船舶结构振动噪声分析及其进展

船舶结构振动噪声分析及其进展
船舶结构振动噪声分析及其进展

船舶结构振动噪声分析及其进展

【摘要】随着我国船舶事业的不断发展,对船舶结构振动噪声的研究提出了新的要求。本文首先概述了船舶结构振动噪声的相关话题,分析了船舶结构声学的设计方案。最后结合实际,深入探究了船舶振动的特性及计算等相关问题。

【关键词】船舶结构;振动噪声;分析;进展

一、前言

船舶事业日新月异的发展,要求有关人员对船舶结构的振动噪声做出深入分析,以最大程度地降低噪声的出现。由于船舶是一件大型的运输设备,其结构振动噪声的分析要涉及到多方面因素,对这些因素控制的好坏对该项课题的研究有深远意义。

二、概述

在船舶设计的最早阶段就要考虑声学方面的要求,这是船舶结构声学设计的基本原则。如果在船舶设计的早期阶段就能将涉及声学的各种要求,体现在具体的船舶结构设计中,则可用较少的费用获得较好的降低振动和噪声级的效果。

船体结构辐射噪声的分布规律与结构表面振动速度有密切关系,而结构表面振速的量级与分布,在一定的激励力下,主要取决于结构本身的振动响应特性。利用模态分析识别结构固有特性,找出主导模态,调开船体结构振动共振频率,可以达到降低噪声的目的。然而,这种解决问题的办法所需费用较大,如果在一开始就结合声学要求进行结构设计,则不仅节省开支,而且可以获得更大、更好的效果。因此在船舶设计阶段就进行结构的振动噪声分析是很有意义的。

船舶结构的振动声学分析,对于优化船舶结构的声学设计,具有重要的指导意义。船舶声学设计的基本原则,就是在船舶设计的最早阶段就考虑声学方面的要求。而船舶建造型式直接影响船上声学和振动状况,在船舶设计的早期阶段,选择声学上最佳的船舶建造型式是声学设计的最重要阶段。

船舶振动过大不但会造成船舶结构的损坏,而且会影响船用设备的正常使用。为此,必须在船舶设计阶段对船舶结构的局部振动性能和总体振动性能进行预报,以便在结构设计方面采用合理方案和必要的措施。随着计算机技术的迅猛发展及大型软件的应用,使船舶结构振动成为国内、外舰船振动研究的活跃领域。近年来对船舶振动预报的研究,大致可分为:全船模态分析响应、尾部结构振动及上层建筑振动三个部分。

三、船舶振动特性及计算

1.船舶的振动特性

论船舶噪声及控制

论船舶噪声的控制 提要 船舶噪声对人体和环境的污染和危害已经得到世界各国和相关组织日益广泛的关注。船舶噪声的污染源主要是由于船舶动力装置及其它辅助装置自身振动及吸排气引起的。介绍了船舶的噪声源,以及传播的途径,提出应采取通过声源控制来降低船舶噪声级。 前言 如今,噪声污染已经成为与空气污染和水污染并列的世界三大主要污染之一,它日益成为人们普遍关心的问题。船舶环境,尤其机舱环境就存在较为严重的噪声污问题,对船员的身体、生活、休息和工作都存在很大的影响,甚至会产生心理和生上的疾病;过强的噪声还会使船上的一些精密仪器设备工作不正常、精度降低、使用寿命缩短。 1970年国际劳工组织(ILO)在日内瓦召开的海事特别会议上通过了“关于船员、设备 工作区有害噪声规定的建议”,建议各国政府制定限制船舶噪声的规则。目前一些造船和航运国家都制定了船舶噪声标准,作为船舶特殊环境下的健康保护标准。 1船舶噪声概述 1.1船舶噪声的度量 描述噪声可采用两种方法:一是对噪声进行客观量度,即将噪声作为物理扰动,用描述声波客观特性的物理量来反映;二是对噪声进行主观评价,因为噪声涉及人耳的听觉特性,根据听者感觉的刺激来描述。 噪声的客观度量用声压、声强和声功率等物理量表示。声压和声强反映了声场中声的强弱,声功率反映了声源辐射噪声的大小。声压、声强和声功率等物理量的变化范围非常大,可以在六个数量级以上,同时由于人体听觉对声信号强弱刺激的反应不是线性的,而是成对数比例关系,所以实际应用中采用对数标度,以分贝(dB)为单位,即分别为声压级、声强级和声功率级等无量纲的量来度量噪声。 级是物理量相对比值的对数。分贝是级的一种无量纲单位。对于声强、声功率等反映功率和能量的物理量,分贝数等于两个量比值的常用对数乘以10 。如两个声功率值分别为W1 和W2 ,则分贝数为n=101g(W1/W2)。 对于声压、质点振动速度等描述声场、电磁场等的物理量,分贝数等于两个量比值的常用对数乘以20 。当两个声压值分别为P1 和P2 时,声压级为n=201g(P1/P2)。采用级进行噪声计量,可以使数值变化缩小到适当范围,与人耳的感觉接近。

