线性代数的一些证明题分析

线性代数的一些证明题分析
线性代数的一些证明题分析

线性代数一些证明题 1 题目

设n 阶可逆矩阵A 满足A 2=A ,求A 的特征值。 知识点

特征值与特征向量

矩阵的行列式

解题过程

解:因为A 2=A

所以A 2-A =0

所以det(A 2-A )=det[A (A -E )]=det(A )det(A -E )=0 A 为可逆矩阵,所以det(A )≠0 所以det(A -E )=0

所以A 的特征值为1.

常见错误

设存在λ,使Ax =λx 成立 则 det(Ax )=det(A )det(x )

=det(λx )

=n λdet(x ) (错误在于向量取行列式)

所以 有)det(A n =λ成立.

又因为A 2=A

det(A )2=det(A), 即det(A )=0或det(A )=1.

由于A 为可逆矩阵,det(A)≠0. 所以 det(A )=1 1=n λ

当n 为奇数时,λ=1. 当n 为偶数时,λ=±1.

相关例题

设A 为n 阶矩阵,若A 2=E ,试证A 的特征值是1或-1. 2题目

设A 是奇数阶正交矩阵,且det(A )=1,证明det(E -A )=0. 知识点

①正交矩阵的定义:A T A=E

②单位矩阵的性质:EA=AE=A E T =E

③矩阵运算规律

④转置矩阵的性质:(A+B )T =A T +B T

⑤det(A )=det(A T )

⑥det(AB )=det(A )det(B ) ⑦det(-A )=(-1)n det(A )

解题过程

∵A 是正交矩阵

∴E -A= A T A -A= A T A -EA=( A T -E )A ∵det(A )=1

∴det(E-A)=det((A T-E)A)=det(A T-E)det(A)=det(A T-E)

∵det(E-A)=det(E-A)T=det(E-A T)

∴det(A T-E)= det(E-A T)= det(-(A T-E))= (-1)n det(A T-E) ∵n为奇数

∴(-1)n=-1

∴det(A T-E)=0

∴det(E-A)=0

常见错误

①误以为det(E-A)= det(E)-det(A),于是det(E-A)=1-det(A)=1-1=0

②∵det(A)=1

a·2a·…·n a=1(其中1a,2a,…,n a为A作初等变换变为上三角形

1

后对角线上的元素).

∴det(E-A)=(1-

a)(1-2a)…(1-n a).

1

∵det(E-A)=det((A T-E)A)=det(A T-E)det(A)=det(A T-E)

且det(A T-E)= (

a-1)(2a-1)…(n a-1).

1

∴(1-

a)(1-2a)…(1-n a)=(1a-1)(2a-1)…(n a-1)

1

= (-1)n(1-

a)(1-2a)…(1-n a)

1

∵n为奇数

∴(-1)n=-1

∴(1-

a)(1-2a)…(1-n a)=0

1

∴det(E -A )=0

以上证法先把A 变为上三角,再用E 减去变化后的A ,再求行列式,这是错误的。

相关例题

证明:若A 为正交矩阵,则det(A )=±1. 3 题目

试就a,b 的各种取值情况,讨论下列线性方程组的解,若有解,则求出解。

???

??-=++-=+-++=-+3

)2(33)2()2(2132321321x b a ax x b x a x x x x (1)

知识点 线性方程组解的结构

解题过程

解:B=????

??????-+---+-3 2b a 3 03 2 2a 21 1 1 1b ????

??????-+---3 2b a 3a 01 b a 01 1 1

1 122r r -

??

??

??????--0 b a 0 0 1 b a 0 1 1 1

1 (1)当a —b ≠0,且a ≠0时,rank(B)=3,增广矩阵的秩也等于3,而且等于未知数的个数,故方程组(1)有唯一解。其解为: ;11 ,1 ,0123a

x a x x -===

(2)当a-b=0,且a ≠0时,rank(B)=2,增广矩阵的秩也等于2,秩小于未知数的个数,此时故方程组(1)有无穷多解。

其解可由132=-bx ax ,解得,132x a

b a x +=,代入第一个方程

1321=-+x x x 得到31111x a b a x ??

?

