勾股定理及直角三角形运用培优讲义

勾股定理及直角三角形运用培优讲义
勾股定理及直角三角形运用培优讲义

直角三角形

直角三角形知识点回顾:

1、三角形共有性质

2、勾股定理及逆定理

3、30°所对直角边等于斜边的一半,等腰直角三角形,斜边长等于直角边的2倍

4、斜边的中线等于斜边长的一半

5、思维方法和在几何中的作用

例1:如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.

(1)求证:∠CBP=∠ABP;

(2)求证:AE=CP;

2时,求线段AP的长.

(3)当,PP′=5

例2:如图,已知正方形ABCD的边长为2,△BPC是等边三角形,

(1)求△CDP的面积

(2)求△BPD的面积

例3:已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).求证BD+AB=CB,

(2)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明..

例4:已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B 向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.

(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;

(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;

(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.

例5:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,

50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+.

(1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;

(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、

A 、

B 、Q 组成的四边形的周长最小.并求出这个最小值.

B

A P

X

图(1)

Y

X B

A

Q

P O

图(3)

B

A

P X

A '

图(2)

如图,矩形OABC 在平面直角坐标系中,若OA 、OC 的长满足|()03

222

=-+-OC OA

(1)求B 、C 两点的坐标; (2)把△ABC 沿AC 对折,点B 落在点B′处,线段AB′与x 轴交于点D ,求直线BB′的解析式; (3)在直线BB′上是否存在点P ,使△ADP 为直角三角形?若存在,请直接写出P 点坐标;若不存在,请说明理由.

1、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC

绕点A 顺时针旋转90?后,得到△AFB ,连接EF ,下列结论:(1)△AED ≌△AEF ; (2)BE DC DE +=; (3)222BE DC DE +=其中正确的是 .(填序号

)

2.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,……,已知正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么第8个正方形的面积S 8=________,S n =__________.

3. 已知,如图,AD⊥BC 于D,CE⊥AB 于E,AD 、CE 交于G,且CG=AB,求∠ACB.

4. 如图4,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x.

(1)用含x 的代数式表示AC +CE 的长;

(2)请问点C 满足什么条件时,AC +CE 的值最小?

(3)根据(2)中的规律和结论,请构图求出代数式9)12(422

+-+

+x x 的最小值.

5. 如图所示,在ABC ?中,?=∠90B ,两条直角边24,7==BC AB ,在三角形内有一点

E

D C B A

图4

P 到三边的距离都相等,求这个距离.

6.已知:如图,△ABC 中,BC =AC ,∠ACB =90°,D 、E 分别为斜边AB 上的点,且 ∠DCE =45°.求证:DE 2=AD 2+BE 2.

7. 如图所示,在ABC ?中,P AC AB ,5==为BC 边上任意一点. 求证:.252

=?+PC PB AP

8.有一块直角三角形的绿地,量得两直角边长分别为6m m ,8.现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.

A

D

C B A

D

B

C A

D B

C

图1

图2

3

9、如图,有一圆形透明玻璃容器,高15cm ,底面周长为24cm ,在容器内壁距上边缘4cm 的A 处,停着一只小飞虫,一只蜘蛛从容器底部外向上爬了3cm 的B 处时(B 处与A 处恰好相对)发现了小飞虫,问蜘蛛怎样爬去吃小飞虫最近?它至少要爬多少路(厚度忽略不计)

10. 如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以

CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、

线段DE的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;

②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得

到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍

然成立,并选取图2证明你的判断.

(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.

(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=1

2

,求22

BE DG

+的值.

