曲线方程及圆锥曲线典型例题解析

曲线方程及圆锥曲线典型例题解析
曲线方程及圆锥曲线典型例题解析

曲线方程及圆锥曲线典型例题解析

一.知识要点

1.曲线方程

步骤含义说明

1、“建”:建立坐标系;“设”:设动点坐标。建立适当的直角坐标

系,用(x,y)表示曲线上任

意一点M的坐标。

(1)所研究的问题已给出坐标系,即可直接

设点。

(2)没有给出坐标系,首先要选取适当的坐

标系。

2、现(限):由限制条件,列出几何等式。写出适合条件P的点M

的集合P={M|P(M)}

这是求曲线方程的重要一步,应仔细分析

题意,使写出的条件简明正确。

3、“代”:代换用坐标法表示条件

P(M),列出方程f(x,y)=0

常常用到一些公式。

4、“化”:化简化方程f(x,y)=0为最简

形式。

要注意同解变形。

5、证明证明化简以后的方程的

解为坐标的点都是曲线

上的点。化简的过程若是方程的同解变形,可以不要证明,变形过程中产生不增根或失根,应在所得方程中删去或补上(即要注意方程变量的取值范围)。

(2)求曲线方程的常见方法:

直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。

转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。

几何法:就是根据图形的几何性质而得到轨迹方程的方法。

参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y 联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。

2.圆锥曲线综合问题

(1)圆锥曲线中的最值问题、范围问题

通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。

圆锥曲线的弦长求法:

设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:

若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.

在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围。

(2)对称、存在性问题,与圆锥曲线有关的证明问题

它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。

(3)实际应用题

数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等。

涉及与圆锥曲线有关的应用问题的解决关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题作出定量或定性分析与判断,解题的一般思想是:

实际问题

模型的解

数学模型方程 讨论方程的解

翻译回去

建立坐标系 转化成数学问题

(4)知识交汇题

圆锥曲线经常和数列、三角、平面向量、不等式、推理知识结合到一块出现部分有较强区分度的综合题。 二.典例解析 题型1:求轨迹方程

例1.(1)一动圆与圆2

2

650x y x +++=外切,同时与圆2

2

6910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

(2)双曲线2

219

x y -=有动点P ,12,F F 是曲线的两个焦点,求12PF F ?的重心M 的轨迹方程。

解析:(1)(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分别为1O 、2O ,

将圆方程分别配方得:2

2

(3)4x y ++=,2

2

(3)100x y -+=, 当M e 与1O e 相切时,有1||2O M R =+ ① 当M e 与2O e 相切时,有2||10O M R =- ② 将①②两式的两边分别相加,得21||||12O M O M +=, 即2

2

2

2(3)(3)12x y x y +++-+= ③ 移项再两边分别平方得:

222(3)12x y x ++=+ ④

两边再平方得:2

2

341080x y +-=,

整理得

22

13627

x y +=, 所以,动圆圆心的轨迹方程是

22

13627

x y +=,轨迹是椭圆。 (法二)由解法一可得方程2

2

2

2

(3)(3)12x y x y +++-+=,

x

y

1O

2O

P

由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是焦点为1(3,0)O -、2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中心在坐标原点,焦点在x 轴上,

∴26c =,212a =,∴3c =,6a =,

∴2

36927b =-=,

∴圆心轨迹方程为

22

13627

x y +=。 (2)如图,设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,

∴c =

=

∴已知双曲线两焦点为12(F F , ∵12PF F ?存在,∴10y ≠

由三角形重心坐标公式有11(300

3x x y y ?++=???++?=??

,即1133x x y y =??=? 。

∵10y ≠,∴0y ≠。

已知点P 在双曲线上,将上面结果代入已知曲线方程,有2

2(3)(3)1(0)9

x y y -=≠ 即所求重心M 的轨迹方程为:2

2

91(0)x y y -=≠。

点评:定义法求轨迹方程的一般方法、步骤;“转移法”求轨迹方程的方法。

例2.(2001上海,3)设P 为双曲线-4

2x y 2

=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 。

解析:(1)答案:x 2-4y 2=1 设P (x 0,y 0) ∴M (x ,y )

∴2

,200y

y x x ==

∴2x =x 0,2y =y 0 ∴4

42

x -4y 2=1?x 2-4y 2=1

点评:利用中间变量法(转移法)是求轨迹问题的重要方法之一。 题型2:圆锥曲线中最值和范围问题

例3.(1)设AB 是过椭圆x a y b a b 222

210+=>>()中心的弦,椭圆的左焦点为

F c 10()-,,则△F 1AB 的面积最大为( )

A. bc

B. ab

C. ac

D. b 2

(2)已知双曲线x a y b

a b 222

2100-=>>(),的左右焦点分别为F 1,F 2,点P 在双曲线

的右支上,且||||PF PF 124=,则此双曲线的离心率的最大值是( ) A.

