:教育部博士学科点专项基金(20010227012)资助项目 文章编号:100026893(2004)0420372204 GARTEUR 有限元模型修正与确认研究 费庆国,张令弥,郭勤涛 (南京航空航天大学振动工程研究所,江苏南京 210016) Case Study of FE Model Updating and Validation via an Air craft Model Structur e FEI Qing 2guo,Z HANG Ling 2mi,G UO Qin 2tao (Institu te o f Vi brati on Engi neering,Nanjing University of Aeronau tics and Astro nautics,Nanjing 210016,China)摘 要:待修正参数的选择以及修正后模型的质量评估是有限元模型修正的两个重要问题。以欧洲学术界广泛采用的GA RTEUR 飞机模型为例,利用基于灵敏度分析的模型修正方法,通过仿真算例研究参数选择对模型修正质量的影响,并以试验数据为目标值对有限元模型进行修正与确认。为全面评估模型的修正质量,引入三级标准对修正后有限元模型进行确认。 关键词:固体力学;模型确认;有限元法;模型修正;参数选择中图分类号:O 248121 文献标识码:A Abstr act:Parameter selection and quali ty validation are of g reat i mpo rtance in fini te element model updating.This paper presents so me results which demonstrate the relationship betw een parameter selection and updated model .s quality throu gh si mulation cases.Three q uali ty levels w ith corresponding validation criteria are emplo yed with an emphasis o n updated mod 2el .s predictio n ability.Results of updating based on exper i mental modal test data are sho w n as an application example.A n aircraft test structure,GA RTEUR,which is g enerally utilized in Europe,is employed in bo th the si mulation case and the exper i mental case.Sensi tivity 2based model updating appro ach is applied. Key wor ds:solid mechanics;model validation;finite element method;model updating;parameter selection 在航空工程中,准确的有限元模型对于动态响应预测以及动态设计至关重要。建模过程中的不确定因素,如离散化误差、材料物理参数的不确定性、边界条件的近似等,导致有限元模型必然存在误差。设计规范规定,有限元模型必须通过振动模态试验或者地面共振试验来检验[1]。 近30年来,有限元模型修正技术得到了长足的发展[2~6]。根据修正对象的不同可将修正方法分为矩阵型方法和设计参数型方法。后者物理意义明确,更具工程应用价值。本文采用基于灵敏度分析的设计参数型修正方法。 基于灵敏度分析的设计参数型修正方法主要包括待修正设计参数选择,灵敏度分析,参数修正以及模型确认等环节。 待修正设计参数的选择是模型修正的起始环节。通常,候选参数是有限元模型存在不确定性因素的参数。近20年虽然发展了很多种参数选择或者误差定位的策略与算法,工程应用中仍然难以准确无遗漏地确定误差参数。因此,有必要讨论参数选择对模型修正质量的影响。 模型确认是模型修正的检验环节。在当前的研究及工程应用中,通常只要求修正后模型的计算结果能够复现修正过程中利用的试验数据。事实上,为全面评估模型的质量,模型的复现能力与预测能力应予以同等重视[7]。本研究引入了三级质量标准对修正后的有限元模型进行确认。 本文采用G ARTE UR 飞机模型为研究对象,通过仿真算例来研究参数选择对模型修正质量的影响,并给出了利用振动模态测试结果对G AR 2TEUR 飞机模型的有限元模型进行修正与确认的结果。 1 模型修正方法与模型确认准则 (1)模型修正方法 模型修正可归结为以下的优化问题[8] Min p +R(p )+2 2,R(p )=f E -f A (p )s.t V L [p [V U (1) 其中:p 代表设计参数;f E ,f A 是结构动态特性试验与分析结果;R 代表残差;V L ,V U 是设计参数的下、上限。 令设计参数的初始值为p 0,动态特性f 是设计参数的隐函数,其泰勒展开式为 第25卷 第4期航 空 学 报 Vol 125N o 14 2004年 7月ACT A AERO NA U TICA E T AS TRO NA U TICA SINICA July 2004