专题勾股定理培优版(综合)

WORD格式 . 专题勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题 1.如图,在△ABC中,AB=AC, (1)若P为边BC上的中点,连结 22 AP,求证:BP×CP=AB-AP; (2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由; A B C P (3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论 A . B C P (二)最值问题 2.如图,E为正方形ABCD的边AB上一点,AE=3,BE=1,P为AC上的动点,则PB+PE的最小值是

A D E P 3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点, B C . 专业资料整理

WORD格式 . 将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1) 求证:△AMB≌△ENB; A D (2)①当M点在何处时,AM+CM的值最小; N E M C B C ②当M点在何处时,AM+BM+CM的值最小,并说明理由; A D N E M B C C (3)当AM+BM+CM的最小值为31时,求正方形的边长. A D N E M B C C

4.问题:如图①,在ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的. 专业资料整理

WORD格式 . 长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD的长为; (2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长. A A B D C B D C 图①图②

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

著名机构初中数学培优讲义中考复习.解直角三角形.第11讲(通用讲).教师版

内容 基本要求 略高要求 较高要求 勾股定理及逆定理 已知直角三角形两边长,求第三条边 会用勾股定理解决简单问题;会用勾股定理的逆定理判定三角形是否为直角三角形 会运用勾股定理解决有关的实际问 题。 解直角三角形 知道解直角三角形的含义 会解直角三角形;能根据问题的需要添加辅助线构造直角三角形;会解由两个特殊直角三角形构成的组合图形的问题 能综合运用直角三角形的性质解决有关问题 锐角三角函数 了解锐角三角函数(正弦、余弦、 正切、余切),知道特殊角的三 角函数值 由某个角的一个三角函数值,会求这个角其余两个三角函数值;会求含有特殊角的三角函数值的计算 能用三角函数解决与直角三角形有关的简单问题 模块一、勾股定理 1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三 角形中两直角边的平方和等于斜边的平方。 注:勾——最短的边、股——较长的直角边、 弦——斜边。 C A B c b a 2.勾股定理的证明: (1)方法一:将四个全等的直角三角形拼成如图所示的正方形: 知识点睛 中考要求 解直角三角形

如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即 222 在中如果那么是直角三角形。 ABC AC BC AB ABC ?+=? ,, 4.勾股数: 满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。 模块二、解直角三角形 一、解直角三角形的概念 根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系 如图,直角三角形的边角关系可以从以下几个方面加以归纳:

勾股定理培优

八年级数学勾股定理培优(月日) 一、根据对称求最小值 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。1.已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN 有最小值,并求出最小值。 2.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。 3.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的 长度和最短,则此时AM+NB=() A.6B.8 C.10 D.12 4.已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值 5.如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2, M为BC上一动点,则△AMD 周长的最小值为. 6.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,则EM+BM的最小值为. 7.如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值. 8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()

A.2 B.2 6C.3 D.6 9.在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm 10.在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长. 二、几何体展开求最短路径 1.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程是多少dm?2.如图:一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 3.如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长? (建议:拿一张白纸动手操作,你一定会发现其中的奥妙) 4.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少? 5.如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。 三、折叠问题 1.如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm, BC=10cm,求EF的长。 2.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处;(1)求证:B'E=BF;

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

浙教版2020学年《解直角三角形》培优提升特训(Word版无答案)

解直角三角形同步复习与提升 一、选择题 1. 如图,在平面直角坐标系中,点A 的坐标为(4,3),则cos α的值是( ) A. 34 B.43 C.35 D.45 2. 如图,△ABC 内接于半径为5的⊙O 中,圆心O 到弦BC 的距离为3,则∠A 的正切值为( ) A. 35 B.45 C.34 D.43 3. 已知抛物线y=-x 2-2x+3与x 轴交于A ,B 两点,将这条抛物线的顶点记为点C ,连接AC ,则tan ∠CAB 的值为( ) A.12 B.55 C.25 5 D.2 4.如图,在四边形ABCD 中,点E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC=( ) A.34 B.43 C.35 D.45 5.如图,在等腰直角三角形ABC 中,∠C=90°,AC=6,D 是AC 上一点,若tan ∠DBA=1 5 ,则AD 等于( ) A. 2 B.2 C.1 D.2 2 6.如图,在菱形ABCD 中,DE ⊥AB ,cosA=3 5 ,BE=2,则tan ∠DBE 的值是( ) A.12 B.2 C.52 D.55