4

3

B.

53

C. 2

D.

72

(3)已知A (3,2)、B (-4,0),P 是椭圆

x y 22

259

1+=上一点,则|PA|+|PB|的最大值为( ) A. 10

B. 105-

C. 105+

D. 1025+

解析:(1)如图,由椭圆对称性知道O 为AB 的中点,则△F 1OB 的面积为△F 1AB 面积的一半。又||OF c 1=,△F 1OB 边OF 1上的高为y B ,而y B 的最大值是b ,所以△F 1OB 的面积最大值为

1

2

cb 。所以△F 1AB 的面积最大值为cb 。

点评:抓住△F 1AB 中||OF c 1=为定值,以及椭圆是中心对称图形。 (2)解析:由双曲线的定义, 得:||||PF PF a 122-=,

又||||PF PF 124=,所以322||PF a =,从而||PF a 223

= 由双曲线的第二定义可得

||PF x a

c

c

a 22

-

=, 所以x a c =532。又x a a c a ≥≥,即

532,从而e c a =≤5

3

。故选B 。 点评:“点P 在双曲线的右支上”是衔接两个定义的关键,也是不等关系532

a c

a ≥成立的条件。利用这个结论得出关于a 、c 的不等式,从而得出e 的取值范围。

(3)解析:易知A (3,2)在椭圆内,B (-4,0)是椭圆的左焦点(如图),则右焦点为F (4,0)。连PB ,PF 。由椭圆的定义知:

||||PB PF +=10,

所以||||||||||||(||||)PB PF PA PB PA PF PA PF =-+=+-=+-101010,所以。 由平面几何知识,

||||||||PA PF AF -≤,即(||||)||min PA PB AF +=+10,

而||()()AF =

-+-=3420522,

所以(||||)min PA PB +=+105。

点评:由△PAF 成立的条件||||||||PA PF AF -<,再延伸到特殊情形P 、A 、F 共线,从而得出||||||||PA PF AF -≤这一关键结论。

例4.(1)(06全国1文,21)设P 是椭圆()22

211x y a a

+=>短轴的一个端点,Q 为椭

圆上的一个动点,求PQ 的最大值。

(2)(06上海文,21)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,

左焦点为(3,0)F ,右顶点为(2,0)D ,设点11,2A ?? ???

.

①求该椭圆的标准方程;

②若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程; ③过原点O 的直线交椭圆于点,B C ,求ABC ?面积的最大值。

(3)(06山东文,21)已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为l 。

(Ⅰ)求椭圆的方程; (Ⅱ)直线l 过点P(0,2)且与椭圆相交于A 、B 两点,当ΔAOB 面积取得最大值时,求直线l 的方程。

解析:(1)依题意可设P(0,1),Q(x,y),则 |PQ|=x 2+(y -1)2 ,又因为Q 在椭圆上, 所以,x 2=a 2(1-y 2), |PQ|2= a 2(1-y 2)+y 2-2y+1=(1-a 2)y 2-2y+1+a 2, =(1-a 2)(y -11-a 2 )2-11-a