??-+??? ??-=;

一般解为:???

?

??

???=+=+=-=-+-=任意)(1

11113333

231

x x x a x a b a x a

x a b a a a x (3)当a=0,b 为任意数,

此时增广矩阵可化为:??

??

??????---0 b a 0 01 a 01 1 1

1b ????

??????--1 0 0 01 b 0 01 1 1

1 可见,rank(B)=2, 但增广矩阵的秩为3,所以方程组(1)无解, 常见错误

233r r -

在讨论带参数的线性方程时,尽管初等变换结果正确,也会产生讨论不全的错误。

如,当a ≠b 时,就说原方程有唯一解,没有指出a ≠0,当a=b 时,就说原方程组有无穷多解,没有指出a=b ≠0,等等。

相关例题

确定a,b 的值,使下列方程组

??

?

??=+-=+-++=-+3)2(3 3)2()2(21

32321321x b a ax x b x a x x x x

(1) 有唯一解; (2) 无解;

有无穷多解,并求出通解。 4 题目

若123,,ααα线性无关,4112233k k k αααα=++,其中123,,k k k 全不为0. 证明234,,ααα线性无关. 知识点 向量线性相关

解题过程

证法一:(从定义出发)

设存在常数123,,k k k ''',使得1223340k k k ααα'''++= 已知4112233k k k αααα=++,代入上式,得

12233112233()0k k k k k k ααααα'''++++=

化为: 131********()()0k k k k k k k k ααα'''''++++= 由题意知:123,,ααα线性无关

131********k k k k k k k k ?'??

''∴+??

''+??= ==

123,,0k k k Q 全不为

1230k k k '''∴ 解得===

由定义,知234,,ααα线性无关 证毕

证法二:(由初等列变换,秩相等)

4112233

23423112233(,,)(,,)k k k k k k αααααααααααα=++???????→++由

322

332

2311(,,)c k c c k c k ααα--???→

31

/231(,,)c k ααα???→

由于初等变换不改变矩阵的秩,所以由123,,ααα线性无关,知

231(,,)ααα

的秩为3,所以234(,,)ααα秩也为3,推出234,,ααα线性无关

证法三:(反证法) 假设234(,,)ααα线性相关.

则存在不全为0的常数123,,k k k ''',使得1223340k k k ααα'''++=

已知4112233k k k αααα=++,代入上式,得

12233112233()0k k k k k k ααααα'''++++=

化为: 131********()()0k k k k k k k k ααα'''''++++=

123,,0k k k Q 全不为

13123233 ,,0k k k k k k k k '''''∴++ 不全为

(否则,由13123233 0k k k k k k k k '''''++===得1230k k k '''===) 即 123,,ααα线性相关, 与题目已知条件矛盾. 所以假设不成立, 即 234(,,)ααα线性无关. 5

题目

设121,,,n r ηηη-+L 是AX B =的解且线性无关,()R A r =,试证AX B =的任一解可表示为

112211n r n r X k k k ηηα-+-+=+++L ,

其中1211n r k k k -++++=L

知识点 基础解系 方程组解的结构

解题过程

证明 121,,,n r AX B ηηη-+=Q L 是的解

11211,,,0n r n r n r n r AX ηηηηηη-+-+--+∴---=L 是的解

由11

211

121,,,,n r n r n r n r c c c c n r n r c c ηηηη-+-+--+----+-????

→L

L () 112111,,,n r n r n r n r n r ηηηηηηη-+-+--+-+---L M ()

因为 121,,,n r ηηη-+L 线性无关,所以

112111,,,,n r n r n r n r n r ηηηηηηη-+-+--+-+---L 线性无关,

11211,,,n r n r n r n r ηηηηηη-+-+--+---L 也线性无关,且

11211(,,,)n r n r n r n r R n r ηηηηηη-+-+--+---=-L

所以 11211,,,n r n r n r n r ηηηηηη-+-+--+---L 是0AX =的基础解系

因为0AX =的任一解X *可以表示为:

1112211()()()n r n r n r n r n r X k k k ηηηηηη*-+-+---+'''=-+-++-L

AX B =的任一解X 可以表示为:

X X η**=+ ①

其中η*是AX B =的一个特解

扩展①式,取1n r ηη*-+=,得

11122111()()()n r n r n r n r n r n r X k k k ηηηηηηη-+-+---+-+'''=-+-++-+L

化简得

1122121(1)n r n r n r n r X k k k k k k ηηηη----+''''''=++++----L L 令1121n r n r k k k k -+-'''=----L ,1122,,,n r n r k k k k k k --'''===L

则AX B =的解可以表示为

112211n r n r X k k k ηηη-+-+=+++L

且1211212(1)1n r n r n r k k k k k k k k k -+--''''''+++=++++----=L L L 命题得证

另外取(1)i i n r ηη*=≤≤-时

1112211()()()n r n r n r n r n r i X k k k ηηηηηηη-+-+---+'''=-+-++-+L

化简得

11221111(1)i i i i i i n r n r X k k k k k k ηηηηηη--++--''''''=+++++++++L L

121()n r n r k k k η--+'''----L 此

11221111,,,,1,,,i i i i i i n r n r k k k k k k k k k k k k --++--''''''====+==L L

112n r n r k k k k -+-'''=----L 则AX B =的解可以表示为

112211n r n r X k k k ηηη-+-+=+++L

且121n r k k k -++++L

121112(1)()1i i i n r n r k k k k k k k k k -+--'''''''''=+++++++++----=L L L

此时命题也成立

常见错误

不会应用定理. 不知两个非齐次组的解的差是齐次线性方程组的解. 6 题目

设21λλ、是矩阵A 的两个不同的特征值,

21x x 、分别属于21λλ、的特征向量,证明21x x +不是矩阵A 的特征向量. 知识点

特征值 特征向量 解题过程

用反证法.

设 21x x +是A 的对应λ的特征向量,则有

212121)()(x x x x x x A λλλ+=+=+ (1)

已知 111x Ax λ=,222x Ax λ=

所以 22112121)(x x Ax Ax x x A λλ+=+=+ (2) 由(1)(2)知 221121x x x x λλλλ+=+

0)()(2211=-+-x x λλλλ (3)

因为21x x 、线性无关,所以021=-=-λλλλ,21λλλ==与已知矛盾.

常见错误

由(1)(2)直接推出21λλλ==,只从形式上来看有这个结论,没有利用不同特征值所对应的特征向量是线性无关的性质, 因为有了这个性质才能推出 (3)的系数为0. 这在证明中不够严密.

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数的一些证明题

线性代数一些证明题 1 题目 设n 阶可逆矩阵A 满足A 2=A ,求A 的特征值。 知识点 特征值与特征向量 矩阵的行列式 解题过程 解:因为A 2=A 所以A 2-A =0 所以det(A 2-A )=det[A (A -E )]=det(A )det(A -E )=0 A 为可逆矩阵,所以det(A )≠0 所以det(A -E )=0 所以A 的特征值为1. 常见错误 设存在λ,使Ax =λx 成立 则 det(Ax )=det(A )det(x ) =det(λx ) =n λdet(x ) (错误在于向量取行列式) 所以 有)det(A n =λ成立. 又因为A 2=A det(A )2=det(A), 即det(A )=0或det(A )=1.

由于A 为可逆矩阵,det(A)≠0. 所以 det(A )=1 1=n λ 当n 为奇数时,λ=1. 当n 为偶数时,λ=±1. 相关例题 设A 为n 阶矩阵,若A 2=E ,试证A 的特征值是1或-1. 2题目 设A 是奇数阶正交矩阵,且det(A )=1,证明det(E -A )=0. 知识点 ①正交矩阵的定义:A T A=E ②单位矩阵的性质:EA=AE=A E T =E ③矩阵运算规律 ④转置矩阵的性质:(A+B )T =A T +B T ⑤det(A )=det(A T ) ⑥det(AB )=det(A )det(B ) ⑦det(-A )=(-1)n det(A ) 解题过程 ∵A 是正交矩阵 ∴E -A= A T A -A= A T A -EA=( A T -E )A ∵det(A )=1