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

ANSYS有限元分析与实体建模

第五章实体建模 5.1实体建模操作概述 用直接生成的方法构造复杂的有限元模型费时费力,使用实体建模的方法就是要减轻这部分工作量。我们先简要地讨论一下使用实体建模和网格划分操作的功能是怎样加速有限元分析的建模过 程。 自下向上地模造有限元模型:定义有限元模型顶点的关键点是实体模型中最低级的图元。在构造实体模型时,首先定义关键点,再利用这些关键点定义较高级的实体图元(即线、面和体)。这就是所谓的自下向上的建模方法。一定要牢记的是自下向上构造的有限元模型是在当前激活的坐标系内 定义的。 图5-1自下向上构造模型 自上向下构造有限元模型:ANSYS程序允许通过汇集线、面、体等几何体素的方法构造模型。当生成一种体素时,ANSYS程序会自动生成所有从属于该体素的较低级图元。这种一开始就从较高级的实体图元构造模型的方法就是所谓的自上向下的建模方法。用户可以根据需要自由地组合自下向上和自上向下的建模技术。注意几何体素是在工作平面内创建的,而自下向上的建模技术是在激活的坐标系上定义的。如果用户混合使用这两种技术,那么应该考虑使用CSYS,WP或CSYS,4命令强迫坐标 系跟随工作平面变化。 图5-2自上向下构造模型(几何体素) 注意:建议不要在环坐标系中进行实体建模操作,因为会生成用户不想要的面或体。

运用布尔运算:可以使用求交、相减或其它的布尔运算雕塑实体模型。通过布尔运算用户可直接用较高级的图元生成复杂的形体。布尔运算对于通过自下向上或自上向下方法生成的图元均有效。 图5-3使用布尔运算生成复杂形体。 拖拉或旋转:布尔运算尽管很方便,但一般需耗费较多的计算时间。故在构造模型时,如果用拖拉或旋转的方法建模,往往可以节省计算时间,提高效率。 图5-4拖拉一个面生成一个体〔VDRAG〕 移动和拷贝实体模型图元:一个复杂的面或体在模型中重复出现时仅需要构造一次。之后可以移动、旋转或拷贝到所需的地方。用户会发现在方便之处生成几何体素再将其移动到所需之处,这样 往往比直接改变工作平面生成所需体素更方便。 图5-5拷贝一个面 网格划分:实体建模的最终目的是为了划分网格以生成节点和单元。在完成了实体建模和建立了单元属性,网格划分控制之后,ANSYS程序可以轻松地生成有限元网格。考虑到要满足特定的要求,用户可以请求映射网格划分生成全部都是四边形、三角形或块单元。

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

破碎站钢结构有限元分析(ANSYS)

破碎站钢结构有限元分析(ANSYS) 摘要本文主要对某煤矿地面生产系统,一次破碎站钢结构进行有限元分析。破碎站由受料仓与给料机和破碎平台与控制室两部分组成。对两部分的钢结构分别进行有限元分析。在结果中找到危险的部位进行具体的分析。首先,建立受料仓与给料机的有限元实体模型。计... 摘要
本文主要对某煤矿地面生产系统,一次破碎站钢结构进行有限元分析。破碎站由受料仓与给料机和破碎平台与控制室两部分组成。对两部分的钢结构分别进行有限元分析。在结果中找到危险的部位进行具体的分析。
首先,建立受料仓与给料机的有限元实体模型。计算等效的载荷,计算出钢结构在载荷下的应力和变形并分析它们的分布情况。
其次,破碎平台与控制室求解过程和上边的一样,但是破碎平台和控制室的连接是铰接,所以在建模的过程中采用耦合的方法进行处理。
最后,对两个有限元实体模型进行模态分析,分别求解出固有频率和模态振型图。

关键词  有限元;钢结构;模态分析

ABSTRACT
This dissertation mainly to an open coalmine ground production system, one broken to stand steel construction finite element analysis. Store -give material machine and broken platform- control room two parts make up the crush station. Finite element analysis to the steel construction of two parts comparatively. Find the dangerous part to carry on concrete analysis of the result.
First of all, set up the finite element of Store -give material machine’s entity model. Calculate the equivalent load; solve out the stress and strain of the steel construction under the load and analysis their distribution situation.
1.1有限元分析方法介绍1
1.2大型有限元分析软件ANSYS介绍2