2+1+a 2

。 因为|y|≤1,a>1, 若a ≥2, 则|11-a 2|≤1, 当y=1

1-a 2时, |PQ|取最大值a 2a 2-1a 2-1 ,

若1

(2)①由已知得椭圆的半长轴a=2,半焦距c=3,则半短轴b=1,

又椭圆的焦点在x 轴上, ∴椭圆的标准方程为14

22

=+y x 。 ②设线段PA 的中点为M(x,y) ,点P 的坐标是(x 0,y 0),

x=2

1

0+x 得

x 0=

2x -1 y=

2

210+

y y 0=2y -

2

1 由,点P 在椭圆上,得

1)2

1

2(4)12(22=-+-y x , ∴线段PA 中点M 的轨迹方程是1)4

1(4)21

(2

2

=-+-y x 。

③当直线BC 垂直于x 轴时,BC=2,因此△ABC 的面积S △ABC =1。

当直线BC 不垂直于x 轴时,说该直线方程为y=kx,代入14

22

=+y x , 解得B(

1

422

+k ,

1

422

+k k ),C (-

1

422

+k ,-

1

422

+k k ),

则2

24114

k

k BC ++=,又点A 到直线BC 的距离d=

2

12

1k

k +-

∴△ABC 的面积S △ABC =2411221

k

k d AB +-=?。

于是S △ABC =1

441141442

22+-=++-k k

k k k 。

曲线运动典型例题

一、选择题 1、一石英钟的分针和时针的长度之比为3:2,均可看作是匀速转动,则() A.分针和时针转一圈的时间之比为1:60 B.分针和时针的针尖转动的线速度之比为40:1 C.分针和时针转动的角速度之比为12:1 D.分针和时针转动的周期之比为1:6 2、有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶,做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h.下列说法中正确的是() A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大 C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大 3、 A、B两小球都在水平面上做匀速圆周运动,A球的轨道半径是B球的轨道半径的2倍,A的转速为30 r/min,B 的转速为r/min,则两球的向心加速度之比为:() A.1:1 B.6:1 C.4:1 D.2:1 4、两个质量相同的小球a、b用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动,如图所示,则a、b两小球具有相同的 A.角速度B.线速度C.向心力D.向心加速度 5、关于平抛运动和匀速圆周运动,下列说法中正确的是() A.平抛运动是匀变速曲线运动B.平抛运动速度随时间的变化是不均匀的 C.匀速圆周运动是线速度不变的圆周运动D.做匀速圆周运动的物体所受外力的合力做功不为零 6、在水平面上转弯的摩托车,如图所示,提供向心力是 A.重力和支持力的合力B.静摩擦力C.滑动摩擦力D.重力、支持力、牵引力的合力 7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab为水平直径,cd为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则() A.物块始终受到三个力作用 B.只有在a、b、c、d四点,物块受到合外力才指向圆心 C.从a到b,物体所受的摩擦力先减小后增大 D.从b到a,物块处于失重状态

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

数学曲线方程及圆锥曲线典型例题解析

数学曲线方程及圆锥曲线典型例题解析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线方程及圆锥曲线典型例题解析 一.知识要点 1.曲线方程 (1)求曲线(图形)方程的方法及其具体步骤如下: 化” (2)求曲线方程的常见方法: 直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。 转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。 几何法:就是根据图形的几何性质而得到轨迹方程的方法。 参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐

标,间接地把坐标x,y联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。 2.圆锥曲线综合问题 (1)圆锥曲线中的最值问题、范围问题 通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。 圆锥曲线的弦长求法: 设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、 B(x2,y2)两点,则弦长|AB|为: 若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. 在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围。 (2)对称、存在性问题,与圆锥曲线有关的证明问题 它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。 (3)实际应用题 数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等。

2019高考物理练习(曲线运动)经典例题(带解析)

2019高考物理练习(曲线运动)经典例题(带解析) 1、关于曲线运动,以下说法中正确的选项是〔AC〕 A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动可能是匀变速运动 D.变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,那么可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,假设突然撤去F1,而保持F2、F3不变,那么质点〔A〕 A、一定做匀变速运动 B、一定做直线运动 C、一定做非匀变速运动 D、一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,那么撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,那么撤去F1后,质点可能做直线运动〔条件是F1的方向和速度方向在一条直线上〕,也可能做曲线运动〔条件是F1的方向和速度方向不在一条直线上〕。 3、关于运动的合成,以下说法中正确的选项是〔C〕 A.合运动的速度一定比分运动的速度大 B.两个匀速直线运动的合运动不一定是匀速直线运动 C.两个匀变速直线运动的合运动不一定是匀变速直线运动 D.合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定那么可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如下图, 求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x轴上的分运 动是匀加速直线运动,在y轴上的分运动是匀速直线运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。那么物体所受的合力F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为v x0=0,v y0=4m/s,故物体的初速度

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

【整理】圆锥曲线的综合经典例题(有答案解析)