7.如图,在△ABC 中,若∠B=30°,sinC=3 5 ,AC=10,则AB=( ) A.12 B.14 C.1 6 D.20

8. 如图,△ACB 中,∠ACB=RT ∠,已知∠B=α,∠ADC=β,AB=a ,则BD 的长可以表示( ) A. a·(cosα-cosβ) B.a tanβ-tanα C.acosa -a ·sinαtanβ D.a ·cos α-asin α·a ·tan β 9. 因为cos60°=12 ,cos240°=- 1 2 ,所以cos240°=cos(180°+60°)=- cos60°;由此猜 想、推理:当α为锐角时有cos (180°+α)= - cosα,由此可知:cos210°=( ) A. -12 B.- 22 C..- 3 2 D. 3 10. 如图,在平面直角坐标系中,AB=35,连结AB 并延长至C ,连结OC ,若满足OC 2=BC ·AC ,tanα=2,则点C 的坐标为( ) A. (-2,4) B.(-3,6) C.(-53,103 ) D.(- 263,283 ) 二、填空题 11. 在△ABC 中,若|sinA-3 2 |+|cosB - 12 |=0,则∠C= ° 12. 若3tan(α+10°)=1,则锐角α= ° 13. 如图,在△ABC 和△DEF 中,∠B=40,∠E=140°,AB=EF=5,BC=DE=8,则两个三角形面积的大小关系为:S △ABC S △DEF .(填“>”,或“=”,“<”) 14. 已知:实常数a ,b ,c ,d 同时满足下列两个等式:①asinθ+bcosθ-c=0;①acosθ-bsinθ+d=0(其中θ为任意角),则a 、b 、c 、d 之间的关系式是: 15. 如图 ,△ABC 中,AD ⊥BC 于D ,CE 平分∠ACB ,∠AEC=45°,若AC=2,tan ∠ACB=34,则AB 的长为 .

勾股定理培优

考点?方法?破译 1 ?会用勾股定理解决简单问题 ? 2 ?会用勾股定理的逆定理判定直角三角形 . 3 ?勾股定理提示了直角三角形三边的关系,对于线段的计算,常可由勾股定理列方程 进行求解;对于涉及平方关系的等式证明,可根据勾股定理进行论证 . 经典?考题?赏析 【例1】(达州)如图是一株美丽的勾股树,其中所有的四边形都是 正方形,所有的三角形都是直角三角形 .若正方形A 、B 、C 、D 的边长 分别是3, 5, 2, 3,则最大正方形 E 的面积是( ) A . 13 B . 26 C. 47 D . 94 【解法指导】 观察勾股树,发现正方形 A 、B 的边长恰好是一直角三角形相邻的两直角 边.此时直角三角形两直角边的平方和等于斜边的平方,即两个较小正方形面积之和等于较 大正方形的面积,从而正方形 E 的面积等于正方形 A 、B C 、D 四个面积之和,故选 C. 【变式题组】 01.(安徽)如图,直线I 过正方形ABCD 的顶点B ,点A ,C 到直线I 的距离分别是1和2,则 02.(浙江省温州)在直线I 上的依次摆放着七个正方形 (如图所示),己知斜放置的三个正方形 的面积分别是1,2,3,正放置的四个正方形的面积依次是 S 1,S ,Ss ,S ,贝V S+ S 2 + S 3 + S 4= ______ . 03.(浙江省丽江)如图,已知△ ABC 中,/ ABC = 90°,AB = BC,三角形的顶点在相互平行 的三条直线11、|2、|3上,且|1、|2之间的距离 为 是() A . 2 17 B . 2 5 C. 4 2 D . 7 【例2】(青岛)如图,长方体的底面边长分别为 1cm 和3cm ,高为 6cm.如果用一根细线从点 A 开始经过4个侧面缠绕一圈到达点 B,那么 所用细线最短需 要 ___________________ cm ;如果从点A 开始经过4个侧面缠绕n 圈到 达点B ,那么所用细线最短需要 ________ c m. 【解法指导】细线缠绕时绕过几个面,则将这几个面展开后在同一平面内利用线段的公 理:两点之间线段最短.画出线路,然后利用勾股定理解决,应填 10,2 9 16n 2 . 【变式题组】 01.偲施)如图,长方体的长为 15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁 如果要沿 着长方体的表面从点 A 爬到点 B ,需要爬行的最短距离是( ) 第19讲勾股定理 正方形的边长是 ____________ 2,12、|3之间的距离为 A 2 B I 第1题图 第2题图 3,贝U AC 的长