船体结构分析

第一章绪论 §1-1船舶结构力学的内容与任务 船舶是一个复杂的水上工程建筑物。它航行于江河湖海,担负着运输、生产、战斗及其他各种任务。我国有漫长的海岸线,无数的内河湖泊,还有广阔富饶的海疆,为此就需要大量的、各种类型的船舶来从事各方面的工作,为社会主义革命和建设服务。 为了保证船舶能很好地完成上述任务,船舶应具有良好的航行性能、工作性能和具有一定的强度。 船舶具有一定的强度,是指船体结构在正常的使用过程和一定的使用年限中具有不破坏或不发生过大的变形的能力,以保证船舶能正常地工作。由于一般船舶的经常工作状态是航行状态,因此设计人员应首先保证船舶在航行状态有足够的强度。 船在海洋中航行,它所受到的外力是相当复杂的。这个外力除了船的载重和装备等重量以外,主要就是水作用于船体的力。除非船是静置于水中,否则船上受到的力总是动力。动力包括水动压力、冲击力以及船在运动中的惯性力等等。这些力显然取决于海面的情况,波浪的大小(即所谓环境条件),并且还是随机性的,这样就使得船体外力的确定显得相当复杂了。 尽管如此,人们通过长期的生产实践,分析了船体受力和变形的主要特征,认为在考虑船体强度问题时,首先把船整体当作一根梁来研究是合理的。这时将船——或者如一些文献中所说,将“船体梁”’(ship hull girder)静置于静水中或波浪上,计算在船纵向(船长方向)分布的重力与浮力作用下的弯曲变形与应力。这种将船作为一整体来研究的强度问题就叫做船体的“总纵强度”或简称为“总强度”问题,如图1-l,图中(a)称为“中拱状态”(hogging condition);(b)称为“中垂状态”(sagging conation)。长期以来,总强度一直是船体强度校核的主要方面。 除了总纵强度以外,船体的横向构件(如横梁、肋骨、肋板等)及船体的局部构件(如船底板及底纵桁等)也会因局部荷重而发生变形或受到破坏,因此亦需研究这些横向构件或局部构件的强度问题。这类问题通常称为“横向强度”问题或“局部强度”问题,如图1-2及图1-3,以便与前述的总纵强度问题有所区别。 把船舶静置于波浪上或静水中,按简单梁的弯曲理论来研究总纵强度当然是初步的。因此随着时间的推移,人们的认识在总强度的基础上逐步提高,从而使船体强度的计算更接近 于实际。首先提出来的是稳定性问题。十九世纪后期,由于船舶尺度的增加,发现船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)常常会因为受压过度而丧失稳定性,这样就大大减低了船体抵抗总弯曲的能力。因此在总强度计算的同时,稳定性问题就被提了出来。亦就是说,我们在研究船体总强度的时候,必须要考虑受压构件是否有失稳现象,并要分析构件失稳后的应力再分配问题,这样才能正确地反映船体总强度的承载能力。

船体结构修理工艺

船体结构修理工艺 一,常见的几种施工工艺 1. 结构更换:更换损坏了或蚀耗了的部件,使之恢复成原有的形式; 2. 结构部分更换:考虑到整个结构更换比换困难,涉及面广,其中有的部件的蚀耗还未到非换不可的程度,征得验船师的同意,可以进行结构部分更换; 3. 结构矫正:在更换外板、甲板时采用,主要包括冷加工矫正和就地热矫正; 4. 结构拆下、矫正、装复:有时外板变形严重,无法就地矫正修复,则将外板拆下送到车间,利用机械设备进行矫正,待在外板原来的部位的内部骨架就地矫正结束后,再将外板原位装复,必要时亦可将骨架一起拆下送车间矫正; 5. 结构拆除:有时船体经过改装后,有一些结构已无存在的必要,须予以拆除; 6. 焊接工艺:(1)焊接前,接缝处应批出斜坡口,以消除夹缝空档。常见的坡口按焊接的要求有V形、Y形、X形和K形;(2)焊接表面冷却后有一层灰色的焊渣,必须铲除干净,防止夹渣。焊缝要求均匀平整,如焊坑、咬边或者烧穿钢板,均为不合格,应当刨除重焊;(3)对于旧焊缝的修理,不可直接在原有的焊缝上面加焊,应将待修的旧焊缝及其两端各延长5-8mm长度全部刨掉,批出整齐的斜坡口,然后焊接,要特别注意新、旧焊缝接合处的质量;(4)对于构件本体裂缝的焊接,必须先在裂缝的两端各钻一个止裂孔,以便使其内应力在此处向各个方向分散,然后批槽堆焊。如果焊接大尺寸的铜制构件的裂缝,除必须钻止裂孔及批槽外,还应当预先用慢火将构件烘热,保持在一定温度上焊补;(5)对于地环、羊角等的焊接,如带底座者,应按复板焊接的工艺要求进行焊接;如天底座者,其脚部应批成锥形然后堆焊,不可采用仅在圆钢角部堆焊一圈的方法。 二,船体渗漏及其修理工艺 1. 产生原因: 由于金属遭受腐蚀,其完整性就逐渐遭到破坏,在焊缝处局部强度逐渐下降,加上船舶在海面上经常收到水的压力和波浪冲击,以及船舶主机、辅机工作时引起的船舶振动,还有不正确的货物装载与移动,船舶在波浪上时而中拱,时而中垂等,在这些外力的作用下,船舶产生纵向和横向的弯曲,使船体发生变形,在腐蚀严重处就造成焊缝纹路增大,从而产生渗漏现象,这在船体外板、甲板和水密舱壁的接缝处常可见到。 2. 修理工艺:

船舶噪声论文

根据中国船级社于2013年4月26日发布的《关于实施船上噪声等级规则的通知》的通函,国际海事组织(IMO)第91界海安会(MSC91)通过了第338号关于SOLAS修正案的决议。自2014年7月1日起生效,决议通过的《船上噪声等级规则》(以下简称“《规则》”),以保护人员免受噪声的伤害。 《规则》一旦生效,其高标准,严要求,强制性的特点将给造船业带来新的挑战和压力。 过去,SOLAS仅仅对机舱的噪声值做了强制规定,因此,国内的造船厂过去对船舶噪声控制工作不够重视。 对噪声的控制主要有三种途径:声源控制、传播途径中的控制、接收方的被动保护。过去常用的手段是在传播途径中的控制,例如,吸声、隔声、隔振等;这些方法经过长期实践证明效果并不好。 面对将要生效的《规则》,我们针对噪声的产生、传播、接收三个方向共同提出了以下措施,以达到降低噪声,符合规范的目的。 第一、声源控制 船舶上的三个主要噪声源是主机、辅机和螺旋桨。短期内,应在设计建造期间,选用低噪声的主机、辅机及螺旋桨;长期来看,我们需要设计出具有自主知识产权的,工作稳定,噪声低,振动小的新一代主机和辅机,同时要设计出更合理线型的螺旋桨,并在长期的实践中建立起船舶噪声数据库,通过舱室的合理布置,轴系的合理安排来进一步降噪。 第二、传播途径中的控制

在传播途径中降噪的方法有多种;例如,在舱室天花板和四壁表面敷设吸声材料和吸声结构,或所在室内空间悬挂吸声体;采用刚性和不吸声的钢板、铝板等做成隔声壁,为提高隔声效果,可采用双层壁,还可采用隔声罩和隔声室等措施对噪声源隔声;对于振动设备,安装单层或双层弹性支承的减震器进行隔震。 第三、接收方的被动保护 接收器噪声防护设备提供的被动保护也是重要手段。尤其在目前,对大型主机采取的声振控制措施尚不完善,需要对船员采取保护措施防止听力受害,如船员可以带上护耳器(耳罩或耳塞)、防声头盔或在隔声间(如机舱集控室)内值班工作,就可以减少噪音的伤害。 通过对以上方法的总结,我们可以发现:对造船企业而言,《规则》的主要实施难点有以下几点: 一、对噪声源设备和船舶声学设计提出了更高要求 二、增加了设计、建造过程中的相关成本 三、要求船上起居处所具有更加优良的隔声性能 四、增加了设计阶段的噪声分析开支 五、控制噪声超标更为困难。 可以预见,在不远的未来,船舶的建造和航行的标准将越来越高,被动的接受标准的要求对我国的造船业的发展极为不利,只有不断促进技术创新,提高自身技术水平,将自己化为规则和标准的推动者甚至是制定者,才能在未来的世界造船和航运中立于不败之地!