浅析厂房钢结构施工质量的分析研究

浅析厂房钢结构施工质量的分析研究 近年来,随着现代工业建设的不断创新与发展,在很大程度上使得钢结构厂房得到了前所未有的应用,以其造价成本低、结构性能好、施工速度快等优点在市场上占据了绝对的优势,逐渐成为现代建筑厂房施工建设的首选。但与此同时也应该看到其存在的不足,文章主要针对现阶段我国厂房钢结构在施工建设中存在的一系列质量问题进行简要的分析与总结,并结合实际提出了合理化的解决措施,以便相关人员参考,从而更好地促进我国现代厂房钢结构的建设发展,真正意义上实现促进国民经济建设良好发展。 标签:厂房钢结构;施工质量;控制 引言 厂房钢结构建设作为现代工程建设的重要组成部分,对我国经济建设发展有着不可忽视的重要影响。随着人们生活质量的提高,对于其厂房钢结构建设额提出了新的标准及质量要求。在實际厂房钢结构建设中必须对其进行很好的质量把控,从而才能保障其质量,更好地服务于人,造福于社会。下面文章就厂房钢结构的施工特点及如何进行质量控制进行详细的分析与总结。 1 钢结构的特点 从某种意义上来讲,厂房钢结构建设具备以下等几个方面的特点:第一,钢结构自身重量较轻,且强度较高,能够实现高强度的跨度作业。第二,钢结构性能较好,具有很好地韧性和塑性,通常情况下在正常负荷的压力下能够承载其很好的重力而不出现断裂等现象,并且适应性极强,从根本上保障了质量。第三,拆装方便,施工周期较短。钢结构从其结构特性上来讲是由多种材料组合而成,所以在施工现场及运输过程中都极为方便,施工过程中只要熟练掌握拆装方法就能够对其进行安装并加固。第四,对于环境有一定的保护作用。因为钢结构在施工中所产生的环境噪音及粉尘都相对比其他的施工作业要小,而且施工结束后所产生的建筑垃圾也是比较环保的,可以循环再次使用,不会产生过多的建筑垃圾,影响环境。 2 厂房钢结构施工质量控制 2.1 施工前准备工作 钢结构在施工前必须做好以下等几个方面的工作:第一核实施工作业图纸;第二,针对施工方案对实际施工作业环境进行审查;第三,制定焊接工艺。详细分析如下:(1)施工前必须对施工进行图纸设计,将施工图纸进行二次转化,从而将施工中的各个节点体现在施工图纸上,方便后续工作的完成。(2)施工单位在进行方案确定时要在整个施工作业环境中将质量管理贯穿始终,与此同时还要进行技术交底工作,具有针对性的进行质量控制,然后上报有关部门对其进行质

结构有限元分析的形状处理方法_杜平安

结构有限元分析的形状处理方法 杜平安 摘要 介绍结构形状处理的各种方法,包括类型简化、细节简化、形式变换、局部结构和利用对称性等。 关键词 形状处理 有限元分析 建模 Abstract The processing method is intro-duced in the paper ,including ty pe simplifica tion 、details simplifica tio n 、fo rm tra nsfo rmatio n 、local structure a nd symm etry utiliza tion . Key words Shape processing Finite element analysis Modelling 收稿日期:1999-08-18 1 结构类型简化 根据结构形状、载荷和约束条件的特点,结构类型可分为空间问题、平面问题、轴对称问题、板壳问题和杆件问题等。其中平面问题和轴对称问题的几何模型是一平面图形,在平面上划分网格比在空间内划分要容易得多,单元数量也少得多。因此将空间问题作适当近似,使其按平面问题来处理,则可使分析过程大为简化。在图1a 中,计算轮毂与轴过盈配合的接触压力时,由于辐孔尺寸较小且远离接触面,因此可以不考虑辐孔而将轮毂简化为轴对称结构。同样,在计算图1b 中螺栓与螺母螺纹面上的接触压力时,由于螺旋升角较小,也可以不考虑升角的影响,而将螺栓与螺母简化为轴对称结构 。 图1 结构类型简化结构 2 结构细节简化 细节是结构中相对尺寸很小的局部,如倒圆、倒角、退刀槽和加工凸台等。根据网格划分特点,一条直线或曲线至少要划分一个单元边;一个平面或曲面至少要划分一个单元面;一个圆至少要用三个单元边离散,因此几何模型中的细节将限制细节处及其附近的网格大小,从而影响整个结构的网格分布和增加网格数量。图2是有无细节时自动划分出的网格,从中可以看出细节对网格划分的影响 。 图2 细节对网格划分的影响 因此,建立几何模型时应尽量忽略一些不必要的细节。在静力分析中,高应力区域中的细节会引起应力集中,细节大小和形状对应力影响很大,这些细节不能忽略。而处于结构低应力区的细节一般可以忽略。在动力计算中,由于结构固有频率和模态振型主要取决于结构的质量分布和刚度,因此细节一般可以忽略。在热分析中,细节不会在结构中引起局部高温,这时也可以考虑较少的细节。 3 结构形式变换 有些结构尽管形状不是很复杂,但划分网格却很困难。如果对结构形式作适当变换,则可使网格划分变得容易,划分出的单元更少。例如图3a 所示的带肋板,划分网格时需要用板单元和梁单元组合,且两类单元为偏心连接,自动分网难以满足这种要求。如果将带肋板变换为平板(图3b 所示),则在平板上划分网格要容易得多。 由于带肋板用于焊接而成支撑箱式立柱,其特 性要求主要是刚度,因此可按等刚度条件作为变换 · 26·《机械与电子》2000(1)