勾股定理培优练习修订版

勾股定理培优练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

勾股定理 【知识点】1、勾股定理__________________________________________________________________ 2、勾股定理逆定理_____________________________________________________________________ 【基础练习】 1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为() A.30° B.45° C.60° D.90° 2.下列四组线段中,能组成直角三角形的是() A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M,N在边OB上,PM=PN.若MN=6,则OM=() A.4 B.5 C.6 D.7 第1题第3题第5题第6题 4.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是() A.3个B.4个C.5个D.6个 5.(2015?石家庄模拟)图1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是() A.51 B.49 C.76 D.无法确定 6.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 7.下列命题中,是假命题的是( ). A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米. 第8题第9题第10题 9.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= . 10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度. 【例题讲解】 例1、)阅读以下解题过程: 已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状. 错解:∵a2c2﹣b2c2=a4﹣b4…(1), ∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)…(2), ∴c2=a2+b2 (3) 问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号. (2)错误的原因是. (3)本题正确的结论是. 例2.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 例3、我们学习了勾股定理后,都知道“勾三、股四、弦五”.

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

华师大版2020九年级数学上册第24章解直角三角形自主学习培优测试卷A卷(附答案详解)

华师大版2020九年级数学上册第24章解直角三角形自主学习培优测试卷A 卷(附答案详解) 1.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是( ) A .12 B .1 C .55 D .255 2. 在Rt △ABC 中,∠C =90°,若AB =10,sinA = 35,则斜边上的高等于( ) A .5 B .4.8 C .4.6 D .4 3.如图,在Rt ABC ?中,90C =∠, 如果5AC =,13AB =,那么cos A 的值为( ) A .513 B .1213 C .125 D .512 4.如图,小明要测量河内小岛 B 到河边公路 l 的距离,在 A 点测得∠BAD=30°,在 C 点测得∠BCD=60°,又测得 AC=60米,则小岛 B 到公路 l 的距离为( ) A .30 米 B .30 米 C .40 米 D .(30+ )米 5.若斜坡的坡比为1:,则斜坡的坡角等于( ) A .30° B .45° C .50° D .60° 6.如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错.误. 的是( ) A .BDC α∠=∠ B .tan B C m a =? C .2sin m AO α= D .cos m BD a = 7.如图所示,△ABC 为直角三角形,∠ACB=90°,CD ⊥AB ,与∠1互余的角有( )

A.∠B B.∠A C.∠BCD和∠A D.∠BCD 8.如图,在△ABC中,∠C=90°.若AB=3,BC=2,则sin A的值为() A.2 3 B. 5 3 C. 25 5 D.5 2 9.计算式子:﹣32+6cos45°﹣8+|2﹣3|的结果为() A.﹣6+62B.﹣12 C.﹣12﹣2D.﹣6 10.小刚在距某电信塔10 m的地面上(人和塔底在同一水平面上),测得塔顶的仰角是60°,则塔高() A.10m B.5m C.10m D.20 m 11.在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是_____. 12.在△ABC中,若|cos A 1 2 -|+(1-tan B)2=0,则△ABC的形状是________________. 13.如图,直线OA与x轴的夹角为α,与双曲线 2 y x =(x>0)交于点A(1,m),则tana 的值为________. 14.如图,点、、为正方形网格纸中的3个格点,则的值是________. 15.如图①,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若直角三角形一个锐角为30°,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”设AB=a,则图中阴影部分面积为_____(用含a的代数式表示)