经典例题精析 类型一:求曲线的标准方程 1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点 横坐标为的椭圆标准方程. 思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用 待定系数法确定、(定量). 解析: 方法一:因为有焦点为, 所以设椭圆方程为,, 由,消去得, 所以 解得 故椭圆标准方程为 方法二:设椭圆方程,,, 因为弦AB中点,所以, 由得,(点差法) 所以 又

故椭圆标准方程为. 举一反三: 【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直, 且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方 程. 【答案】依题意设椭圆标准方程为(), 并有,解之得,, ∴椭圆标准方程为 2.根据下列条件,求双曲线的标准方程. (1)与双曲线有共同的渐近线,且过点; (2)与双曲线有公共焦点,且过点 解析: (1)解法一:设双曲线的方程为 由题意,得,解得, 所以双曲线的方程为 解法二:设所求双曲线方程为(),

将点代入得, 所以双曲线方程为即 (2)解法一:设双曲线方程为-=1 由题意易求 又双曲线过点,∴ 又∵,∴, 故所求双曲线的方程为. 解法二:设双曲线方程为, 将点代入得, 所以双曲线方程为. 总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程. (1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及 准线)之间的 关系,并注意方程思想的应用. (2)若已知双曲线的渐近线方程,可设双曲线方程为 (). 举一反三: 【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程. (1)一渐近线方程为,且双曲线过点.

曲线运动经典例题

《曲线运动》经典例题 1、关于曲线运动,下列说法中正确的是(AC) A. 曲线运动一定是变速运动 B. 变速运动一定是曲线运动 C. 曲线运动可能是匀变速运动 D. 变加速运动一定是曲线运动 【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。变速运动可能是速度的方向不变而大小变化,则可能是直线运动。当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。 2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A) A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。 3、关于运动的合成,下列说法中正确的是(C) A. 合运动的速度一定比分运动的速度大 B. 两个匀速直线运动的合运动不一定是匀速直线运动 C. 两个匀变速直线运动的合运动不一定是匀变速直线运动 D. 合运动的两个分运动的时间不一定相等 【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。如果在一直线上,合运动是匀变速直线运动;反之,是匀变速曲线运动。根据运动的同时性,合运动的两个分运动是同时的。 4、质量m=0.2kg的物体在光滑水平面上运动,其分速度v x和v y随时间变化的图线如图所示,求: (1)物体所受的合力。 (2)物体的初速度。 (3)判断物体运动的性质。 (4)4s末物体的速度和位移。 【解析】根据分速度v x和v y随时间变化的图线可知,物体在x 轴上的分运动是匀加速直线运动,在y轴上的分运动是匀速直线 运动。从两图线中求出物体的加速度与速度的分量,然后再合成。 (1) 由图象可知,物体在x轴上分运动的加速度大小a x=1m/s2,在y轴上分运动的加速度为0,故物体的合加速度大小为a=1m/s2,方向沿x轴的正方向。则物体所受的合力 F=ma=0.2×1N=0.2N,方向沿x轴的正方向。 (2) 由图象知,可得两分运动的初速度大小为 v x0=0,v y0=4m/s,故物体的初速度

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

怎样学好圆锥曲线

怎样学好圆锥曲线(解析几何的高考热点与例题解析)圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始. 高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容. 2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等. 3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查. 4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想 解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法 对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a,b,c,e之间构成函数关系,函数思想在处理这类问题时就很有效. (3)掌握坐标法 坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练. 考点一求圆锥曲线方程 求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题。 解决这类问题常用定义法和待定系数法。 ●思路方法:一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤。 定形——指的是二次曲线的焦点位置与对称轴的位置. 定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,