船体振动学

1.系统的自由度:确定振动系统运动所需的独立坐标数目即为系统的自由度数。 2.广义坐标:这种确定系统在空间位置的独立参变量称为广义坐标。 3.线性振动:在这些条件下,系统的振动可以用常系数线性微分方程来描述,称为线性振动。 4.自由振动:系统对初始激励的响应通常称为自由振动。 5.强迫振动:对外部作用力的响应称为强迫振动。 6.干摩擦阻尼力:当系统与外界的固体相接触运动时,即产生摩擦阻力,称为干摩擦阻尼力。 7.粘性阻尼力:它是系统与外界粘性流体接触时,在速度不高的情况下所产生的阻尼力。 8.流体动力阻力:当系统与外界的粘性流体接触,且速度较高,并在粘性较小的流体中运动 时,即发生与速度平方成正比的阻力,称为流体动力阻力。 9.材料内阻尼力:是因为实际材料并不是完全弹性而引起的,又称材料的非弹性阻尼。 10.结构内阻尼力:是因为系统本身结构装配或连接而引起的。 11.准周期振动:这种由于振动系统受到阻尼力作用,造成能量损失而使振幅逐渐减小的振动 称为衰减振动,或称为准周期振动。 12.均匀直梁弯曲自由振动的特性:(1)均匀直梁是具有分布质量及抗弯刚度的无限自由度系 统(2)固有频率和固有振形是结构的固有特性,不仅与材料的性质、结构的刚度等因数有关,而且还和边界条件有关(3)当梁作任一主振动时,类似于单自由度系统的振动(4)在所讨论的线性振动范围内,均匀直梁弯曲自由振动是无限多个主振动的线性叠加,梁中任一点的运动则是各主振动所引起运动的总和。(5)固有振形具有正交性,即各固有振形之间是相互独立的。 13.Timoshenko梁理论:一般的梁单元,是基于初等力学中的平截面变形假定,在这个假定中, 实际上认为弯曲变形是主要的变形,剪切变形是次要的变形,因而可以不计,这对于高度远小于跨度的实腹梁来说,不会引起显著的误差,但对于有些空腹梁或都高跨比不是很小的梁来说,就不太精确了,所以有必要计及剪切变形,Timoshenko梁就是能考虑剪切变形的梁。 14.转动惯量和剪切变形对梁固有频率的影响:从物理意义上说,剪切的作用使系统的刚度下 降,转动惯量使系统的有效质量增加,这两方面的影响均使系统的固有频率降低。其中剪切的影响大于转动惯量的影响。 15.船体总振动:整个船体的振动称为总振动,这时将船体视为一根两端自由支持的变截面空 心梁。包括:(1)垂向振动:在船体的纵中剖面内的垂向弯曲振动(2)水平振动:在船体的水线面内的弯曲振动(3)扭转振动:船体横剖面绕纵向轴线的振动(4)纵向振动:船体横剖面沿其纵向轴线作纵向抗压的往复振动。 16.局部振动:船体局部结构,如板架、梁、板等对于整个船体所作的附加振动称为局部振动。 (1)垂向振动:平行于垂向轴的的直线振动(2)横向振动:平行于左右方向的水平振动(3)纵向振动:平行于首尾方向的水平振动。 17.随机振动:这种在任何未来时刻表征振动物理量的瞬时值不能预先精确地加以判断的非周 期性的持续振动;波击振动:当波浪的遭遇频率与船体的首谐垂向固有频率相等时,会出现由波浪对船体的非冲击性水动力作用引起的全船稳态垂向垂向两节点振动;浪击振动:是非周期性的振动,是船体受波浪冲击而出现的弯曲振动现象。 18.节点:船体总振动时振幅为零的横截面(较高谐调的主振动具有较多的节点,较高的频率, 较短的周期;较低谐调的主振动具有较少的节点,较低的频率,较长的周期。) 19.船体总振动阻尼的特点:当激振力的频率与船体振动的某一固有频率相等时,船体将发生 共振,第一谐调共振时,峰值最高而且曲线很陡,随着阶数的增加,共振时峰值越来越小,曲线也越来越平坦,船体总振动的阻尼与振动频率有关,频率越高,阻尼越大。 20.船体总振动减少的原理:改变结构的固有频率或激励频率以避免共振;减小激励的幅值与 减小激励的传递以降低强迫振动的程度;增加结构刚度和阻尼以降低响应等。

最新吸声降噪技术在船舶设备噪声控制中的应用

吸声降噪技术在船舶设备噪声控制中的应 用

吸声降噪技术在船舶设备噪声控制中的应用 摘要:随着船舶朝大型、高速方向发展,其机舱内推进主机和柴油发电机组的噪声问题越来越严重。本文阐述了吸声降噪技术的原理,分析了船舶机舱噪声的主要来源。就如何把吸声降噪技术运用到船舶设备的噪声控制中给出了一定的建议。 关键词:柴油机噪声吸声降噪船舶机舱噪声控制 0 引言 随着船舶朝大型化、高速化、复杂化方向发展,它所配备的推进主机以及发电机组也朝着高转速、高强度、大功率方向发展。因此,其振动和噪声问题越来越严重,人们对其振动和噪声控制也更为关心和重视。由于船舶的推进动力以及发电机组都布置在狭小的机舱内,机舱内的两大噪声源:推进主机(通常为柴油机)噪声和发电机组(通常为柴油发电机组)噪声,使机舱内的工作环境十分恶劣,再加上船员在机舱内的工作时间较长,因此,这种强噪声不仅严重影响船员的工作效率,损害了他们的身心健康,还严重污染周围环境,影响旅客的正常工作和休息,所以有必要对机舱内的噪声进行控制。 船用设备在工作时产生的噪声,影响了船上的生活和工作环境,也成为海洋环境污染之一。在船舶设计过程中,声振环境的设计是非常重要的一个环节。船舶机舱是船舶噪声的主要来源,距离其很近的船舶机舱控制室也成为人们工作环境最恶劣的地方之一。因此,对船舶机舱进行控制和维护是对船舶噪声控制最直接的方式。船舶噪声分为机械噪声、螺旋桨噪声和水动力噪声。机舱内的噪声是由推进主机噪声和柴油发电机组的噪声混合而成。船舶机舱控制