钢结构厂房设计讲解

6、7道翻车机封闭厂房 [钢结构设计粗算] 作者:张辉 单位:神华宁夏煤业集团太西洗煤厂 时间:2015.5.18

§建筑部分 一、平面设计 根据现场条件:采用双跨钢结构,跨度为24米,。参照工程应用实例,厂房平面布置为双跨矩形平面。其柱网采用6m间距,厂房出入口尺寸取3900 ㎜×3300 ㎜。屋顶坡度取1/10,为考虑到运输工具进出厂房的便利及防止雨水侵入室内,取厂房室内外高差为 200mm。 二、厂房天然采光设计 根据我国《工业企业采光设计标准》规定可知,本厂房的采光等级为III级。本厂房拟采用混合采光,双侧采光+顶部采光。 纵墙上的开窗总面积为:(2.6×3×34=265m2),顶部为2100×3000×10型PC阳光板(如图2-1所示),白天采光性能好,满足采光要求,阳光板拼接方式示意图如图2.1所示。 图2-1 阳光板 图2-2 阳光板拼接方式示意图

三、厂房屋面排水设计 采用檐沟外排水,压型钢屋面及檐沟构造做法如图3-1所示。 图3-1 压型钢屋面及檐沟构造示意图 四、厂房立面设计 厂房立面采用保温彩钢板,利用矩形窗,墙体勒脚等水平构件及其色彩变化形成立面划分形状,使立面简洁大方,具有开朗,明快的效果。门窗框口包角板以及女儿墙盖板均采用蓝色钢板,以丰富立面,同时也突出了门窗的重点部位。 五、厂房的构造设计 1.外墙 本厂房外墙下部为200mm高240mm厚的砖砌墙体,上部为压型钢板,以避免压型钢板直接着地而产生锈蚀。压型钢板采用保温复合式压型彩钢板,并通过自攻螺丝与焊接在立柱间的矩形方管连接。压型钢板外墙构造力求简单,施工方便,与墙梁连接可靠。转角处以包角板与压型钢板搭接,搭接长度为100mm,以保证防水效果。 图5-1 纵墙与山墙角部节点示意图

钢结构稳定性分析

钢结构稳定性分析 钢结构稳定性分析 O石磊 摘要:稳定分析是研究结构或构件的平衡状态是否稳定的问题。在铜结构体系,其稳定性和强度处于同等重要的地位,而目前国内学者研究结构 稳定性方面所作工作较少。本文对钢结构稳定问题类型,稳定计算的特点和方法进行了分析和探讨。 关键词:稳定分析;平衡状态;钢结构体系 一、引言 稳定分析是研究结构或构件的平衡状态是否稳定 的问题。处于平衡位置的结构或构件,在任意微小外界 扰动下,将偏离其平衡位置,当外界扰动除去以后,仍能 自动回复到初始平衡位置时,则初始平衡状态是稳定 的,或称稳定平衡。如果不能回复到初始平衡位置,则初 始平衡状态是不稳定的,或称不稳定平衡。如果受到扰 动后不产生任何作用于该体系的力,因而当扰动除去以 后,既不能回复到初始平衡位置又不继续增大偏离,则 为随遇平衡或中性平衡(Neutral Equilibrium)。结构或构 件由于平衡形式的不稳定性,从初始平衡位置转变到另 一平衡位置,称为屈睦(BucHe),或称为失稳。强度与稳 定有着显著区别。强度问题是指结构或者中个构件在稳 定平衡状态下由荷载所引起的最大应力(或内力)是否超 过建筑材料的极限强度,因此是一个应力问题。极限强 度的取值取决于材科的特性,对混凝上等脆性材料,可 取它的最大强度,对钢材则常取它的屈服点。稳定问题 则与强度问题不同,它主要是找出外荷载与结构内部抵 抗力间的不稳定平衡状态,即变形开始急剧增长的状 态,从而设法避免进入该状态,因此,它是一个变形问 题。如轴压柱,由于失稳,侧向挠度使柱增加数量很大的 弯矩,因而柱子的破坏荷载可以远远低于它的轴压强 度。显然,轴压强度不是柱子破坏的主要原因。 二、稳定问题的主要类型 1第一类稳定问题——平衡分岔失稳。完善的(即无