高中物理曲线运动经典题型总结-(1)word版本

专题 曲线运动 一、运动的合成和分解 【题型总结】 1.合力与轨迹的关系 如图所示为一个做匀变速曲线运动质点的轨迹示意图,已知在B 点的速度与加速度相互垂直,且质点的运动方向是从A 到E ,则下列说法中正确的是( ) A .D 点的速率比C 点的速率大 B .A 点的加速度与速度的夹角小于90° C .A 点的加速度比D 点的加速度大 D .从A 到D 加速度与速度的夹角先增大后减小 2.运动的合成和分解 例:一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。他感到风从东南方向(东偏南45o)吹来,则风对地的速度大小为( ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s 3.绳(杆)拉物类问题 例:如图所示,重物M 沿竖直杆下滑,并通过绳带动小车m 沿斜面升高.问:当滑轮右侧的绳与竖直方向成θ角,且重物下滑的速率为v 时,小车的速度为多少? 练习1:一根绕过定滑轮的长绳吊起一重物B ,如图所示,设汽车和重物的速度的大小分别为B A v v ,,则( ) A 、 B A v v = B 、B A v v ? C 、B A v v ? D 、重物B 的速度逐渐增大 4.渡河问题 例1:在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( ) 例2:某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( ) (A) (B) (C) (D) 【巩固练习】 1、 一个劈形物体M ,各面都光滑,放在固定的斜面上,上表面水平,在上表面放一个 光滑小球m ,劈形物体由静止开始释放,则小球在碰到斜面前的运动轨迹是( ) m

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

圆锥曲线历年高考题附答案解析

数学圆锥曲线测试高考题 一、选择题: 1. (2006全国II )已知双曲线x 2a 2-y 2 b 2 =1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32 2. (2006全国II )已知△ABC 的顶点B 、C 在椭圆 x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 3.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( ) A .43 B .75 C .85 D .3 4.(2006高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) B. C. 2 D. 4 5.(2006卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 6.(2006卷)曲线221(6)106x y m m m +=<--与曲线22 1(59)59x y m m m +=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同 7.(2006高考卷)若抛物线2 2y px =的焦点与椭圆22 162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 8.(2006卷)直线2y k =与曲线2222 918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( ) (A)1 (B)2 (C)3 (D)4 二、填空题: 9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。 10. (2006卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设

高一物理曲线运动重难点解析及典型例题

第五章 曲线运动 第五节 圆周运动 第六节 向心加速度 二. 知识要点: 1. 认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算。理解线速度、角速度、周期之间的关系:v=rω=2πr /T 。理解匀速圆周运动是变速运动。 2. 理解速度变化量和向心加速度的概念,知道向心加速度和线速度、角速度的关系式。能够运用向心加速度公式求解有关问题。 3. 运用极限法理解线速度的瞬时性。掌握运用圆周运动的特点如何去分析有关问题。体会有了线速度后。为什么还要引入角速度。运用数学知识推导角速度的单位。 三. 重难点解析: 1. 线速度 (1)定义:质点沿圆周运动通过的弧长Δl 与所用时间Δt 之比叫做线速度。它描述质点沿圆周运动的快慢。 (2)大小: t l v ??= 单位:m/s (3)方向:质点在某点的线速度方向沿着圆周上该点的切线方向。 2. 匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。 (2)因线速度方向不断发生变化,故匀速圆周运动是变速运动,这里的“匀速”是指速率不变。 3. 角速度 (1)定义:在匀速圆周运动中,连接质点和圆心的半径转过的角度与所用时间的比值,就是指点的角速度。描述质点转过圆心角的快慢。匀速圆周运动是角速度不变的圆周运动。 (2)大小: t ??= θω,单位:rad /s 4. 周期T 、频率f 和转速n 定义:做圆周运动的物体运动一周所用的时间叫做周期,用T 表示,单位为秒(s )。 做圆周运动的物体运动一秒,所转过圆周的次数叫做频率,用f 表示,单位为赫兹(Hz )。1 Hz=11 -S 。 做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做转速。用n 表示,单位为转每秒(r /s ),或转每分(r /min )。 周期频率和转速都是描述物体做圆周运动快慢的物理量。 5. 描述圆周运动各物理量的关系 (1)线速度和角速度间的关系。 v= rω。 (2)线速度与周期的关系。 T r v π2= 。 (3)角速度与周期的关系。