室的噪声主要体现为以波动形式传播的机械能,并且通过船舱、子板等这些第二噪声源以空气噪声的方式辐射出来。鉴于此,其降噪方式可以从以下方面着手:从声辐射的角度,一方面,通过在目标舱室内铺设玻璃棉等吸声材料使得辐射空气噪声得到有效吸收,从而减少噪声的二次传播;另一方面,可以在噪声源舱室和目标室间安装双层墙或多层墙以起到隔声效果;从振动噪声的角度,可在主噪声源和噪声的主要传播路径上增加增加弹性结构以调节激振频率与系统固有频率比,从而起到减振降噪的效果。本文仅对吸声材料对机舱降噪的作用做一个分析评估。 1 吸声技术原理 在舱室内布置吸声材料和吸声结构来降低室内噪声的工艺措施称为吸声处理。一般来说,吸声处理只能降低反射声的影响,对直达声是无能为力的,故吸声处理是不会降低直达声。所以吸声技术的降噪效果是有限的,一般不超过9dB。吸声机理:声波在媒质中传播时,由其引起的质点振动速度各处均不相同,存在着速度和梯度,使相邻质点间产生相互作用的摩擦力和黏滞阻力,阻碍质点运动,并通过摩擦和黏滞阻力做功将声能转化为热能。同时,由于声波传播时媒质质点疏密程度各处也不同,所以媒质温度各处也不同,存在温度梯度,而使相邻质点间产生了热量传递,使声能不断转化为热能耗散掉。这便是吸声材料或吸声结构的主要吸声机理。吸声材料或吸声结构被广泛的应用于噪声控制设计中。他的主要作用有:缩短和调整室内混响时间,消除回声以改善室内的听闻条件;降低室内的噪声级;作为管道衬垫或消声器件的原材料,以降低通风系统或以管道传播的噪声;在轻质隔声结构内和隔声罩内表面作为辅助材料,以提高构件的隔声量等。

船舶与海洋工程结构振动分析中的设备实用建模方法

船舶与海洋工程结构振动分析中的设备实用建模方法 摘要:随着现代化科学技术的迅猛发展,各行业都步入了一个全新且迅速的发展阶段,尤其是对于海洋领域的探索与征服。自改革开放以来,我国在船舶的研究和技术的革新等方面都已经有了全面的发展,并经过多年来的努力已经取得了非常大的进步,这对于推动我国海洋技术的发展来说是具有极大意义。本文将在海洋工程的研究基础上,对设备的合理运行进行了深入性研究,在设备应用建模上进行了相应的探讨。 关键词:船舶和海洋工程;建筑模型;技术创新 前言:科技的进步促进了船舶技术的迅速发展,为了能够更好的满足于现代化的发展现状,人们在海洋行业进行了更深入性的探索,进行了进一步的发展与创新。然而,受外界等各项因素的影响,严重的阻碍了探索的进程。而随着科学技术的不断发展,人们运用计算机网络系统可以实现人们无法完成的工程。在海洋探索方面,运用计算机建立建筑模型是新兴的,也是对于进一步探索的重要的关键的一步。下文中我们将进行进一步的探索。 1目前海洋探索以及船舶技术的模型种类 就目前我国海洋探索以及船舶技术的模型种类进行分析,其中有种模型是以建筑为中心,并进行进一步的具体分析,这种模型的特点是把不同的设备进行不同的分配,使得各个物件都可以得到充分的利用,为了更好的呈现出这种模型,人们大多用具体的图表进行演示。运用这种形式是为了更好地研究相关的货物以及设备的分布情况,从而方便决策者进一步的进行科学的决策。运用电子计算机网络系统对于相关的设备结构进行模拟,而模拟的方法是通过网络系统构造出的无数条框架结构结合成相一致的设备,这样可以方便进行更好的模拟,此外,通用的技术还有根据不同的形状大小进行分类,探究各种设备如何能够保持均匀有效的分布,合理进行分配,对于宝贵的空间资源进行充分的合理利用,更好地增加工作效率。除了相关的抽象的模型之外,有些信息还是需要通过具体的数据表现出来的,这种通过具体的数字表现出来的模型的形式也是有多种分类的。例如根据不同的信息种类也可以把模型分为以质量为主,以形状为主或者是通过具体的数字反应出准确的信息等多种形式。但是根据长期的经验来看,上文中所提到的这些常见的模型方式都存在着这样或者那样的问题,所造成最后模拟出来的信息并不是十分准确,一定程度上影响了正常的工作效率。有时候一个微小的误差都会造成严重的后果,如何解决这些问题成为了现阶段发展研究的重中之重。 2为了解决误差而提出一种新的模型方式以及这种方式的优点 现在新介绍的这种建筑模型的方式,依旧是以计算机电子网络为基础。都知道进行以上的种种研究,采取多种方法的最终目的都是为了增加船舶在航行过程中的安全系数,使得能够更加安全地航行。而为了安全航行首先所要考虑到的就是如何减轻船舶在海洋环境下的震动频率。所谓的这种频率,其摆动的大小是受多种因素共同作用影响,其中,影响最大的就是船舶本身的重量以及船的坚硬程度所决定的。对于研究同一艘船而言,船本身的重量一定是保持不变的,所要研究的就是如何增加杆的硬度,这样才能更加安全地保持行驶。而增加坚硬程度也是有多种因素的影响,这是由一个具体的公式推算出来的。我们要通过这个模型以及公式建立表格,对于表格中所提及的数据进行具体准确的分析,由此来找出

