高分子材料改性考试部分试题

高分子材料改性考试部分试题
高分子材料改性考试部分试题

1、简述纤维表面处理应遵循的基本原则。

(1)极性相似原则;(2)界面酸碱匹配原则;(3)形成界面化学键原则;(4)引入可塑界面层原则

适当扩展。

2、对玻璃纤维、碳纤维和植物纤维各有哪些常用的表面处理方法?

玻璃纤维:硅烷偶联剂,表面接枝处理、酸碱刻蚀处理。

碳纤维:与玻璃纤维表面处理不同,主要是氧化处理,包括气相氧化法、液相氧化法、等离子体氧化法;

植物纤维:由于纤维素分子含有大量羟基,具有很强的亲水性,很难和疏水的热塑性聚合物相容,主要的处理方法:热处理发、碱处理法、改变表面张力法、偶连法、表面接枝法。适当扩展。

3、影响有机过氧化物交联的因素有哪些?

影响有机过氧化物交联的因素如下:(1)过氧化物的品种与用量;(2)交联温度和时间;(3)环境氛围;(4)抗氧剂;(5)酸性物质;(6)填充剂;(7)助交联剂。

适当扩展

4、同步硫化:调整和控制交联剂均匀分散使橡胶和其它组分达到相同的硫化速度;

共硫化:异种聚合物之间产生的相互交联结构的过程。

5、屏蔽剂:具有可吸收波长为10-400nm的有机官能团。

6、共辐射和预辐射

(1)共辐射接枝法:将待接枝的聚合物A和单体B共存的条件下辐照,易生成均聚物。辐射会在聚合物A和单体B通式产生活性粒子,相邻的两个自由基成键,这时单体发生接枝聚合物反应。优点:操作简单,辐射与接枝过程可以在辐射场内同时进行,聚合物经过辐射产生的自由基可以马上利用,所以共辐射接枝要求剂量较低,单体B对聚合物A有一定保护作用,缺点:单体B发生均聚反应,降低了接枝效率。

(2)预辐射接枝法:将聚合物A在有氧或真空条件下辐射,在无氧条件下放入单体B中进行接枝聚合。优点:最大限度减小均聚物的可能性,缺点:由于产生的自由基存活时间不长,影响接枝效率。

1:吸油值:100g填料吸附液体助剂的最大量粒径大吸油值低,粒径小吸油大

2:填料在聚合物界面化学键的理论解释?

答:化学键理论认为:要使两相之间实现有效粘结,基体树脂中应有能与填料表面发生化学反应的活性基团,通过活性基团的反应以化学键结合形成两相界面。

(1)化学键理论

当填料及树脂之间具有可反应的官能团以及在使用恰当的偶联剂场合,这一理论无疑是正确的。化学键理论推动了玻璃纤维增强塑料的迅速发展,对于偶联剂的开发也起到很好的指导作用。但是,硅烷偶联剂能在玻璃与硅烷偶联剂之间形成共价键,但也知道,这些键能被水解。且这样的化学粘结其粘结效果并非最好。

3:填料表面局部化学改性方法有哪3种:偶联剂改性:分子一端与无机超细粒子进行反应,另一端的非极性基团能够与有机物发生反应或物理缠结。表面接枝改性:表面接枝改性包括直接接枝聚合和表面引发接枝聚合改性。与脂肪酸或醇反应改性:无机氧化物粒子表面总是存在羟基,可以与脂肪酸中的羧基或醇羟基发生类似酯化反应

4:填充改性对聚合物粒子主要是解决两个问题:粒子的分散性;粒子与聚合物基体的界面相容性

5填料的加入对E和断裂伸长率是变大还是变小:填料的加入总是使填充塑料的弹性模量增大。原因:填料的模量比聚合物的模量大很多倍。一般说来窄分布的大颗粒填料,填充体系的弹性模量增大较少,当填料颗粒的纵横尺寸比较大时,填充体系的弹性模量显著增大。断裂伸长率填充体系因填料的存在在受到拉伸应力时断裂伸长率均有所下降。原因:绝大多数填料特别是无机矿物填料本身是刚性的,没有在外力作用下变形的可能。

6:影响有机过氧化物的因素有哪些?

答:线型高分子链之间进行化学反应,成为网状高分子,这就是交联反应。

(1)过氧化物的品种与用量(2)交联温度和时间(3)环境氛围(4)抗氧剂(5)酸性物质(6)填充剂(7)助交联剂

7:反应挤出技术的优点和缺点?

答:优点:适合于高黏度的聚合物熔体聚合。可在高粘度下实现聚合原因:螺杆和料筒组成的塑化挤压系统能将聚合物熔融后黏度降低;反应可控性好。根据需要设置多处加料口;根据各种化学反应自身的规律,将物料按一定程序和最合适的方式分布加入;缩短反应时间,提高生产效率;生产的灵活性强。适应的压力和温度广泛,可调整螺杆结构和挤出工艺参数;环境污染小。不使用溶剂或很少量的溶剂;成本低,生产效率高。工序少、流程短、能耗低、

成本低。

缺点:●技术难度大要进行配方和工艺条件的研究。●难以观察检测物料在挤出机中始终处于动态、封闭的高温、高压环境下,难以检测到物料的反应程度。●技术含量高反应挤出设计涉及诸多学科,要去的成果需要较长时间的研究和多方合作才行。

8:反应挤出改性的控制要点有影响操作的因素?

答:1)决定挤出机的性能和最终产品的质量:流变性、热传递和化学反应。具体的要求:高效率的混合功能、高效率的向外排热功能、高效率的脱挥功能、合理的停留时间、强输送能力和强剪切功能。

2)反应挤出物料配方的影响:必须根据具体的反应挤出过程来确定物料配比。.反应挤出工艺条件的影响:挤出温度、螺杆转速、加料速度和加料顺序。

9:氧化锌晶烦按形态结构分为:纤维状和四脚状。

10:硅烷偶联剂与钛酸脂偶联剂的作用机理?

答:偶联剂作用原理:偶联剂主要用作高分子共混、复合材料的助剂,其分子两端含有化学性质不同的两类基团:一是亲水基团,与极性物质具有良好的相容性或直接参与化学反应,另一类是亲油基团,能与非极性物质例如大多数合成树脂或其他聚合物发生相互缠结或生成氢键,因此偶联剂被称为分子桥。1.硅烷偶联剂:含过氧基硅烷偶联剂和叠氮基硅烷偶联剂。 硅烷偶联剂的通式为: n SiX (4-n)其中R 为非水解的、可以与有机基体进行反应的活性官能团, X 为能够水解的基团,与无机表面有较好的反应性。 2.钛酸酯偶联剂:主要有作无机填料和颜料等广泛应用的表面活性剂钛酸酯偶联剂的分子结构可按下式分为六个功能区:每个功能区都有其特点,在偶联剂改性中发挥各自的作用:

简式: RO)M Ti (OX R'Y)N

(其中M 在1-4之间,而N 小于6)式中R 为短碳链烷基;X 为C ,N ,P ,S 等元素,Y 为羟基,氨基,环氧基,双键等基团;N 为非水解基团的个数。 功能区1 (RO)M :与被改性材料发生偶联作用的基团;功能区2Ti-O :酯基转移和交联功能,它可使钛酸酯偶联剂与聚合物及改性材料产生交联,同时还可与环氧树脂中的羟基发生酯化反应;功能区3X :链接钛中心带有功能性的基团,它决定着钛酸酯偶联剂的特性,这些基团有烷氧基,羧基,硫酰氧基等;功能区4R ’:长链的纠缠基团(使用于热塑性树脂),主要是保证与聚合物分子的缠结作用和混溶性,提高材料的冲击强度,对于填料填充体系而言,可减低其表面能;功能区5Y :固化反应基团(使用于热塑性树脂),包括不饱和双键基团,氨基,羟基等。

11:.聚合物共混:是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械參混,最终形成一种宏观上均匀,而且力学、热学、光学及其他性能得到改善的新材料的过程。高分子合金:聚合物共混物在工程塑料界称为聚合物合金或高分子合金。注意:高分子合金的概念并不完全等同于聚合物共混物。 12:IPN 法:IPN 是指两种或两种以上高分子链相互贯穿,相互缠结的混合体系。特点:具有两个或多个交联网络形成微相分离结构,交联结构可以是化学交联,也可以是物理交联,至少有一种聚合物是在另一种聚合物存在下合成或交联的。

13:浊点:当共混物由均相体系变为两相体系时,其透光率会发生变化,这一相变点就称为浊点。

14:增容剂在共混改性的增容原理并举例说明?