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

线性代数证明题

线性代数证明题 1.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知 0Ax =的基础解系为(1,0,2,0)T ,证明234,,ααα是方程组*0A x =的基础解系. 2.设A 是n 阶矩阵,且0n A =,则A E n -必是可逆矩阵。 3.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,证明:BCA E = 4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1 PAP -的后n r -行全为零. 6.设矩阵,m n n m A B ??,且,m n AB E <=,证明:A 的行向量组线性无关. 7.如果,2 A A =称A 为幂等矩阵.设 B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是.0==BA AB 8.如果对称矩阵A 为非奇异,试证:1-A 也是对称矩阵 9.设A ,B ,C 都是n 阶方阵,且C 可逆,T --+=A E B C C )(11 , 证明:A 可逆且T -+=)(C B A 1 。 10.设0=k A ,其中k 为正整数,证明:121)(--++++=-k A A A E A E 11.设方阵A 满足A 2 -A-2E=O ,证明A 及A+2E 都可逆,并求1 1 2--+)及(E A A 12.试证:对任意方阵A ,均有 T A A +为对称矩阵, T A A -为反对称矩阵。 13.证明 1)(=A R 的充分必要条件是存在非零列向量α和非零行向量T β,使T A αβ= 14.设A 为列满秩矩阵,C A B =,证明方程0=BX 与0=CX 同解 15.设A 为n m ?矩阵,证明方程m E AX =有解m A R =?)( 16.向量组A 能 用向量组B 表示,则R(A)<=R(B) 17.设B A ,分别为m n n m ??,矩阵,则齐次方程组O =ABx 当n m >时必有非零解。 18、设,,,,144433322211ααβααβααβααβ+=+=+=+=证明向量组

线性代数常见证明题型及常用思路

线性代数常见证明题型及 常用思路 The Standardization Office was revised on the afternoon of December 13, 2020

《线性代数》常见证明题型及常用思路 二、证明题 题型1.关于1, ,m αα线性相关性的证明中常用的结论 (1)设110m m λαλα++=,然后根据题设条件,通过解方程 组或其他手段:如果能证明1,,m λλ必全为零,则1,,m αα线性 无关;如果能得到不全为零的1, ,m λλ使得等式成立,则1,,m αα线性相关。 (2)1,,m αα线性相关当且仅当其中之一可用其他向量线性表 示。 (3)如果1, ,n m F αα∈,则可通过矩阵的秩等方面的结论证明。 (4)如果我们有两个线性无关组, 11,,,m W αα∈12,,,t W ββ∈且12,W W 是同一个线性空间的两 个子空间,要证11, ,,,,m t ααββ线性无关。这种情况下,有些时候我们设 111111110,,m m t t m m t t λαλαμβμβαλαλαβμβμβ+ ++++==++=++。 根据题设条件往往能得到0αβ==,进而由 11,,,m W αα∈12,,t W ββ∈的线性无关得到系数全为零。 题型2. 关于欧氏空间常用结论

(1)内积的定义 (2)单位正交基的定义 (3)设1{,,}n B αα=是单位正交基, 11(,,),(,,)B n B n u x x v y y ==。则 11(,)n n u v x y x y =++ 5 题型3. 关于矩阵的秩的证明中常用的结论 (1)初等变换不改变矩阵的秩 (2)乘可逆矩阵不改变矩阵的秩 (3)阶梯形的秩 (4)几个公式(最好知道如何证明):常用来证明关于秩的不等式 ()()(); ()min{(),()}; ()()(); max{(),()}(,)()();()();()()()()();0()()T T T T m n r A B r A r B r AB r A r B r A r A r A A A r A r B r A B r r A r B B A r r A r B B A r A r B r r A r B r C C B A B r A r B n ?+≤+≤==??≤=≤+ ??? ??=+ ??? ??+≤≤++ ??? =?+≤ (5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式) 例:证明:()()()m n r A r B n r AB ?+≤+。 证:

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

线性代数常见证明题型及常用思路

《线性代数》常见证明题型及常用思路 、证明题 题型1关于1,K , m 线性相关性的证明中常用的结论 (1)设1 1 L m m 0,然后根据题设条件,通过解方程组 或其他手段:如果能证明 1,K , m 必全为零,则1,K , m 线性无 关;如果能得到不全为零的1 ,K , m 使得等式成立,贝S 1,K , m 线 性相关。 2) 1,K , m 线性相关当且仅当其中之一可用其他向量线性表示。 时候我们设 0, 根据题设条件 1,K , m W 1, 1,K , t W 2的线性无关得到系数全为零。 题型2.关于欧氏空间常用结论 (1) 内积的定义 (2) 单位正交基的定义 (3)设B { 1,K , n }是单位正交基, (3)如果 1,K , m F “,则可通过矩阵的秩等方面的结论证明。 4 ) 一如果 有两个线性无关组, 1,K , m W 1, 1,K , t W 2,且W 1,她是同一个线性空间的两 个子空间,要证 1,K , 1,K , t 线性无关。这种情况下,有些 0 ,进而由

U B (X i,K,X n),V B (y i,K,y n)。则(u,v) x$ L x“y n5 题型3.关于矩阵的秩的证明中常用的结论 (1)初等变换不改变矩阵的秩 (2)乘可逆矩阵不改变矩阵的秩 (3)阶梯形的秩 (4)几个公式(最好知道如何证明):常用来证明关于秩的不等式 r(A B) r(A) r(B); r(AB) min{ r(A),r(B)}; r(A) r(A T) r(A T A); A T 计")'")} "A? r B T r(A) r(B); A r(A)r(B); r B A r(A) r(B) r(C); B r(A)r(B)r C B0r(A)r(B) n A m n (5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式) 例:证明:r(A m n) r(B) n r(AB)。 证:

考研线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

(完整版)线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

《线性代数》常见证明题型及常用思路

《线性代数》常见证明题型及常用思路 二、证明题 题型1.关于1,,m ααK 线性相关性的证明中常用的结论 (1)设110m m λαλα++=L ,然后根据题设条件,通过解方程组或其她手段:如果能证明1,,m λλK 必全为零,则1,,m ααK 线性无关;如果能得到不全为零的1,,m λλK 使得等式成立,则1,,m ααK 线性相关。 (2)1,,m ααK 线性相关当且仅当其中之一可用其她向量线性表示。 (3)如果1,,n m F αα∈K ,则可通过矩阵的秩等方面的结论证明。 (4)如果我们有两个线性无关组,11,,,m W αα∈K 12,,,t W ββ∈K 且12,W W 就是同一个线性空间的两个子空间,要证11,,,,,m t ααββK K 线性无关。这种情况下,有些时候我们设 111111110, ,m m t t m m t t λαλαμβμβαλαλαβμβμβ+++++==++=++L L L L 。 根据题设条件往往能得到0αβ==,进而由11,,,m W αα∈K 12,,t W ββ∈K 的线性无关得到系数全为零。 题型2、 关于欧氏空间常用结论 (1)内积的定义 (2)单位正交基的定义 (3)设1{,,}n B αα=K 就是单位正交基, 11(,,),(,,)B n B n u x x v y y ==K K 。则11(,)n n u v x y x y =++L 5 题型3、 关于矩阵的秩的证明中常用的结论 (1)初等变换不改变矩阵的秩

(2)乘可逆矩阵不改变矩阵的秩 (3)阶梯形的秩 (4)几个公式(最好知道如何证明):常用来证明关于秩的不等式 ()()(); ()min{(),()}; ()()(); max{(),()}(,)()();()();()()()()();0()()T T T T m n r A B r A r B r AB r A r B r A r A r A A A r A r B r A B r r A r B B A r r A r B B A r A r B r r A r B r C C B A B r A r B n ?+≤+≤==??≤=≤+ ??? ??=+ ??? ??+≤≤++ ??? =?+≤ (5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式) 例:证明:()()()m n r A r B n r AB ?+≤+。 证: ()()()0n n n E E n r AB r r AB A AB E B r r A r B A ????+== ? ?????-??=≤+ ??? 上面第二个等号就是用A 左乘第一个分块矩阵的第一行,然后加到第二行所得;第三个等号就是用B -又乘第二个分块矩阵的第一列,然后加到第二列所得。

相关文档
最新文档