船舶机械振动及控制

船舶机械振动及控制 对船舶的机械有害振动的控制措施主要有防振和减振两个方面,防振是指在船舶设计阶段就考虑到振动的容许标准而采取降低振动的措施,减振则是指使营运船舶的振动下降到容许的标准。 防振措施和减振措施仅仅是对象的差异及处理的角度有些不同,其基本原理是一样的,即: (1)避免共振。改变结构的固有频率或激励频率防止共振的产生。 (2)减小激励力。进行动平衡或结构改型减小激励幅值。 (3)减小振动或激励力的传递。增加阻尼以防止吸收振动能量,装设减振装置以达到减小幅值的目的。 一柴油机振动控制 柴油机时引起船体振动的主要激励源之一,因此在船舶设计初期,选择什么样的机型是至关重要的。在满足功率等指标的情况下,应注意选择具有较小不平衡力和不平衡力矩的柴油机做主机。柴油机的缸数越多,其一般平衡性就越好。 (一)防止共振 选择主机时应配合螺旋桨考虑是否与船体发生低阶共振的可能性,尤其应避免在主机常用转速下的低阶共振问题。在设计阶段,先计算船体总振动的几个主要谐次的固有频率,以避免与柴油机和螺旋桨的各阶激励力共振。主机的选型应与减速齿轮箱、螺旋桨在一起考虑,在改变主机营运转速较困难时,也可改变变齿轮箱减速比或改变螺旋桨页数以达到改变激励频率的目的。 (二)减小激励力 对于存在外部不平衡力或者不平衡力矩柴油机,可以通过安装平衡补偿装置来减小振动激励力。这是一种普遍应用的防止有害振动的措施。

平衡补偿装置是使偏心质量以与主机激励频率相同的转速旋转,产生补偿力或者力矩以抵消柴油机的不平衡力,减少他们对振动的影响。按运转驱动方式可将平衡器分为两大类:一是由电动机驱动,或称电动平衡器;二是由曲轴驱动直接附装在主机上。按被平衡激励的形式又可以分为一次力矩平衡器、二次力矩平衡器和组合平衡器。 电动平衡器一般安装在船体垂向振动振幅相当大的舵机底甲板上。 (三)减小振动传递 1,隔振器 对于不平衡的主机或辅机可以在机座下装设隔振器,以减小主机激励力对船体的传递。 所要求的减震器应该柔软些,这通常只有对高速柴油机才能实现。 目前国内常用的减震器主要有橡胶减震器和金属弹簧减震器。 另外,钢丝网隔减震器在工程上的应用也得以发展。 2防振支撑 近代船用大型柴油机因采用长冲程和超长冲程,其机架横向振动是一个突出问题,成为船体激励源振动之一。当横向振动比较大时,可在主机上部与船舷左右侧间设横向防振支撑于船体连接。它通常能使机架横向振动减小50%以上,固有频率提高5%~50%。 目前常用的防振支撑主要有机械式、摩擦式、液压式三种。 (1)机械式支撑 机械式支撑使主机的刚性得到明显的增加,机架的固有频率上升,下降。但另一方面,机架的部分振动能量讲通过支撑传递至全体,有可能加剧船体的振动。(2)摩擦式支撑 摩擦式支撑的断面形状为U型。

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较难在耐波性、快速性方面作大幅度改进。应用新技术研究开发新船型,成为军事大国提高国防工业和海军作战水平的重要途径之一。 新的船型开发离不开先进的船体结构设计技术。船型研发周期长、成本高、舰船使用期长、环境和载荷恶劣,在其使用期内可能遭遇到多种随机事故或战斗伤害,损害一旦发生,将对结构产生不利影响,导致整个船体结构失去工作或战斗能力,也造成很大的经济损失。因此,要求船体结构设计技术不断进步、领先,船体线型最优化、构件尺寸合理,工况和承载能力计算和校核精确,以支撑先进可靠的船型开发。 2 国外研究现状 船型与船体结构设计技术在国防工业领域的研究和发展突出体现在海军舰艇的需求不断升级,促使一些先进船型的开发、试验和发展,对船舶设计技术的要求也不断提高。 多体船型主要有双体船、三体船、四体船和五体船等,同单体船相比,多体船具有更加优越的浮性和稳性、耐波性、机动性和隐身性,能够大量装载,抗打击能力强,在民用和军用领域得到了广泛的应用,其各船型也是各军事大国研究的热点。小水线面双体船(SWATH)、穿浪双体船是高性能船舶中发展较快、趋于成熟的船型。美国多年来一直大力开发小水线面双体船,在小水线面双体船的线型、流体、结构、耐波性、操纵性等基础理论与研究试验方面取得了一系列成果,并拥有相当的技术储备。自1973年到21世纪初,美国开发了“卡玛利诺”号、“海影”号、“胜利”号、“搜索”号、“海刀锋”号和“无瑕”号等6型小水线面双体船型的水声监听船、试验船等。2005年,法国研制出一种SWATH型近海巡逻舰,该舰排水量2000吨,采用全电力推进系统,航速12节时续航力达5000海里,并可在6级海况下正常作业。澳大利亚INCAT公司租借给美海军的Incat 050型“联合探险”号、Incat 060型“矛头”号,以及Incat 061型等穿浪双体高速船舶用于进行系列试验、评估及操作使用。英国海军2000年