答:1)增容原理:富集在两相界面处,改善两相之间的界面结合;促进分散相组分在共混物中的分散。增容剂:反应型增容剂非反应型增容剂。增容剂是指在共混体的聚合物组

分之间起到增加相容性和强化界面粘结作用的共聚物。

2)表3-2 非反应型增容剂的应用实例

类型聚合物B 聚合物A 增容剂

A-B型PS PB PS-g-PB

PP PA66 PP-g-PA66 A-C型PE PS CPE, SEBS

PP PE EPDM C-D型PVC BR EV A

PMMA PP SEBS 表3-3 反应型增容剂的应用实例

马来酸型增容剂;丙烯酸改性聚合物

聚合物A 聚合物B 增容剂

PP,PE PA6, PA66 PP-g-MA, PP-g-AA

PP,PE PET PP-g-AA, 含羧基PE

项目反应型非反应型

优点

1.添加少量即有很大

的效果

对于相容化难控制的共混物

效果大

2.容易混炼

使共混物性能变差的危险

性小

缺点

1.由于副反应等

原因可能使共混物的性能

变差

2.受混炼及成型

条件制约

3.价格较高

需要较大的添加量

15:共混物的相容性?

答:相容性:指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。按相容程度可以分为:完全相容,部分相容和不相容体系。相应的聚合物称为完全相容体系,部分相容体系和不相容体系。聚合物热力学相容性是指两种高聚物在任何比例时都能形成稳定的均相体系的能力,即指聚合物在分子尺度上相容,形成均匀共混体系。

工艺相容性是指两种材料共混时的分散难易程度和所得共混物的动力学稳定。对于聚合物相

容性有两方面的含义:●可以混合均匀的程度●相混合的聚合物分子间的作用力 16:高分子—高分子共混原则?

答:

17.相界面的效应 ?

答:产生的原因:分散相颗粒的粒径很小,具有很大的比表面积。(1)力的传递效应:(2)光学效应:如PS 与PMMA 共混(3)诱导效应:如诱导结晶。

18:纤维增强改性纤维表面处理应有什么原则,玻璃纤维、碳纤维、植物纤维有哪些常用的处理方法?

答:1)极性相似原则;界面酸碱匹配原则;形成界面化学键原则;引入可塑界面层原则适当扩展。

2)对玻璃纤维、碳纤维和植物纤维各有哪些常用的表面处理方法:

第三节 共混物的形态结构

共混物的形态

共混物的性能

共混工艺条件和共混物组成

一.共混物形态的三种基本类型 共混物的形

态 均相体系

两相体系

海-海结构

海-

岛结构 极性相匹配原则。与选择溶剂的情形类同,两相高分子材料极性相似,有助于混溶。表面张力相近原则,这是一条胶体化学原则。因为表面张力相近,易在两种混合高分子颗粒表面接触处形成较稳定的界面层,从而提高共混稳定性。扩散能力相近原则,这是一条分子动力学原则。已知在界面层上两相高分子链段相互渗透,扩散。若扩散能力相近,易形成浓度变化较为对称的界面扩散层,提高材料物理、力学性能。等粘度原则,这是一条流变学原则。指两相高分子熔体或溶液粘度接近,易混合均匀混合。若粘度相差较大、易发生“软包硬”,或粒子迁移等流动分级现象,影响共混质量。溶解度参数相近原则。这是一条热力学原则。两相高分子共混不同于高分子溶液。两相共混的目的是取长补短,升发新性能,因此并不要求两相一定达到分子级的均匀混合,而希望各相保持各自的特性,一般要求达到微米级的多相结构即可,即所谓“宏观均相,微观非均相”的分相而又不分离的状态。但是,为了混合的稳定性,为了提高力学性能,要求两相颗粒界面之间有一定的微小混溶层。溶解度参数相近有助于稳定混溶层的形成。

玻璃纤维:硅烷偶联剂,表面接枝处理、酸碱刻蚀处理。

碳纤维:与玻璃纤维表面处理不同,主要是氧化处理,包括气相氧化法、液相氧化法、等离子体氧化法;

植物纤维:由于纤维素分子含有大量羟基,具有很强的亲水性,很难和疏水的热塑性聚合物相容,主要的处理方法:热处理发、碱处理法、改变表面张力法、偶连法、表面接枝法。适当扩展。

19:同步硫化:调整和控制交联剂均匀分散使橡胶和其它组分达到相同的硫化速度

20:共硫化:异种聚合物之间产生的相互交联结构的过程。

21:屏蔽剂:具有可吸收波长为10-400nm的有机官能团。

22:共辐射和预辐射?

答:(1)共辐射接枝法:将待接枝的聚合物A和单体B共存的条件下辐照,易生成均聚物。辐射会在聚合物A和单体B通式产生活性粒子,相邻的两个自由基成键,这时单体发生接枝聚合物反应。优点:操作简单,辐射与接枝过程可以在辐射场内同时进行,聚合物经过辐射产生的自由基可以马上利用,所以共辐射接枝要求剂量较低,单体B对聚合物A有一定保护作用,缺点:单体B发生均聚反应,降低了接枝效率。

(2)预辐射接枝法:将聚合物A在有氧或真空条件下辐射,在无氧条件下放入单体B中进行接枝聚合。优点:最大限度减小均聚物的可能性,缺点:由于产生的自由基存活时间不长,影响接枝效率。

23:交联改性:塑料交联为聚合物大分子链在某种外界因素影响下产生可反应自由基或官能团,从而在大分子链之间形成新的化学键,使线型结构聚合物形成不同程度网状结构聚合物的过程。可引发交联的外界因素为不同形式的能源,具体有光、热及辐射等。