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

曲线运动复习提纲及经典习题

《曲线运动》复习提纲 一、曲线运动 1.曲线运动速度方向:时刻变化; 曲线该点的切线方向。 2.做曲线运动的条件:物体所受合外力方向与它的速度方向不在同一直线上(即F(a)与v 不共线) 3.曲线运动的性质:曲线运动一定是变速运动,即曲线运动的加速度a ≠0。 ①做曲线运动的物体所受合外力的方向指向曲线弯曲的一侧(凹侧)。 ②轨迹在力和速度方向之间 4.曲线运动研究方法:运动合成和分解。(实际上是F 、a 、v 的合成分解) 遵循平行四边形定则(或三角形法则) 二、运动的合成与分解 物体实际运动叫合运动 物体同时参与的运动叫分运动 (1)合运动与分运动的关系: ①独立性。 ②等时性。 ③等效性。 (2)几个结论:①两个匀速直线运动的合运动仍是匀速直线运动。 ②一个匀速直线运动和一个匀变速直线运动的合运动,不一定是直线运动(如平抛运动)。 ③两个匀变速直线运动的合运动,一定是匀变速运动,但不一定是直线运动。 (3)典型模型:①船过河模型 1)处理方法:小船在有一定流速的水中过河时,实际 上参与了 两个方向的分运动:随水流的运动(水速),在静水中的船的运动 (就是船头指向的方向)。 船的实际运动是合运动。 2)若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间: θsin 1v d v d t ==合 3)若使小船过河的时间最短,应使船头正对河岸行驶,此时过河时间1 v d t =(d 为河宽)。因为在垂直于 河岸方向上,位移是一定的,船头按这样的方向,在垂直于河岸方向上的速度最大。 ②绳(杆)端问题 船的运动(即绳的末端的运动)可看作两个分运动的合成: a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。即为v ; b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。这样就可以求得船的速度为αcos v , 当船向左移动, α将逐渐变大,船速逐渐变大。虽然匀速拉绳子,但物体A 却在做变速运动。 三、平抛运动 1.运动性质 a)水平方向:以初速度v 0做匀速直线运动. b)竖直方向:以加速度a=g 做初速度为零的匀变速直线运动,即自由落体运动. 说明:在水平和竖直方向的两个分运动同时存在,互不影响,具有独立性.合运动是匀变速曲线运动.相等的时间内速度的变化量相等.由△v=gt ,速度的变化必沿竖直方向 2.平抛运动的规律 以抛出点为坐标原点,以初速度v 0方向为x 正方向,竖直向下为y 正 方向,如右图所示,则有: 分速度 gt v v v y x ==,0

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型 一.选择题(共10小题) 1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离 心率的范围是() A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是() A.B.C. D. 3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为() A.B. C.D. 4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D. 5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此 双曲线的离心率的取值范围是() A.(2,+∞)B.(1,2) C.(1,)D.(,+∞) 6.已知双曲线C:的右焦点为F,以F为圆心和双曲线 的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()

A.B.C.D.2 7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的 左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x 8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心 率的取值范围是() A.(,+∞) B.(1,)C.(2.+∞)D.(1,2) 9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是() A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为() A.B.C.D. 二.填空题(共2小题) 11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是. 12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为. 三.解答题(共4小题)

物理必修2第五章曲线运动经典分类例题

第五章曲线运动经典分类例题 §5.1 曲线运动基础 一、知识讲解 二、【典型例题】 知识点1、力和运动的关系 1、曲线运动的定义: 2、合外力决定运动的速度: 】 3、合外力和速度是否共线决定运动的轨迹: 4、物体做曲线运动的条件: 习题 1、关于曲线运动的速度,下列说法正确的是:() A、速度的大小与方向都在时刻变化 ) B、速度的大小不断发生变化,速度的方向不一定发生变化 C、速度的方向不断发生变化,速度的大小不一定发生变化 D、质点在某一点的速度方向是在曲线的这一点的切线方向 2、下列叙述正确的是:() A、物体在恒力作用下不可能作曲线运动 B、物体在变力作用下不可能作直线运动 C、物体在变力或恒力作用下都有可能作曲线运动 D、物体在变力或恒力作用下都可能作直线运动 ^ 3、下列关于力和运动关系的说法中,正确的上:() A.物体做曲线运动,一定受到了力的作用 B.物体做匀速运动,一定没有力作用在物体上 C.物体运动状态变化,一定受到了力的作用 D.物体受到摩擦力作用,运动状态一定会发生改变 4、下列曲线运动的说法中正确的是:() A、速率不变的曲线运动是没有加速度的 B、曲线运动一定是变速运动 C、变速运动一定是曲线运动 D、曲线运动一定有加速度,且一定是匀加速曲线运动; 5、物体受到的合外力方向与运动方向关系,正确说法是:() A、相同时物体做加速直线运动 B、成锐角时物体做加速曲线运动 C、成钝角时物体做加速曲线运动 D、如果一垂直,物体则做速率不变的曲线运动6.某质点作曲线运动时:() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内位移的大小总是大于路程

相关文档
最新文档