船舶的噪声与振动控制

船舶的噪声与振动控制 发表时间:2019-06-21T11:53:56.483Z 来源:《科学与技术》2019年第03期作者:张洪政[导读] 对船舶的噪声与振动控制进行了研究。 南通中远船务工程有限公司江苏省南通市 226001 摘要:船舶运行期间,需要借助于螺旋桨、主机、推进系统等动力机械与风机、泵等辅助机械装置才可产生运行动力正常行驶,但是这些机械工作时发出的噪声及振动较大,船体长时间受到这些装置工作的影响,有着较高的风险发生船体结构破坏问题,而且船员在此种工作环境下工作容易出现身体健康问题,所以船舶噪声和振动控制处理非常重要,本文对船舶的噪声与振动控制进行了研究。 关键词:船舶;噪声;振动控制 1振动源与噪声源分析 船舶结构中的主机、柴油机、主推进及主螺旋桨等装置是造成船舶振动源(噪声源)的主要因素,分析多因素与振动源(噪声源)之间的相关性,发现柴油机、螺旋桨装置为重要的影响因素,其中柴油机运转期间可以为船舶提供运行动力,会产生修复力矩、惯性力等振动(噪声)干扰力,而螺旋桨则可以在工作中产生轴承力、叶频干扰力等影响振动振幅大小的激振力。分析船舶发出的噪声可知主要包括三类:空气动力、电磁、机械噪声,划分依据为发出噪声的声源,还可以依照船舶上噪声发出的具体位置,将噪声划分为船体振动、结构激振、螺旋桨噪声等多类。研究船舶振动源、噪声源期间,需要对船舶作以局部结构模态分析,从而可让研究人员充分掌握船舶结构阻尼、振型及频率等参数,进而依据参数明确船舶出现振动及噪声期间,是否同时出现谐振现象,并且通过参数还可以对船舶频率、振型的正确性进行测试,从而可结合多项分析结果来预测船舶振动源位置。 2船舶的噪声与振动控制 2.1流程 分析船舶振动及噪声期间,首先需要对结构振动、声场进行局部分析,内容涉及船舶结构频率、振型,船舶结构敏感点响应值,可选择船舶上的甲板、驾驶室、机舱、控制室以及船员作为重点分析区域与对象,具体分析时需要先明确模型边界,之后对振动源和噪声源参数进行完整收集,从而可以参考参数构建仿真模型、划分网格、荷载施加、提取计算结果等流程的分析。其次进行结构振动及声场整体分析,即研究人员可以先整理分析局部分析结构,之后便可从整个船舶角度出发,进行整船的声场计算。同时,在对船舶噪声与振动进行控制分析时,需要加强电子技术使用,并通过对噪声与振动控制电子元件的合理设置,获取相应的信息,进而在计算机三维空间中进行有效分析,为船舶噪声与振动问题的科学控制提供参考信息,优化船舶应用过程中的安全性能。除此之外,为了实现对船舶低频声能的有效吸收,则需要考虑共振吸声结构的合理设置,进而为船舶性能的不断优化提供支持,增强其噪声与振动控制效果。 2.2船舶海上试验 对于船舶作以海上航行试验,可以具体分析得出船舶噪声及振动运动情况,以便找出可进行噪声振动控制设计的主要方向。试验期间主要完成两个方面的测试工作,包括船舶局部振动试验、船舱内部室内空气噪声试验,试验期间需要严格依照“DNVRulesforclassificationofships”标准、IMOResolutionA.468XⅡ标准(评价空气噪声)、IS06954标准(评价船体局部振动)进行各个环节的试验;还需要准备精密声级计、动态数据分析仪进行数据分析,辅助试验完成。试验期间主要分为Transit、DP两种工况,便可得出局部振动数据、船舱内空气噪声参数。研究期间选择广州市的某一港口停靠船舶为研究对象,将其驶向海上后可开始试验,该艘船长度为150米,型深与型宽分别为13米、25米,结构组成中的螺旋桨、主机、辅机为发出噪声与振动的振动源(噪声源),每个装置的数量分别为2台,试验过程中船舶的吃水深度分别为5.4米(船尾)、5.1米(船首),试验地点选择在甲板上的三个房间、控制室、餐厅。试验使用的模型为SEA模型,该模型属于当前模拟船舶噪声及振动问题的常用模型,应用时可以借助于边界元分析、有限元方法及统计能量分析三种方法共同进行船舶问题的试验模拟,重点分析输入功率、模态密度及内损耗因子等内容。同时需要依据试验模型分析船舶载荷,由于模型提供的载荷方法较多,结合本文研究船舶的具体情况,选择定义功率、定义约束法进行分析,借助于以上方法可以对船舶施加载荷,进而通过激励频率的增加,可预测出船舶噪声振动发生情况。得出试验结果后,分析船体局部振动试验结果可以了解到在不同工况下,在轻微振动区域内进行各个测点的数据测试工作,得出的局部振动参数结果较好,而船舱室内空气噪声,在处于Transit工况下,测得数据相差不大,可显示当前舱内空气噪声的实际数据,分析这些数据表示在该工况下舱内空气噪声较小,在另一个工况下,发现在工况右向状态下,对比不同测试点发出的声音分贝,可知存在部分位置的噪声超过60分贝的情况,主要集中在船舶甲板的房间、餐厅位置,分析这些地方分贝过高的主要原因,可知是由于船舶航行期间,海水流速因素、甲板结构设计因素等所致,因此控制船舶噪声振动期间,可以从水流情况、甲板设计方向作以有效设计,确保后续设计的船舶可以规避相关影响因素的干扰,降低航行期间发出的噪声大小与振动幅度,以此给船舶上的船员构建一个良好的工作环境。具体设计时可结合目前一些常用的船舶隔噪声、隔振设计方法,在船体结构之上进行地板弹性、壁板三者的连接设计,从而可让船体在工作时对于振动、噪声情况进行合理降低控制,避免振动噪声过大情况出现;还可对导致噪声出现的船舶舱内缝隙与孔洞、隔声材料吸声量差、隔声构件阻尼及质量不达标、隔声构件密封性能不良等影响因素予以综合考量,从而选择质量性能优良的隔声构件进行船体室内装修,便可保证船舶行驶过程中出现的噪声振动较小,除了常规应用的隔声构件外,还可采用减振效果较好的阻尼合金材料制成的腹板材料、附加阻尼材料进行船舶减振设计。本文研究数据受到一些因素影响(参数测量期间仪器位置移动、材料参数选择不当、模型过于简化、载荷施加误差、未对可能造成船舶噪声与振动的舾装部件进行试验分析等),导致数据存在一定的误差,需要研究人员在后续的海上试验研究中合理规避相关因素,从而保证船舶噪声与振动问题被有效的控制。 3结束语 船舶噪声和振动对于船体结构质量、船员身体健康有着严重的不良影响,由于该问题的发生与船舶结构设计有紧密联系,所以要求设计人员对于船舶发出噪声、振动的具体情况有详细了解,继而可以在后续的船舶设计工作中从噪声与振动发生的原因入手,有效做好船舶结构设计工作,确保优化设计建造而成的船舶能够为我国船舶事业、海洋事业的长远稳健发展提供更多帮助。 参考文献 [1]李克用.船舶的振动与噪音的理论分析[J].黑龙江科技信息,2011(28):59.