24:填料表面处理方法干法:表面涂覆处理、表面反应处理、表面聚合处理。

高分子合金:具有良好相容性的多组合高分子体系

高分子共混:是指两种或两种以上均聚物或共混物混合制成宏观均匀

版权来自:东华理工大学化生材学院

高分子材料改性学思考题

高分子材料改性学思考题 1.聚合物熔融态化学反应有何特点? 反应温度高,所以反应速度快,而且反应效率也高;无需使用溶剂,原材料消耗少,成本较低,无污染;可以使一些无法找到合适溶剂的反应体系进行所需的化学反应。 2.简述反应挤出的基本过程。 进行反应挤出时,将欲反应的各种原料组分如聚合物、单体、引发剂、其他助剂等一次或分次由相同或不同的加料口加入到挤出机中,借助于螺杆的旋转,实现各种原料之间的混合与输送,并在外热和剪切热作用下,使物料塑化熔融、反应。随后,移去反应过程产生的挥发物。反应充分的改性聚合物经口模被挤出,经骤冷、固化、切粒或直接挤出成型为制品。 3.简述反应挤出过程的控制要点与影响反应挤出的操作因素。 控制要点:反应挤出过程的混合、反应空间和停留时间、温度控制与传热、挥发分的脱除、输送物料和排出物料的能力、挤出过程中其他组分的加入。 影响反应挤出的操作因素:配方、挤出温度、螺杆转速、喂料速度、螺杆组合。 4.举例推算多元复合引发剂的半衰期。 ∑==n i i i f 11 ττ,i f 为各引发剂摩尔分数。 5.聚合物熔融接枝工艺的控制因素有哪些? 接枝单体含量、引发剂及其用量、反应温度、反应时间(挤出机螺杆转速)、交联与降解的抑制(电子给予体)、共单体。 6.影响有机过氧化物交联的因素有哪些? 聚合物分子链结构、过氧化物的品种与用量、交联温度和时间、环境气氛、抗氧剂(防老剂)、酸性物质、填充剂、助交联剂。 7.影响控制降解聚丙烯的相对分子质量与相对分子质量分布的因素有哪些? 加工温度、时间、过氧化物品种和浓度、抗氧剂。 8.什么是偶联剂和表面处理剂?它们有什么作用?作用机理是什么? 偶联剂是具有某些特定基团的化合物,其分子结构特点是含有两类性质不同的化学基团,一类是亲无机基团,另一类是亲有机基团。通过化学或物理作用将两种性质差异很大,原本不易结合的材料较牢固地结合起来。 表面活性剂:极少量即能显著改变物质表面或界面性质的物质。其分子结构特点是由两种不同性质的基团组成:其一是一个较长的非极性烃基,称为疏水基;另一是一个较短的极性基,称为亲水基。形成不对称的分子结构,同时具有亲油性和亲水性,并且亲油和亲水的强度必须匹配,形成“双亲结构”分子。 作用:提高填料与聚合物的亲和能力。 作用机理:表面物理作用。包括表面涂覆(或称为包覆)和表面吸附。 表面化学作用。包括化学反应、化学吸附(表面取代、水解、聚合和接枝等)。 9.填料在使用之前应如何进行预处理? 干法:表面涂敷处理、表面反应处理、表面聚合处理。 湿法:表面吸附法、化学反应法、聚合法。 气相表面处理法。 加工现场处理法:捏合法、反应挤出处理法、研磨处理法。 10.填料在聚合物中的分散过程、影响因素和评价方法。 分散过程1在剪切流场的粘性拖曳下,将大块的固体填料破碎成较小的粒子;2聚合物在剪

导电高分子材料

导电高分子材料 高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。 大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用 Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。 一.导电高分子的定义与导电机理 导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。 根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。以正、负离子为载流子的导电聚合物被称为离子导电聚合物。离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。

聚合物改性考试考试试题题

名称解释 20分 物共混改性: 是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 转: 聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形错、互锁的共连续形态结构,使共混物的力学性能提高。 性塑料: 热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 作用: 使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连情况的不同而表现为多种形式。 互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结层状结构和互锁结构。 贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 分为热力学相容性和工艺相容性两类。 学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 略 界面层的结构组成和独立相区的区别 10分 ①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; 面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; 面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳界面粘结强度不利。 以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 . 通过共聚改变某聚合物的极性; . 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; . 在某聚合物上引入特殊作用基团;加入第三组分进行增容; . 两相之间产生部分交联,形成物理或化学缠结; . 形成互穿网络结构(IPN); . 改变加工工艺,施加强烈的力剪切作用。 一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态能。 :机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 聚合物共混物的制备方法有那些?各有什么特点?10分 . 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又

高分子材料复习题

1.(1)合成纤维有那几种主要纺丝方法?简述每种纺丝方法的特点。 A.熔体纺丝:将聚合直接得到的聚合物熔体或聚合物切片通过螺杆挤出机熔融成熔体以后,通过过滤、挤出到 空气中凝固成型的方法,其特点是加工方法简单,流程短,纺丝速度高,产量大,成型过程中只有传热而没有传质,是一元纺丝体系。 B.溶液纺丝: (1)湿法纺丝:将聚合物溶解在溶剂中,通过脱泡、过滤并挤出到凝固浴中成型的方法,是溶液纺丝的一种,通常适用于分解温度低于熔融温度的聚合物,其特点是流程长、纺速低,丝条必须在凝固浴中成型,成型过程既有传热又有传质,宜纺制短纤维,是三元纺丝体系。 (2)干法纺丝:属于溶液纺丝,采用的溶剂挥发性强,挤出时将纺丝溶液挤出到热空气,通过溶剂的挥发而凝固成型,特点是纺丝速度高,流程较湿法纺丝短,产量小,适于纺长丝,属于二元体系。 (2)为什么不可以采用熔体纺丝的方法加工聚丙烯腈纤维?如果你想采用熔体纺丝方法加工聚丙烯腈纤维,你 需要从原料上作那些改进?请说明原因。 A.聚丙烯腈其热分解温度200~250℃,熔点达320℃,故不能采用熔体纺丝。粘流温度太高,且是极性聚合物, 熔融粘度也很大,不利于加工。 B.想熔体纺丝需加入第二单体第三单体(在聚丙烯腈大分子上引入能形成柔性链的共聚单体,通过控制共聚物的 序列结构和分子质量来降低聚丙烯腈的熔点,以制造可熔融的聚丙烯腈树脂,通过非增塑熔融纺丝制得纤维),降低其分子间较强的相互作用力,从而降低其粘流温度和粘度。另外,如聚乙烯醇,分解温度低于粘流温度也不可熔融纺丝。 2.(1)对比聚乙烯和聚丙烯的结构,分别阐述他们的性能和应用。 答:⑴写出聚乙烯与聚丙烯的结构式,对比两者结构上的差异。 ②聚丙烯分子链上有一侧基,侧基的存在增加了空间位阻,使分子链的柔性降低,刚性增大,所以聚丙烯的强 度、硬度、耐热性和化学稳定性比聚乙烯好,抗冲击性能和耐低温性能比聚乙烯差,所以聚丙烯比聚乙烯更适合作结构件和重型包装制品,如手柄、方向盘、风扇叶片、洗衣机外壳、电视机外壳、电话机外壳、电冰箱内衬、重包装薄膜、编织袋等。 ⑶由于聚丙烯侧基的存在,使分子链上交替出现叔碳原子,叔碳原子上的氢极易受氧的进攻,导致其耐氧化性 和耐辐射性差,即耐老化性能差,所以聚丙烯难于用于户外制品,如遮阳棚等。 ⑷由于聚丙烯侧基的存在,使分子链的距离增大,密度降低,所以聚丙烯单丝可以生产绳索和鱼网等 (2)对比聚乙烯与聚丙烯的结构、性能和用途的差异(20分)。 答:(1)书写出PE和PP的分子结构(4分); (2)分子结构的差异,侧甲基的位阻效应,使得PP具有更高的T g和耐热性,因此PP可作为工程塑料使用,而PE则不能(8分); (3)PP侧甲基的存在,使得PP耐低温性能差,冲击性能不佳;PE则具有较佳的低温性能。因此PE可用于低温环境(-40C),PP则不能(4分); (4)PP侧甲基的存在,使其耐氧化性较PE差;具体应用时,一般PP需要加入抗氧剂。(4分) 3.玻璃纤维增强环氧树脂和玻璃增强不饱和树脂的主要性能和应用领域。 A.玻璃纤维增强环氧树脂:比强度高、绝热、耐烧蚀、电绝缘、抗腐蚀和成型制造方便,广泛应用于汽车、造 船、建筑、化工、航空以及各种工业电气设备、文化用品等领域,也是电气绝缘及印刷线路基板的良好材料。 B.玻璃纤维增强不饱和树脂:加工性能好,树脂中引入引发剂和促进剂后,可以在室温下固化成型,由于其中 的交联剂其稀释作用,故树脂粘度降低,可采用各种成型方法。透光性好、固化时收缩率大,耐酸、碱性稍差。 可制作大型构件,采光瓦,不宜制作耐酸碱的设备及管件。 4.水性涂料和溶剂性涂料的优缺点 总:与油性漆相比,水性漆的环保性能是其最大优势。水性漆中不含有苯、二甲苯等公认的有毒有害物质,同