勾股定理培优讲义.doc

勾股定理知识点汇总 一、基础知识点: 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股 定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积 不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出 勾股定理常见方法如下: 方法一: 4S S 正方形 EFGH S正方形ABCD , 4 1 ab (b a) 2 c 2 ,化简可证. 2 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.a2b2c2 D C H E G F b a A c B 四个直角三角形的面积与小正方形面 积的和为S 4 1 ab c 2 2ab c 2大正方形面积为 S (a b) 2 a2 2ab b2 b a c 2 a b 所以 a2 b2 c2 c 1 1 1 c 方法三: S梯形(a b) ( a b) , S梯形2S ADE S ABE 2 ab c2,化简得证 a2 b 2 c2 b c a 2 2 2 a b 3 .勾股定理的适用范围 A a 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形 D 和钝角三角形的三边就不具有这一特征。 b c 4 .勾股定理的应用 c E a ①已知直角三角形的任意两边长,求第三边在ABC 中, C 90 ,则 c a 2 b2,b c2 a 2, B bC ac2 b2 ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 .勾股定理的逆定理 如果三角形三边长 a ,b, c 满足 a 2 b 2 c2,那么这个三角形是直角三角形,其中 c 为斜边。 ① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角 形的可能形状,在运用这一定理时,可用两小边的平方和 a 2 b2与较长边的平方 c2作比较,若它们相等时,以 a , b , c 为三边的三角形是直角三角形; ②若 a2 b2 c2,时,以 a ,b, c 为三边的三角形是钝角三角形;若a2 b2 c2,时,以 a ,b, c 为三边 的三角形是锐角三角形; ③定理中 a ,b, c 及 a 2 b 2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a ,b, c 满足 a 2 c2 b2,那么以 a ,b, c 为三边的三角形是直角三角形,但是 b 为斜边 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方 +中间边的平方 . ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 6 .勾股数 满足 a2 + b 2= c 2 的三个正整数,称为勾股数。

人教版八年级下册第17章勾股定理培优提高考试试题附答案

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 D.∠A:∠B:∠C=3:4:5A C.∠+∠B=∠C 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() 2 222cm.72cm108B.36cm D A.18cm C.3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对 =,则∠B为(=4,BC)=4.在△ABC中,∠A30°,AB C.30°或60°D.30°或90°.30A.°B90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A,则梯子底部B滑开的距离1BB是()1 A.4米B.大于4米C.小于4米D.无法计算 的大小,小亮进行了如下分析后作一个直角三角形,使其两直与.为比较 6.

为边长定理可求得长角边的分别其为斜与,则由勾股 ,可得.根据“三角形三边关系”.小)亮的这一做法体现的数学思想是( A.分类讨论思想B.方程思想.数形结合思想DC.类此思想是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个“赵爽弦图”7.,则中间小正方形与大正方形的面积差是6直角三角形的两条直角边的长分别是3和) ( 27D.34A.9B.36C..如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方8,60S=+S、S、S.若SS+ABCD形、正方形EFGH、正方形MNPQ的面积分别为311232)则S的值是(2 30D C.20.BA.12.15小题)二.填空题(共6.9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是时,这个三角a,如果a+b,﹣b是三角形较小的两条边,当第三边等于a10.设>b形为直角三角形.米处折断(未完1米高的小孩,如果大树在距地面4米高的大树,树下有一个11.有一棵9米之外才是安全的.全折断),则小孩至少离开大树 扩充为等腰三角形,将△3ABC,°,90AC=4BC==中,∠△.如图,在12Rt ABCACB.的长为CD为直角边的直角三角形,则AC,使扩充的部分是以 ABD. ,吸管放进杯里(如cm,高为1213.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm 3.6cm,为节省材料,管长acm.的取值范围是图所示),杯口外面至少要露出

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

相似三角形及解直角三角形测试题

解直角三角形复习练习4 九年级数学培优试题 2.如图,△ABC中,AB=12,AC=15,为AB上一点,且,在AC上取一点,使以A、D、E 为顶点的三角形和△ABC相似,则AE等于 ( ) A. B.10 C.或10 D.以上答案都不对 3、(2013o宿迁)如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是() A. B. C. D. (第3题图) 4.(2009泰安图18)如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中线CM将△CMA折叠,使点A落在点D处,若CD恰好与MB垂直,则tanA的值为。 A.6 B.3 C.4 D.5 6.(2013o连云港)在Rt△ABC中,∠C=90°,若sinA=,则cosA的值为() A. B. C. D. 7.(2013o荆门)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE= . (第7题图) 9. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC 面积的,那么点B′的坐标是( ) A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2) 二、填空题。 10.、如图,平行四边形ABCD中,E是BD上一点,AE的延长线与BC的延长线交于F,与CD 交于G,若AE=4,EG=3,则EF= 。