内河水域船舶噪声污染监督与控制

内河水域船舶噪声污染监督与控制 78 内河水域船舶噪声污染监督与控制随蓑 强,噪声污染损害已经越来越被人们所重视.1996 年10月颁布的中华人民共和国环境噪声污染防治法》( 以下简称噪声污染防治法》), 第一次把环境噪声污染的防治以国家法律的形式加以确定, 使我国的环境噪声污染的防治工作有法可依.随后, 大部分省市制定了相应的管理条例或实施办法, 防治环境噪声污染. 在这些法律法规中,涉及到船舶噪声污染管理的,一般仅仅明确,海事部门对船舶排放噪声实施监督管理, 远没有对工业噪声, 建筑噪声或其它交通噪声防治来得有操作性. 这就为海事部门充分发挥海事事权,加强内河水域船舶噪声污染与控制带来增添了困难. ? 孙政权王世洋 船舶噪声污染的危害 船舶噪声污染除了具备一般噪声污染危害之外, 还因其自身特点, 具有其它多样的危害性. , 危害人们身心健康和日常交 流.这主要包括对听力,心理, 生理, 睡 眠和交谈,工作思考的危害. 长期在强噪声环境下工作,人的听力将会受到影响,甚至损伤而失聪, 除此之外, 还有头昏, 头疼, 神经衰弱, 消化不良等症状,往往导致高血压和心血管病. 二, 危害水域及其沿岸生态环境. 船舶在航行时, 其噪声同样对部分水生生物和沿岸的动物产生致命影响, 危害生态安全. 据《民主与法制时报))(2007 —03 —26A02版)报道," 长江上往来的船只很多, 它的螺旋桨高速旋转, 可能会把一

些江豚打死.而最严重的是船只在水下产生的噪声." 江豚寻找食物,巡游以及与同伴交流, 更多地是依靠发声系统和听觉功能, 船只产生的强大噪声会干扰它们捕捉声波的能力, 影响江豚寻找食物, 就有可能导致这一方面的生物链断裂, 影响生态环境平衡. 三, 危害船舶技术状况和航行安全. 部分船舶噪声如果和与其它噪声频率吻合, 将激发出更强度的共振噪声. 这些噪声再和船舶特有的共振周期相同的话, 就会增加船舶共振强度,从而影响船舶结构.船舶在内河水域航行时不按规定鸣放信号, 除了污染周边生活环境外,也同样会给其它船舶正常航行带来安全隐患. 船舶噪声污染监督与 控制现状 , 船舶噪声污染监督与控制 措施 对船舶噪声污染,从法律, 法规到地方规章都出台了一些监督与管理规定, 有一些地方还采取了一些切实可行的措施. 1, 立法现状. 中华人民共和国环 境保护法》(以下简称《环境保护法》)第二十四条规定,产生环境污染和其他公害的单位, 必须把环境保护工作纳入计划, 建立环境保护责任制度; 采取有效措施,防治在生产建设或者其他活动中产生的废气,废水,废渣,粉尘,恶臭气体,放射性物质以及噪声振动, 电磁波辐射等对环境的污染和危害. 《噪声污染防治法》第三十四条规定, 机动船舶在城市市区的内河航道航行, 必须按照规定使用声响装置《中华人民共和国防治船舶污染内河水域环境管理规定》(以下简称防治船舶污染内河水域环境管理规定)))第十条规定,船舶在城市市区的内河航道航行时,应当按

新型船舶动力装置基本情况和发展趋势

新型船舶动力装置基本情况和发展趋势船舶动力装置是船舶的核心设备,船舶动力装置只有正常运行,才能够为船舶的正常运行以及船员的日常生活提供保障。船舶动力装置由主动力装置、辅助动力装置和辅机及其设备共同组成,三大部分的相互协调共同为船舶提供源源不断的动力。在船舶动力装置中,主动力装置是提供推进动力的装置,其主要有蒸汽轮机、柴油机、燃气轮机、电动机和混合动力机几种主要类型,但新型船舶动力装置包括燃气轮机推进,喷水推进,吊舱推进,表面浆推进,超导磁推进,AIP 系统等。 一、柴油机动力装置 柴油机动力装置是以柴油为燃料的内燃机,其优点在于启动速度快、运行状态可靠和功率大等。柴油机动力装置是目前应用最为普遍的船舶动力装置,因此其技术成熟度也相对更高。柴油机动力装置在上世纪60年代开始全面取代了蒸汽轮机,成为最主流的船舶动力装置。柴油机动力装置分为四冲程柴油机和两冲程柴油机,其中二冲程柴油机的特点是转速相对较低,可以直接驱动螺旋机进行工作,主要应用于大中型远洋运输船舶上。而四冲程柴油机转速较高,一般主要应用于小型运输船、客船、军舰和豪华游艇上。 二、燃气轮机动力装置 燃气轮机动力装置是以油气作为燃料的动力装置,燃气轮机动力装置其突出的特点在于装置体积较少、重量轻、加速性能强,且燃气轮机动力装置运行过程中所产生的污染物远远少于柴油机动力装置。但是,燃气轮机动力装置也存在着较多的缺点和不足,如燃气轮机的燃料一一蒸馏油价格非常昂贵、燃气轮机油耗较高、经济性不高等,因此很难在船舶当中得到普及。目前,只有少部分的高速客船和军用舰艇上配备了燃气轮机动力装置。 三、电力推进装置

顾名思义是以电动机做功来推动船舶运行的动力装置,当前在船舶动力装置中被广泛使用的推进装置主要由电动机、原动机、变频器还有就是推进变压器以及控制调节器等构成。对于操纵性能要求不是特别高的船舰来说,经常使用的轴桨推进装置如可调桨以及定距桨等,对于操作性能要求相对高一点的船舶来说,通常采用的全回转推进器。电力推进装置工艺较柴油机动力装置要更为复杂, 但具有更好的经济性以及操纵空间,较为适合于多工况特种船舶。目前多数的电力推进装置还需要配备柴油机或者燃气轮机产生电力能源,为电动机提供能源。其主要优势在于: (1) 船上大型机械设备布置更灵活、有效空间更多、费用降低 (2) 电动机由电网供电,增加了系统的可靠性,提高了生命力 (3) 减少了维护的工作量; (4) 可以采用中高速不逆转原动机,以减少设备的体积和重量 (5) 可以采用低速电动机直接与推进轴连接,省去机械的减速齿轮 (6) 操纵灵活,机动性能好 (7) 易于获得理想的拖动特性 (8) 减小螺旋桨等机械振动和噪声、环境更好 船舶电力系统和船舶电力推进系统一体化供电的船舶综合电力系统是未来发展的新趋势,该系统将船舶的电力系统和推进系统有机的组合在一起,把动力机械能源转换为电力,提供给推进设备和船上的其他设备使用,使得船舶日用供电和推进供电一体化,实现电力的综合利用和统一管理。并且伴随着船舶事业不断推进发展,这样的技能必定会得到更为广泛的应用。 在电推进动力系统中吊舱式电力推进系统是当今备受关注和重视的推进方式。吊舱式电力推进是一种全方位转动的装置,电动机直接驱动螺旋桨,具有良