聚合物改性复习题

1、聚合物改性的定义,改性的方法。 答:聚合物改性:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程。主要方法:共混改性、填充改性、复合材料、化学改性、表面改性。共混改性指两种或两种以上的聚合物经混合制成宏观均匀的过程。填充改性指人们在聚合物中添加填充剂有时只是为了降低成本,但也有很多时候是为了改善聚合物的性能。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。化学改性是通过化学反应改变聚合物的物理、化学性质的方法。表面改性:改善工件表面层的机械、物理或化学性能的处理方法。 2、化学改性(改变分子链结构)和物理改性(高次结构)的本质区别。 答: 第二章:基本观点: 1、共混物与合金的区别。 答:高分子合金不能简单等同于聚合物共混物,高分子合金是指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。 2、共混改性的分类(熔融、乳液、溶液和釜内) 答:按照共混时物料的形态:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点。溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备。乳液共混:共混产品以乳液的形式应用。斧内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其聚合过程,在聚合的同时也完成了共混。 3、共混物形态研究的重要性。 答:共混物的形态与共混物的性能密切相关,而共混物的形态又受到共混工艺条件和共混物组分配方的影响,所以,共混物的形态研究就成了研究共混工艺条件和共混组分分配与共混物性能的关系的重要中间环节。 4、共混物形态的三种基本类型——均相体系、非均相体系(海岛结构、海海结构) 答:一是均相体系。二是非均相体系(两相体系):包括“海-岛结构”------连续相+分散相。“海-海结构”------两相均连续,相互贯穿。 5、相容性对共混物形态结构的影响。 答:在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力。两种聚合物的相容性越好就越容易相互扩散而达到均匀的混合,过渡区也就宽广,相界面越模糊,相畴越小,两相之间的结合力也越大。有两种极端情况,其一是两种聚合物完全不相容,两种聚合物链段之间相互扩散的倾向极小,相界面很明显,其结果是混合较差,相之间结合力很弱,共混物性能不好。第二种极端情况是两种聚合物完全相容或相容性极好,这时两种聚合物可相互完全溶解而成为均相体系或相畴极小的微分散体系。这两种极端情况都不利于共混改性的目的(尤其指力学性能改性)。 一般而言,我们所需要的是两种聚合物有适中的相容性,从而制得相畴大小适宜、相之间结合力较强的复相结构的共混产物。 6、与形态有关的因素:相容性、分散度和均一性的概念和作用。 答:相容性(compatibility)----共混物各组分彼此互相容纳,形成宏观均匀材料的能力。作用:通过相容性的大小,可以反映共混物聚合物之间的相互容纳能力和共混物的形态。 分散度:两相体系中分散相物料的破碎程度,常用分散相颗粒的大小和平均粒径来表示。均一性:分散相物料分散的均匀程度,亦即分散相浓度的起伏大小。作用:分散度和均一性都是用于表征分散相的分散状况。 7、相容性的概念和相容性的8种判据。 答:A)溶解度参数(δ)相近原则:△H=0,最小,表明此时聚合物对相容性最好; δ是聚合物内聚能密度的平方根,δ越相近的聚合物对相容性越好。 B)共同溶剂原则(试验法):通过实验确定聚合物相容性,方法简单,但是受到温度和浓度的影响较大,不够精确。 C)浊点法则:共混物由均相体系变为非均相体系时,共混物的透光率会发生变化,把该相转变点称为“浊点”。所以通过一定的方法测定浊点,可判断聚合物的相容性。 D)薄膜法:不同的聚合物折射率不同,将共混物制成均相溶液后制成薄膜,如果薄膜的透明度差且脆,则为不相容;反之,弱薄膜透明且有韧性,则相容性良好。缺点:误差较大,对折射率相同的聚合物,不能用此法。 E)显微镜法:目前分析共混物相容性的最准确,最直观,最有用的技术。对不相容或部分相容的体系,还可以进一步确定出分散相的颗粒大小、分布、形态和包藏结构等信息。用透射电镜观察共混物的相结构发现:即使是相容的共混体系,在微观下也是两相分布,而不是达到分子水平的混合。 F)Tg法则:比较科学、常用的方法,关键在于Tg的测定。Tg的测定方法: 动态力学法(DMA)(利用力学性质的变化) 机械分析法(利用力学性质的变化)

功能高分子材料复习题

《功能高分子材料》复习题 一、功能高分子材料按其功能性可以分为几类? 功能高分子可从以下几个方面分类: 1.力学功能材料: 1)强化功能材料,如超高强材料、高结晶材料等; 2)弹性功能材料,如热塑性弹性体等。 2.化学功能材料: 1)分离功能材料,如分离膜、离子交换树脂、高分子络合物等; 2)反应功能材料,如高分子催化剂、高分子试剂; 3)生物功能材料,如固定化酶、生物反应器等。 3.物理化学功能材料: 1)耐高温高分子,高分子液晶等; 2)电学功能材料,如导电性高分子、超导高分子,感电子性高分子等; 3)光学功能材料,如感光高分子、导光性高分子,光敏性高分子等; 4)能量转换功能材料,如压电性高分子、热电性高分子等。 4.生物化学功能材料: 1)人工脏器用材料,如人工肾、人工心肺等; 2)高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等; 3)生物分解材料,如可降解性高分子材料等。 二、说明离子交换树脂的类型及作用机理?试述离子交换树脂的主要用途。 1.阳离子交换树脂。机理:解离出阳离子、并与外来阳离子进行交换; R-SO3H+M+——R-SO3M+H+ 2.阴离子交换树脂。机理:解离出阴离子、并与外来阴离子进行交换。 RN+H3OH-+X-——RN+H3X-+OH- 3.应用: 1)水处理:包括水质的软化、水的脱盐和高纯水的制备。 2)冶金工业:分离、提纯和回收铀、钍等超铀元素、稀土金属、重金属、轻金属、贵金属和过渡金属。 3)原子能工业:包括核燃料的分离、提纯、精制、回收等,还是原子能工业废水去除放射性污染处理的主要方法。 4)海洋资源利用:从海洋生物(例如海带)中提取碘、溴、镁等重要化工原料,用以海水制取淡水。 5)食品工业:制糖、酿酒、烟草、乳品、饮料、调味品等食品加工中都有广泛地应用。 6)医药工业:例如在药物生产中用于药剂的脱盐、吸附分离、中和及中草药有效成分的提取等。 7)化学工业:在化学实验、化工生产上是重要的单元操作,普遍用于多种无机、有机化合物的分离、提纯、浓缩和回收等。 8)环境保护:在废水、废气的浓缩、处理、分离、回收及分析检测上都有重要应用,已普遍用于电镀废水、造纸废水、矿冶废水、生活污水、影片洗印废水、工业废气等治理。