11.(2013o十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米. 12.(2013o荆州)如图,在高度是21米的小山A处没得建筑物CD顶部C处的仰角为30°,底部D处的俯角为何45°,则这个建筑物的高度CD= 米(结果可保留根号) 14.(2014?云南昆明,)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是 cm 15、如图,已知是三个全等的等腰三角形,底边BC,CE,EG在同一条直线上,且AB=,BC=1,则BF=__________。 16.求值: +2sin30°-tan60°+cot450 17. 计算: 18. 计算: 19. 计算: + 20、如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:≈1.41,≈1.73). 21、已知:如图,正方形ABCD中,E为BD上一点,AE的延长线交CD于点F,交BC的延长线于点G,连结EC。(1)求证:△ECF∽△EGC;(2)若EF=,FG=,求AE的长。 23.(2014年山东泰安)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=; (2)若AB⊥AC,AE:EC=1:2,F是BC中点, 求证:四边形ABFD是菱形.

勾股定理培优讲义

6 勾股定理知识点汇总 一、基础知识点: 1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么a 2 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 1 方法一:4S &方形 EFGH S 正方形ABCD , 4 _ ab (b a) c ,化简可证. 2 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. a , b , c 满足a 2 b 2 c 2,那么这个三角形是直角三角形,其中 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过 形的可能形状,在运用这一定理时,可用两小边的平方和 a 2 b 2与较长边的平方 以a , b , c 为三边的三角形是直角三角形; 若a 2 b 2 c 2 ,时,以 a , b , c 为三边的三角形是钝角三角形:若 a 2 b 2 c 2 ,时,以 a , b , c 为三边 的三角形是锐角三角形; 定理中a , b , c 及a 2 b 2 c 2只是一种表现形式,不可认为是唯一的,如若三角形三边长 2 2 2 a c b ,那么以a , b , c 为三边的三角形是直角三角形,但是 b 为斜边 ?勾股数 满足a 2 + b 2= c 2的三个正整数,称为勾股数。 注意:①勾股数必须是正整数,不能是分数或小数。 积的和为 所以a 2 方法三: 1 4 ab 2 2 c 1 b 2 c 2 2ab c 2 大正方形面积为 (a b)2 a 2 b) (a b) , S 梯形 2S ADE S ABE S 弟形 2(a 3 ?勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系, 和钝角三角形的三边就不具有这一特征。 4 ?勾股定理的应用 1 ab 2 化简得证a 「b b 2ab b a ①已知直角三角形的任意两边长, 求第三边在 ABC 中, b 2 c 2 四个直角三角形的面积与小正方形面 ② 知道直角三角形一边,可得另外两边之间的数量关系 ③ 可运用勾股定理解决一些实际问题 .勾股定理的逆定理 如果三角形三边长 ① c 为斜边。 数转化为形”来确定三角 c 2作比较,若它们相等时, -3— a , b , c 满足

勾股定理培优训练

八年级下勾股定理培优训练 一.选择题 1.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD AB、AC于E、F,给出以下四个结论: ①AE=CF ②△EPF是等腰直角三角形③EF=AP ④S四边形AEPF=S△ABC 4.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有dm 2dm 7.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交

8.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第 2 (1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a≥0,那么=a (3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限; (4)对角线互相垂直且相等的四边形是正方形; (5)两边及第三边上的中线对应相等的两个三角形全等. 图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为2 EF的长是() 二.填空题 14.如图,△ABD和△CED均为等边三角形,AC=BC,AC⊥BC.若BE=,则CD= .15.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则BC的长是.

16.已知a,b,c是直角三角形的三条边,且a<b<c,斜边上的高为h,则下列说法中正确的是.(只填序号) ①a2b2+h4=(a2+b2+1)h2;②b4+c2h2=b2c2;③由可以构成三角形;④直角三角形的面积的最大值是. 17.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,则四边形ABCD的面积是. 18.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点.若BE=2,AG=8,则AB的长为. 三.解答题 19.如图,已知AD是△ABC的高,∠BAC=60°,BC=3,AC=2,试求AB的长. 20.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合. 问题解决:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC 与BD交于点O,连接CD,如图②. (1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

相关文档
最新文档