船体结构振动发展现状

大连理工大学研究生院网络学刊 NETWORK JOURNAL OF GRADUATE SCHOOL OF DUT 船体振动发展现状 摘要:本文主要介绍了2000年以后在船体振动方面的新进展,从发表的论文中归纳出近几年研究船 体振动的新发展。 关键词:总振动;局部振动;参考文献;减振; 0 引言 当船舶在海上航行时,船体结构不可避免地会很出现振动现象。早在19世纪后期,船体振动就引起了人们的注意。近年来,随着航运事业的发展,船舶吨位越来越大,主机功率和转速不断提高,引起船体振动的激振力也相应地增大了。同时,为了减小船舶构建的尺寸,减轻船体的重量,让人们广泛采用高强度钢作为造船材料,这样使得船体结构强度也跟着减小,就更易激起较大的船体振动。 1 船体总振动 计算结构的振动模态,必须首先确定力学模型和计算方法。用于船体振动计算的力学模型主要有一维梁模型、二维平面模型、三维立体模型和混合模型。计算方法主要有两类:一类以船梁理论为基础,一类以有限元法为基础。 根据文献“整船结构振动分析中的几个问题”(2006)大概可归纳出整船结构振动计算分析中涉及到的力学模型的建立、模型的结构参数、计算方法等3个问题的研究状况,具体如下:用于计算船舶整体结构振动的力学模型主要有:一维梁模型、双梁及三梁模型、二维平面模型、三维模型和混合模型。 结构参数包括附连水质量和结构的阻尼。其中,计算附连水质量的主要方法有刘威士、陶德等人的计算公式和图谱的方法,利用Green函数的边界元法以及其它一些方法;结构的阻尼系数主要是由经验和试验获得,目前主要的试验方法有对数衰减法、响应曲线法、相位研究法(相频特性曲线法)、共振最大振幅法。 计算方法的类型主要有通用程序法(包括有限元法和边界元法)、自编程序法(包括有限元法、迁移矩阵法和边界元法)、简易公式法、数据库法。 1.1 关于船体的总振动计算 1.1.1“基于等效静力算法的船舶板架结构动力响应优化设计”(2009): 文章本文提出了一种将等效静力优化算法和分级优化算法相结合的船舶板架结构动力响应优化方法。首先利用ANSYS进行结构动力响应分析,以动荷载和等效静荷载产生相同的位移场为基础,将动荷载转化为一系列的等效静荷载;然后利用获得的等效静荷载,在MATLAB中采用分级优化算法,进行一系列的结构静力优化设计;最后再以静力优化得到的结构参数输入到ANSYS,进行下一轮结构动力响应分析,如此迭代直至获得收敛的优化结果计算结果表明,提出的优化方法大大减少了结构动力优化的计算时间,具有较好的收敛效率。 1.1.2“夹层结构振动声辐射特性研究”(2009): 本文在前人工作的基础上,将芯层垂向压缩变形的影响引入到夹层结构的模型中来,并探讨了考虑芯层垂向压缩变形影响在夹层结构自由振动、响应计算中的合理性。推导了一种考虑芯层垂向压缩变形影响的夹层梁的动态刚度矩阵,给动态刚度矩阵法提供了一种新的单元类型。 1.1.3“船体薄壁梁弯扭耦合振动的流固耦合分析”(2009): 文章采用耦合有限元/边界元法计算水中船体的弯扭耦合振动。文中用一维薄壁梁有限元模拟船体梁,在横剖面处用二维边界元方法计算结构表面声压,推导出表征流体对振动特性影响的附加质量阵,编制了用流固耦合方法求解船体振动模态的程序。通过与采用ANSYS软件进行耦合场分析以及刘易

海洋船舶噪声级规定

海洋船舶噪声级规定 GB 5979-86 国家标准局1986-04-04发布 1987-02-01实施 本标准为远洋和沿海船舶规定了舱室噪声级的最大限制值,并为船舶的设计、制造、检验和使用部门提供了对噪声的评价依据。 本标准适用于货船、油船、客货船、推(拖)船、供应船及耙吸式和绞吸式挖泥船。其他船舶可参考执行。 1 常用场所的噪声级限制值 1.1 各舱室噪声级的最大限制值,应满足下表规定。 * 机舱内任一测点的噪声级不得大于110dB。

** 客舱参考执行。 1.2 船长(指两柱间长)小于70m的船舶,如某些舱室不能满足1.1条要求时,仅对机舱区的工作间及起居区各场所,允许放宽5dB。 2 测量方法及噪声评价 2.1 船上噪声测量应符合GB 4595-84 《船上噪声测量》的规定。 2.2 本标准以A声级为评价依据。 3 防护措施 船员进入噪声级大于90dB的场所时,应采取耳保护措施。凡噪声级大于90dB的舱室,应在人口处设置明显的告示牌"进入高噪声区,必须戴耳保护器"。 4 使用说明 4.1 凡本标准生效之日起开始建造的船舶,在整个营运期间都应符合本标准。 4.2 凡本标准生效前已营运和建造的船舶,如某些舱室不满足本标准时,应根据具体情况采取相应措施。 附加说明: 本标准由中华人民共和国交通部提出,由交通部标准计量研究所归口。 本标准由交通部标准计量研究所、上海船舶运输科学研究所、中国船舶工业总公司第七研究院标准化研究室、武汉水运工程学院负责起草。 本标准主要起草人王安锡、周顺序、史存根、蒋淦清、翁长俭、吴天健、杨永健、崔伟国、张保玉、洪我世、洪晓枫。

相关文档
最新文档