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

聚合物共混改性-作业题答案

1. 聚合物共混改性的主要目的有哪些? 物性(谋求新的功能提高性能):功能化、高性能化、耐久性 成型加工性:流动性、收缩性、离型性、尺寸稳定性、结晶性、结晶速度、热熔融强度等 经济性:增量、代用、省资源、循环利用等 2. 聚合物共混改性的主要方法有哪些? 物理共混:是指两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀的新材料的过程。 化学共混:聚合物的化学共混改性是通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类共混改性方法。 物理/化学共混:是在物理共混的过程中发生某些化学反应 3. 简述混合的基本方式及其特点。 基本方式:分配混合(分布混合、层流混合)、分散混合 特点:在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程,称为分配混合。 分布混合:只改变分散相的空间分布状况,增加分散相分布的随机性。分散相物料主要通过对流作用来实现;层流混合:是分布混合的一种特定形式,其理论基于一种假设,即在层流混合的过程中,层与层之间不发生扩散。分散混合:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。 4. 试述聚合物共混物的形态及特点。 海-岛结构:是一种两相体系,一相为连续相,另一相为分散相,分散相分散在连续相中,亦即单相连续体系。 海-海结构:也是一种二相体系,但两相皆为连续相,相互贯穿,亦即两相连续体系。 两相互锁或交错结构:也是一种二相体系,这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。 梯度结构:为二相体系,特殊的共连续体系(两相连续体系)其组成在空间上互为增减。 阶跃结构:为二相体系,特殊的共连续体系(两相连续体系),在极小过渡区域内,其组成在空间上互为增减。 单相连续体系:海-岛结构、两相互锁或交错结构 共连续体系:海-海结构、梯度结构、阶跃结构 5. 影响熔融共混的主要因素有哪些? (1)聚合物两相体系的熔体黏度(比值)及熔体弹性。(2)聚合物两相体系的界面张力。(3)聚合物两相体系的组分含量以及物料的初始状态。(4)流动场形式和强度。(5)共混时间。 1. 试述聚合物共混的概念。 聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2. 共混物的形态学要素有哪些? 分散相和连续相、分散相的分散状况、两相体系的形貌、相界面 3. 简述分散相颗粒分散过程的两种主要机理。 液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4. 依据“液滴模型”,讨论影响分散相变形的因素。 Weber数:We很小时,σ占据主导作用,形成稳定的液滴。“液滴模型”认为,对于特定的体系和在一定条件下,We可以有特定的Wecrit,当We < Wecrit,液滴稳定;We>Wecrit,液滴会变得不稳定,进而破裂。 γ γ :↑→We ↑→D ↑。

聚合物共混改性考试试题及答案

聚合物共混改性考试试卷 一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST 相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容;

最新高分子材料改性(郭静主编)课后习题标准答案

第一章绪论 第二章高分子材料共混改性 1.什么是相容性,以什么作为判断依据? 是指共混无各组分彼此相互容纳,形成宏观均匀材料的能力,其一般以是否能够产生热力学相互溶解为判据。 2.反应性共混体系的概念以及反应机理是什么? 是指在不相容或相容性较差的共混体系中加入(或就地形成)反应性高分子材料,在混合过程中(例如挤出过程)与共混高分子材料的官能团之间在相界面上发生反应,使体系相容性得到改善,起到增容剂的作用。 3.高分子材料体系其相态行为有哪几种形式,各自有什么特点,并举例加以说明。 (1)具有上临界混溶温度UCST,超过此温度,体系完全相容,为热力学稳定的均相体系;低于此温度为部分相容,在一定的组成范围内产生相分离。如:天然橡胶-丁苯橡胶。 (2)具有下临界混溶温度LCST,低于此温度,体系完全相容,高于此温度为部分相容。如:聚苯乙烯-聚甲基乙烯基醚、聚己内酯-苯乙烯/丙烯腈共聚物。 (3)同时出现上临界混溶温度UCST和下临界混溶温度LCST,如苯乙烯/丙烯腈共聚物-丁腈橡胶等共混体系。 (4)UCST和LCST相互交叠,形成封闭的两相区 (5)多重UCST和LCST 4.什么是相逆转,它与旋节分离的区别表现在哪些方面? 相逆转(高分子材料A或高分子材料B从分散相到连续相的转变称为相逆转)也可产生两相并连续的形态结构。 (1)SD起始于均相的、混溶的体系,经过冷却而进入旋节区而产生相分离,相逆转主要是在不混溶共混物体系中形态结构的变化。 (2)SD可发生于任意浓度,而相逆转仅限于较高的浓度范围 (3)SD产生的相畴尺寸微细,而相逆转导致较粗大的相畴, 5.相容性的表征方法有哪些,试举例加以说明。 玻璃化转变法、红外光谱法、差热分析(DTA)、差示扫描量热法(DSC) 膨胀计法、介电松弛法、热重分析、热裂解气相色谱等。 玻璃化转变法:若两种高分子材料组分相容,共混物为均相体系就只有一个玻璃化温度,

导电高分子材料

导电高分子材料 导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类

聚合物改性砂浆粘结强度及测试方法的研究

聚合物改性砂浆粘结强度及测试方法的研究 吴敬龙,李家和,王政 (哈尔滨工业大学材料学院,哈尔滨15006) 【摘要】粘结强度是建筑砂浆一项主要的性能指标,但我国目前还没有测试砂浆粘结强度试验方法及试件类型的通用标准方法。本文对几种测试砂浆粘结强度的方法进行了比较,并对“8”字模方法进行了改进,利用改进后的“8”字模法对水泥砂浆和聚合物改性砂浆与几种墙体和保温材料的粘结强度进行了测定及分析。 【关键词】聚合物改性砂浆?粘结强度?测试方法 【中图分类号】【文献标识码】【文章编号】 RESEARCH ON BONDING STRENGTH AND THE TESTING METHOD OF POLYMER MODIFIED MORTAR (WU Jing-long,LI Jia-he,W ANG Zheng) (School of Material Science Engineering,Harbin Institue of Technology,Harbin150006,China) Abstract:The bonding strength is the very important performance of building mortar,but our country still haven`t current testing method and sample style of the bonding strength.In this paper,we compare several testing method of mortar,and improve the method of“8”.Then use the improved method of“8”,we test and analyse the bonding strength of between the polymer modified mortar and several the walling and heat preservation material. Key words:polymer modified mortar?bonding strength?testing method 0引言 对于砂浆粘结强度的测试方法,我国目前还没有测试砂浆粘结强度试验方法及试件类型的国家标准,国际上也无通用的试验方法和试件形式[1]同时,随着国家对绿色建材的的重视,墙体改造的大力推广,目前市场上已经出现了很多种新型墙体材料来取代以前应用最为广泛的粘土红砖,应用较多的有各种砌块和板材。然而在推广使用新型墙体材料的过程中,普遍存在严重的墙体开裂和渗漏问题,严重影响了工程质量和正常使用,也严重制约了新型墙体材料的推广应用。这主要是由于墙体材料与传统水泥砂浆粘结强度不高造成的。聚合物改性砂浆具有与墙体材料粘结强度大、韧性高等特点。使其在新型材料应用中,受到研究者和施工单位的广泛关注。 本文针对以上现状,查阅大量国内外文献资料,并根据自己的试验,研究了一种聚合物改性砂浆与普通砂浆粘结强度,同时比较了几种不同粘结强度测试方法,提出一种较为合理的粘结强度测试方法。在此基础上,讨论该聚合物砂浆对苯板、砌块、轻质保温墙板、粉煤灰砖等几种墙体材料的粘结强度。 1原材料及测试方法 1.1原材料及聚合物砂浆配比 水泥:本文中水泥采用哈尔滨水泥厂生产的P?O42.5水泥。 砂:本文中所采用的砂为松花江的中砂,模数为2.6。 聚合物:本文中采用的聚合物是可再分散胶粉。 消泡剂:本文采用磷酸三丁酯。 聚合物砂浆配比:试验中固定灰砂比为1:3,调节用水量使水泥砂浆和聚合物砂浆的稠度在65mm~75mm之间,在聚合物砂浆中掺加了为水泥用量的0.5%可再分散胶粉和水泥用量0.2%的消泡剂。 1.2粘结强度测试方法 现存的粘结强度测试方法主要有以下几种: (1)“8”字模法(A)这种方法是文献中应用最多的一种方法[2]。“8”字模的中间截面的面积为2cm×2cm。示意图见图1 所示。 图1“8”字模法模具 测试时首先将普通砂浆用八字模成型,插捣抹