2D实体模型及有限元模型的建立

2D实体模型及有限元模型的建立 1. 设定分析模块:main menu: preferences: structural-OK (结构静解析选择) 2. 创建实体模型:main menu: preprocessor>modeling-create-areas-rectangle(矩形例) -by 2 corners(三种方法) 输入:x,0; y,0: W,10; H,20; OK 或,拾取2对角点(拾取栏同时显示2点的坐标)-OK 3. 材料属性定义:main menu: preprocessor>material properties>constant-isotropic(各向同性, 各向异性两种),指定材料1-OK, 定义EX=某常数(15)-OK 4. 定义单元类型:main menu: preprocessor>element type>add/edit/delet 选择add,单元类型选择solid(实体)-quad 4node 42-OK-close 5. 网格划分:main menu: preprocessor>meshtool-smart sizing-Mesh, Pick拾取区域,OK (智能网格划分,多种划分方法) 6. 加载约束载荷:main menu: solution>loads-apply-structural-displacement>symmetry B.C. >on lines, 拾取约束线,对称约束,OK 实体模型加载:main menu: solution>loads-apply>pressure(应为拉应力)>on lines Pick,拾取顶线,Apply, p=30, OK (施加均布压力于拾取线上,输入均布压力值,apply, OK) 7. 进行求解:main menu: solution>solve-current LS, OK 8. 结果的绘图和列表: (1)绘变形图:main menu: general postprocessor>plot results>deformed shape(变形/原形)(2)变形动画:utility menu: plotctrls>animate> deformed shape(变形/原形) (3)节点反力列表:main menu: general postprocessor>list results>reaction solution (4)应力等值线:main menu: general postprocessor>plot results>contour plot nodal solution (5)应力等值线动画:utility menu: plotctrls>animate> deformed results 均布载荷p 对称性1/4解析 注:各向同性材料薄板拉伸,均布载荷p=50N/cm,材料E=15Mpa,交互模式下分析。