导电高分子材料

导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010~1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类 导电高分子材料按结构和制备方法不同可分为结构型导电高分子材料和复合型导电高分子材料两大类。根据结构特征和导电机理不同可分成三类:载流子为自由电子的电子导电聚合物、载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物、以氧化还原反应为电子转移机理的氧化还原型导电聚合物。 1.1结构型导电高分子材料 结构型(又称作本征型)导电高分子[2]是指高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料由于其结构的特点,能够提供载流子而具有导电性,经掺杂后,电导率可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。 1.2复合型导电高分子材料 复合型导电高分子材料[3]是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 1.3电子导电聚合物 电子导电聚合物是导电聚合物中种类最多,研究最早的一类导电材料,在电子导电聚合物的导电过程中载流子是聚合物中的自由电子或空穴。高分子聚合物中的π键可以提供有限离域,当高分子聚合物中具有共轭结构时,π电子体系增大,电子的离域性增强,共轭体系越大,离域性也越大,电子的可移动范围也就

聚合物共混改性考试试题及答案教学内容

聚合物共混改性考试试题及答案

3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态和力学性能。 原因:机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 七、聚合物共混物的制备方法有那些?各有什么特点?10分 答:1. 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又包括:粉料(干粉)共混,熔体共混,溶液共混,乳液共混 2. 共聚-共混法 特点:特点:共聚—共混法制取聚合物共混物是一种化学方法,这一点是与机械共混法显然不同的。 3. 互穿聚合物网络法 八、增容作用的本质是什么?通常采用哪些增容方法?15分 答:增容作用的物理本质:降低共混组分之间的界面张力,促进分散程度的提高;提高相结构的稳定性,使得共混塑料的性能得以提高;改善共混组分之间的界面粘结,有利于传递外力。 常用的增容方法: 1. 利用氢键作用导致相容 2. 利用离子间相互作用 3. 利用电荷转移作用 4. 加入增容剂 5. 混合过程中化学反应所引起的增容作用 6. 共聚物/均聚物共混体系 7. 共溶剂法和IPN法

高分子改性复习题及答案

简答题: 接枝共聚反应的原理是什么? 答:接枝共聚反应首先要形成活性接枝点,各种聚合机理的引发剂或催化剂都能为接枝共聚提供活性种,而后产生接枝点。活性点处于链的末端,后才形成接枝共聚物。 1、从嵌段共聚物的角度来说,热塑性弹性体的组成是什么?各组成的作用是什么? 答:热塑性弹性体是由大量的软嵌段和少量的硬嵌段组成的两相嵌段共聚物。软硬两种嵌段各有各的用处,软嵌段提供柔韧的弹性,而硬嵌段则提供物理交联点和起填料的功能。 2、反应挤出过程对工艺条件的要求是什么? 答:①高效率的混合功能:②高效率的脱挥功能③高效率的向外排热功能④合理的停留时间⑤强输送能力和强剪切功能 1、什么是热力学相容性和工艺相容性?为什么说工艺相容性比热力学相容性应用更普遍? 答:热力学相容性是指两种聚合物在热和比例时都能形成稳定的均相体系的能力,即指聚合物在分子尺寸上相容,形成均相共混体系。工艺相容性是指由于聚合物的分子质量很高,黏度特别大,靠机械力场将两种混合物强制分散混合后,各项的自动析出或凝聚的现象也很难产生,故仍可长期处于动力学稳定状态,并可获得综合性能良好的共混体系。 因为工艺相容性仅仅是一个工艺上比较的概念,期含义是指两种材料共混对分散的难易程度,和所得的共混物的动力学稳定性,对于聚合物而言,相容性有两方面含义:一是可以混合均匀的程度,二是混合的聚合物分子间作用力,若分子间的作用力越相近,则越容易分散均匀,分散性越好。 2、影响聚合物共混的结构形态因素是什么?简述如何影响。 答:①两相组成的配比:在“海-岛”结构两相体系共混物中,确定哪一相为连续相,哪一相为分散相具有重要意义,可计算理论临界含量。小于26%为分散相,大于74%为连续相。②熔体黏度:黏度低的一相倾向于生成连续相,黏度高的一项倾向于生成分散相。 ③黏度与配比的综合影响 ④粘度比、剪切应力及界面的综合影响:当分散相与之连续相黏度相等时,分散相粒径d达到一个最小值,当界面张力降低时,分散相颗粒粒径d变小,当剪切应力增大时,分散相粒径降低。 ⑤其他因素:如加工温度、组分间的相容性等。 3、控制分散相粒径的主要方法是什么? 答:a. 共混时间: 对于同一共混体系,同样的共混设备,分散相粒径会随共混时间延长而降低,粒径分布也会随之均化,直至达到破碎与集聚的动态平衡。 b. 共混组分熔体粘度: ?提高连续相粘度或降低分散相粘度,都可以使分散相粒径降低。?“软包硬”规律,熔体粘度较低的一相总是倾向于成为连续相,而熔体粘度较高的一相总是倾向于成为分散相。?等粘点:考虑到在接近等粘点的条件下,可获得较小的分散相粒径,所以,宜在略高于或略低于等粘点的条 件下共混。④调控熔体粘度的方法(1)采用温度调节 (2)用助剂进行调节(3)改变分子量 c.界面张力与相容剂的影响,使界面张力降低,从而使分散相粒径变小。 d.剪切力,剪切力增大粒径减小。 4.什么是银纹-剪切带理论? 答:在橡胶(或其他弹性体)增韧塑料的两相体系中,橡胶是分散相,塑料是连续相。橡胶颗粒在增韧塑料中发挥两个重要作用:一,作为应力集中中心诱发大量银纹和剪切带。二,控制银纹的发展并使银纹及时终止而不致发展成破坏性的裂纹。银纹末端的应力场可诱发剪切带而使银纹终止,银纹扩展遇到已有剪切带也可阻止银纹进一步发展。大量银纹和/或剪切带的产生和发展,消耗大量能量,因而可显著提高增韧塑料的韧性。 1.填料的作用是什么? 答:①增量:降低成本; ②增强:性能改善,如力学强度、耐热性、成型收缩率和线膨胀系数等; ③赋予新功能:功能性填料,赋予如导电性、磁性、电波吸收性、抗紫外线和抗菌等各种特殊功能。 2.填料―聚合物界面的作用机理主要有哪五类?简述浸润理论及化学键理论。 答:(1)浸润性理论:浸润是形成界面的基本条件之一。当两个理想清洁表面靠物理作用结合时,要使树脂对填料紧密接触(结合),就必须使树脂对填料表面有很好的浸润。 (2)化学键理论:要使两相之间实现有效粘结,基体树脂中与填料表面上应有能相互发生化学反应的活性官能团,通过官能团的反应以化学键结合形成两相界面。 (3)界面酸碱作用理论:构成聚合物基复合材料的 填料和聚合物基体可视为广义的酸碱,酸性表面可与 碱性表面相互结合。 (4)过渡层理论:为消除由于聚合物基复合材料成 型时基体和填料的膨胀系数相差较大而在固化过程 中产生的附加应力,在界面区存在着一个过渡层,该 过渡层起到了应力松弛作用 (5)摩擦理论:聚合物基体与填料界面的形成是由 于摩擦作用,基体与填料 间的摩擦因数决定了复合材料的强度。 1.纤维增强聚合物复合材料有哪些基本特性? 答:(1)比强度与比模量高:轻质高强工程结构材料 (2)抗疲劳性提高:界面能阻止裂纹扩展 (3)耐热性高:50~100℃→100℃以上 (4)减震性好:粘弹性和纤维与基体界面的吸振能 力好 (5)线膨胀系数小:纤维类材料的线膨胀系数小 2.举例说明为什么聚合物增强材料要进行表面处理 (无机纤维、有机聚合物纤维、天然纤维各举一例)。 答:(1)无机纤维中玻璃纤维表面的偶联剂处理,通 过偶联剂使两种不同性质的材料很好的“偶联”起来, 从而是复合材料获得较好的粘结强度。 (2)有机聚合纤维中碳纤维的表面处理,其表面惰 性大,表面能低,缺乏有化学活性的官能团,反应活 性低与基体的粘性差,限制了碳纤维的高性能发挥, 经表面处理后其复合材料夹层间剪切强度有显著提 高。 (3)天然纤维的表面处理主要有化学处理法和物理 处理法,可以提高材料力学性能,如剑麻纤维KH-550 偶联剂处理后能有效改善刚性的剑麻纤维与脆性的 酚醛树脂基体界面的粘结,提高了综合力学性能,接 枝丙烯酸对降低复合材料吸水性有较好的效果。 1.高分子改性剂的基本过程和机理是什么?举例说明。 答:?基本过程:在加工过程中,基体聚合物和改性 剂均处于黏流状态,通常 所用模具材料(如钢材)的表面能很高,它与基体聚合 物的表面能相差较大,为减小张力,改性剂向制品表 面迁移、富集,且疏水端向内取向与本体聚合物相容, 亲水基团朝模具取向。成型后取出制品时,表面改性 剂的这种构象基本保留下来,即疏水端被困于基体亲 水端朝外取向。 ?机理:高分子表面改性剂有亲水链段和疏水链段, 共聚物中的亲水链段在制品成型时明显富集在制品 表面,疏水链段与基体缠结起到锚固作用,加入少量 两种两性聚合物,就能使其基体材料的接触角与其它 材料的剥离强度明显增强。 ?例如在PP共混物中,改性剂无规聚丙烯—甲基丙烯 酸接枝共聚物(APP-g-MAA)和聚丙烯蜡—甲基丙烯 酸接枝共聚物(PPVV-g-MA A)的流水端在表面朝外取 向,从而改变聚丙烯表面的流水性。 2.等离子体的含义是什么?等离子体处理聚合物表面, 其表面形态及结构都发生了哪些改变? 答;?等离子体是部分离子化的气体,是由电子、任一 极性的离子、以基态的或任何激发态形式高能态气态 原子、分子以及光量子组成的气态复合体。等离子体 中,电子和带正电荷的离子的总数基本相等,呈电中 性。 ?等离子体处理聚合物的表面之后,材料表面发生了 氧化分解反应,从而改善材料的粘合、染色、吸湿, 反射光线、摩擦、手感、防污、抗静电等性能。 低温等离子体处理纤维,可在纤维表面形成微坑和裂 纹。 等离子体处理可在聚合物材料表面引入极性基团或 活性点,形成与被黏材料,复合基体的化学键和,或 增加被粘合材料基体间树脂的范德华力,达到改善粘 结和复合界面的目的。 3.辐射接枝改性的基本原理是什么? 答:①共辐射接枝法:指将待接枝的聚合物A和乙烯 基单体B共存的条件下辐照,易生成均聚物,同时产生 活性粒子,相邻的两个自由基成键,这时单体接枝聚 合反应。 ②预辐射接枝法:是将聚合物A在有氧或真空条件下 辐照,然后在无氧条件下放入单体B中进行接枝聚合。 主干聚合物产生的自由基与单体进行聚合反应,最终 生成接枝共聚物和少量的均聚物。 1.根据共混物熔体与温度关系式阿仑尼乌兹方程式共 混物的黏流活化能与加工流动性能有何关系?其对 加工成型有何指导意义? 答:关系:共混体系的黏流活化能较小,共混物的黏 度对温度的变化不敏感且切变速率对黏流活化能的 影响不大,通常加入某种流动性比较好的聚合物的加 工流动性。 指导意义:对于一些共混体系,共混的黏流活化能可 高于纯肪,对于这样的共混体系,需在较高温度下加 工成型。 2.举例说明为什么纤维增强材料要进行表面处理? (无机纤维、有机聚合物纤维、天然纤维) 答:①无机纤维:玻璃纤维表面的偶联剂处理,如果 含有双键的乙烯基-三氧硅氧烷和正丙烯-三甲氧基硅 氧烷以及相容性助剂,混合物处理玻璃纤维的界面, 可使玻璃纤维增强聚丙烯复合材料的冲击强度,拉伸 强度和弯曲强度得到大幅提高。 ②有机聚合物纤维:碳纤维表面处理,如气相氧化性 气体来氧化纤维表面而引入极性基团,并给予了适宜 的粗糙度来提高复合材料层间的剪切强度。 ③天然纤维:在短剑纤维/酚醛树脂复合体体系中, 剑麻纤维KH-550偶联剂处理后能有效改善刚性剑麻 纤维与脆性剑麻纤维树脂基体界面的粘结,提高复合 材料的综合性能,接枝丙烯酸对降低复合材料吸水性 有良好的效果。 3.抗静电改性,阻燃改性,抗起球改性,吸湿排汗, 抗紫外线改性等功能话聚酯改性的基本原理。 答:I、抗静电改性:由于涤纶的疏水性易在纤维上积 聚静电荷,造成加工困难,故需进行抗静电改性。① 加入抗静电添加剂:通过共混添加抗静电剂以制备抗 静电聚酯纤维。②抗静电共聚酯:a、在聚合阶段用 共聚方法引入抗静电单体或通过化学方法引入吸湿 性抗静电基团,制备抗静电纤维。b。用表面接枝法。 II、阻燃改性:涤纶的氧指数(LOI)21%左右,阻燃 性改性时期改性的重要方面,方法有两种:①工具阻 燃改性:在聚酯的合成阶段将阻燃单体与聚酯组分进 行缩聚以制备阻燃共聚酯。阻燃共聚酯一般含磷,含 卤共聚酯。②添加改性:用共混的方法将阻燃物与聚 酯共混得到阻燃改性聚酯。 III、抗起球改性:目前抗起球聚酯纤维可通过以下几 种方法获得:低粘度树脂直接纺丝、并聚合法、复合 纺丝法、低粘度树脂增黏法、普通树脂法、织物成纤 维表面处理法。 IV、吸湿排汗改性:①外观结构改性:采用截形异截 面,部分配合使用成孔剂,实现纤维异形化和表面微 孔化处理。②表面接枝:在大分子结构内部引入亲水 集团,也可以增加纤维导湿排汗性能。③复合纺丝: 采用复合纺丝在皮层引入具有吸湿功能的聚合物,利 用皮层的性能将水分吸入内部芯层,从而实现吸湿快 改性纤维制备。 V、抗紫外线改性:对于紫外线的屏蔽一般可以通过吸 收成物理反射、散射实现,因此可将紫外线屏蔽分为 紫外吸收剂和紫外散射剂,前者一般为有机化合物, 后者为无机氧化物等。 名词解释: 1、高分子改性:为了满足不同的用途,利用化学或 物理方法改进高分材料的一些性能,以达到预期的目 的。 2.聚合物的化学改性:通过聚合物的化学反应,改变 大分子链上的原子或原子团的种类及其结合方式的 一类改性方法。 3.聚合物的填充改性:在聚合物基体中添加与基体在 组成与结构不同的固体添加物,以降低成本,或是使 聚合物制品的性能有明显的变化。 4.接枝共聚:在大分子链上通过化学键结合适当的支 链或动能侧基的反应。 5.热弹性体:既有交联橡胶的力学性能,又有线型热 塑性聚合物的加工性能,是由大量的软钳段和少量的 硬嵌段组成的两相嵌段聚合物。 6.反应挤出:是聚合物或可聚单体的连续挤出的过程 中完成的一系列化学反应的操作过程。 7.聚合物共混物:含有多种组分的聚合物均相或多相 体系。 8.相容性;是指共混物各组分被此相互容纳,形成宏观 均匀材料的能力。1完全相容的聚合物共混体系,其 共混物可形成均相体系具有单一的T g2部分相容的聚 合物,其共混物为两相体系。聚合物对部分相容的判 据,是两种聚合物的共混物具有两个T g,且两个Tg 峰较每一种聚合物自身的Tg峰更为接近3不相容不 相容聚合物的共混物也有两个Tg峰,但两个T g峰的 位置与每一种聚合物自身的T g峰是基本相同的 9.聚合物力学相容性:指两种高聚物在任何比例时都 能形成稳定的均相体系的能力,即指聚合物在分子尺 度上相容,形成稳定的均相体系的能力。 11.简单混合:是指分散相粒径大小不变,只增加分散 相在空间分布的随机性的混合过程。 12.分散混合:是指既增加分散相分布的随机性,又减 小粒径,改变分散相粒径分布的过程。 13.等粘点:在两相粘度接近于相等的情况下,最有利 于获得良好的分散结果。两相熔体粘度相等的一点, 被称为“等粘点”。 14. 表面效应:是指纳米粒子表面原子数与总原子数 之比随粒径的变小而急剧增大后所引起的性质上的 变化。 15. 小尺寸效应是指纳米粒子的尺寸与传导电子的德 布罗意波长相当或更小时,周期性的边界条件将被破 坏,磁性、内压、光吸收、热阻、化学活性、催化性 及熔点等都较普通粒子发生了很大变化。 16.复合材料:由两个或两个以上独立的物理相,包括 粘结材料(基体)和粒料、纤维或片状材料所组成的一 种固体产物。 17.比强度:指材料强度与相对密度之比,比模量是指 材料模量与相对密度之比。 18.疲劳破坏:材料在循环应力下,由于裂纹的形成和 扩散而引起的低应力破坏。 19.弱边界层:由于污染,纤维等表面粘度下降的现象。 20.热塑性弹性体:这种材料兼有高温下热塑性塑料的 可熔融加工性和常温下硫化橡胶的弹性。 21. 表面富集:指所研究的聚合物多相复合体系中, 某一种组分在聚合物表面聚集,导致其在表面层中的 浓度高于其基体浓度的现象。 22. 等离子体:是部分离子化的气体,是由电子、任 一极性的离子、以基态的或任何激发态形式高能态气 态原子、分子以及光量子组成的气态复合体。 23.电晕放电即低频放电:是指在大气压条件下,以空 气为介质,由高电压弱电流所引起的放电,产生的是 一种低离子密度的低温等离子体。 24.表面刻蚀:通过等离子体处理,使高分子材料表面 发生氧化分解反应,形成微坑和微细裂纹,以及引入 极性基团或活性点,从而改善材料的粘合、染色、吸 湿、反射光线、摩擦、手感、防污、抗静电等性能。 25.交联改性:利用低温等离子体中活性粒子的撞击作 用,使纤维材料分子中的氢原子等被放出,从而形成 自由基,再通过自由基的相互结合,形成分子链间的 交联。 26.化学改性:利用等离子体作用在材料表面产生一定 的可反应化学作用基团,并在一定的条件下发生化学 反应,从而改变材料表面的化学组成,引发其表面化 学性质发生变化,同时引起其表面产生某些机械物理 性质的相应变化。 27.表面接枝改性:是通过激发分子、原子、自由基等 活性离子与有机物分子发生相互作用而导致聚合或 接枝,最终达到改性的目的。 填空: 1.高分子改性主要方法:化学改性共混改性填充改性 复合增强表面改性 2.接枝共聚原理:接枝共聚反应首先要形成活性接枝 点,各种聚合机理的引发剂或催化剂都能为接枝共聚 提供活性种,而后产生接枝点。活性点处于链的末端, 聚合后将形成嵌段共聚物;活性点处于链的中间,聚 合后才形成接枝共聚物 3.接枝共聚方法:1链转移法自由基夺取聚合物主链上 的氢而链转移形成链自由基引发单体聚合2活性基团 引入法主干上导入易首先在聚合物的主干上导入易 分解的活性基团然后在光、热作用下分解成自由基与 单体进行接枝共聚3功能基团引入法含有侧基功能基 的聚合物,可加入端基聚合物与之反应形成接枝共聚 物 4、接枝共聚物性能与应用:1玻璃化转变温度Tg 2稀 溶液性质3共混增容性 5、共混增容性:原因在于接枝共聚物具有独立组分的 微相结构,从而可以较自由地控制接枝共聚物与组分 聚合物形成的共混物的相容性。接枝共聚物在共混中, 能发挥其组分的综合性能,可以作为增容剂使共混物 的两相界面粘附力增加,大大改善了共混材料的力学 性能,拉伸强度、冲击强度和断裂伸长率明显增加 6、嵌段共聚物三种链段序列基本结构形式Am—Bn 两嵌段聚合物;Am—Bn—Am 或Am—Bn—Cn三嵌段聚合物;(Am—Bn) n多嵌段聚 合物 7、单相嵌段:两嵌段高度相容,模量温度关系与无 规共聚物相似,一个T g 8、两相嵌段:两嵌段不相容,保持了两种嵌段固有 的性质,有两个Tg 9、热塑弹性体:A–B–A型和(A–B)n型这种共聚 物,叫做热塑弹性体,它同时具有交联橡胶(室温) 的力学性能,又具有线形热塑聚合物(加工温度)的 加工性能;热塑性弹性体是由大量的软嵌段和少量的 硬嵌段组成的两相嵌段共聚物;软嵌段提供柔韧的弹 性,而硬嵌段则提供物理交联点和起填料的功能 10、嵌段增容性:两相嵌段共聚物(A –B )有一个 特性,就是可以与其嵌段组分相同的均聚物(B )有 部分相容性,两相嵌段共聚物也有表面活化性能 11、反应挤出: 最大特点反应过程能连续进行,把对 聚合物的改性和对聚合物的加工、成型为最终制品的 过程由传统上分开的操作改变为联合操作,反应挤出 存在化学反应优点1适合于高粘度的聚合物熔体聚合 2反应可控性好3缩短反应时间,提高生产效率4生 产的灵活性强 5环境污染小6成本低,产率高缺点1技术难度大2 难以观察检测3技术含量高 12、聚合物共混: 是指将两种或两种以上聚合物材料、 无机材料以及助剂在一定温度下进行机械掺混,最终 形成一种宏观上均匀且力学、热学、光学及其他性能 得到改善的新材料的过程,这种混合过程称为聚合物 的共混改性,所得到的 新的共混产物称为聚合物共混物 13、聚合物共混目的:改善聚合物的综合性能和加工性 能、降低成本,以获得性能优异功能齐全的新的高分 子材料1综合均衡各聚合物组分的性能以改善材料的 综合性能2改善聚合物的加工性能3提高性能/价格 比 14、相容性理论:1.热力学相容性从热力学角度来探讨 聚合物共混组分之间的相容性,实际上研究的范畴是 互溶性,或称溶解性、相溶性。这里称为“热力学相

相关文档
最新文档