钢结构工业厂房设计要点分析

钢结构工业厂房设计要点分析 发表时间:2019-09-03T13:38:33.120Z 来源:《河南电力》2019年1期作者:王晓明 [导读] 钢结构工业厂房的广泛采用,使其在规模、高度、横向跨度和建造难度上都不断刷新着一项项新记录,极大地增强了我国工业厂房的建设能力。 王晓明 (身份证号码:622 627 1985 0129 xxxx) 摘要:我国工业化进程在近些年取得了快速发展和显著成就,工业厂房作为重要的生产场所和生产要素,其在设计理念、制造工艺和安装技术方面也都取得了长足进步。钢结构工业厂房具有高稳定性、高性价比和可持续利用的建筑及材料特点,这不仅提升了工业厂房的质量和环保品质,增加了工业厂房的功能性,同时还降低了建设成本和后续的改进成本,为满足日益复杂的功能性需求、越来越严格的质量环保标准及安全性要求提供了有利条件。钢结构工业厂房的广泛采用,使其在规模、高度、横向跨度和建造难度上都不断刷新着一项项新记录,极大地增强了我国工业厂房的建设能力。 关键词:工业厂房;钢结构设计;具体应用 引言 随着我国工业化进程不断加快,钢结构厂房建设应用范围逐步扩大,因此优化设计理念、增强钢结构厂房的安全实用性和节能环保性就成为十分必要的事项。布局合理,带有前瞻性眼光的设计方案是良好的设计前提,方案具体的实施和执行要依靠结构工程师扎实的专业知识和丰富的工程经验来完成,一个成功的钢结构厂房项目设计,需要优秀的方案和精良的具体设计,二者缺一不可。本文主要结合某公司钢结构生产车间厂房案例,对钢结构厂房设计要点进行如下分析:钢结构厂房的工艺设计、荷载设计、抗震设计、整体分析计算及优化、加强防火设计和防腐设计等,明确各项设计节点的特点,全面提升项目建设质量,为企业生产发展提供稳定场所。 1钢结构工业厂房的相关特点 1.1 钢结构重量轻 相比钢筋混凝土等常见的工业厂房建筑材料来说,具备同等承载能力的钢结构自重占比要少许多,构件截面也小,运输成本低,安装方便快捷且对环境友好无污染,同等建筑面积而所得净空间较大,并且还可以降低对地基承载力的要求,从而降低工程造价。钢材由于其本身的强度较高,延性、韧性和塑性都很好,钢结构构件适合在车间预制加工,精度高,质量好,大批量生产时也易于控制并保证质量好。在厂房的安装过程中,钢构件从生产车间运至安装工地,只需通过螺栓和焊接的方式按照施工图纸搭建连接,较为简单灵活。钢结构可适用于开间跨度更大的结构,这是其十分重要的优势,比混凝土的开间要大上60%左右,大大满足了工业厂房设计的大跨度性趋势。 1.2节能环保 在建造工业厂房过程中,钢结构的制造和安装不会对周边生活环境带来很大的影响,同时钢材还可以重复的进行利用。而钢筋混凝土结构的情形就大大不一样了,其由钢筋和水泥砂浆共同组成,需要借助大型工程机械大量的工地浇筑和振动机振捣密实,施工噪声大,材料回收利用率特别低,对环境造成污染,对资源造成浪费,增加了经济成本。 1.3防火性差 钢结构有一定的耐热性却不防火,当温度到达450℃~650℃时,强度下降极快,在600℃时已不能承重,只有在200℃以下时钢材的性质变化不大。《钢结构设计标准》GB50017-2017规定,钢结构受热高于100℃时,应进行结构温度作用验算,根据不同情况采取措施。因此,必须重视钢结构厂房的防火以及对温度的控制,要清晰厂房内生产工艺环节中易燃性物料的贮存、投料及成品等各环节的运送流程,合理规划厂房空间布置情况,并做好钢结构的耐热耐火涂层和热辐射屏蔽的防护工作,防止火灾的发生造成生命和财产的损失。 1.4耐腐蚀性差 钢材的耐腐蚀性较差,钢结构厂房建筑需采取严格有效的防腐措施,在高腐蚀性环境中使用的钢结构,必须对其作定期检查和维护。因此,钢结构的维护费用高于钢筋混凝土结构。 2钢结构工业厂房设计的原则 2.1 整体布局 工业厂房选址和规划是十分关键的问题,应尽可能使厂房选在合理的区位。好的选址规划必须考虑原材料和产品的运输传送快捷经济,考虑动力和能源的有效供应,考虑供水和排污的合理规划,考虑自然采光和自然通风占比最大化等,必须将各方便利弊综合权衡,找到最优化的整体解决方案和整体布局设计,使资源合理分配,高效利用,实现绿色环保的可持续效益。 2.2 内部结构 内部结构设计时要遵循整体布局方案设计,进行内部空间的合理划分,使各个生产环节有足够的空间保障,实现功能合理且工艺协调性良好。现阶段我国钢结构工业厂房建设布局不合理的现象时常发生,在设计建造过程中没有做到空间比例协调,将厂房空间随意划分,利用很不合理,出现厂房资源的错配和浪费。 2.3 成本造价 成本造价问题不论在传统的砖混结构、钢筋混凝土结构,还是钢结构的工业厂房设计,都是极其重要的,是直接影响建造企业投资决策的重要因素。钢结构设计人员首先应努力做好投标报价阶段的设计工作,考虑方案要尽可能依据企业生产工艺的要求,将结构的布置方案考虑得更加周全细致,详细评估厂房结构各主要材料的最大最小用量,并对材料的现行市场价格进行调研判断其浮动趋势。其次要注重设计过程中用钢量的合理控制,做到结构的安全性和经济性兼优。 3钢结构工业厂房的设计应用 3.1 应用项目案例概述 某公司钢结构生产车间厂房,建筑面积15288m2,长度196m,宽度78m,厂房结构采用门式钢架体系(24m+30m+24m),柱距

相关文档
最新文档