平面度

平面度
平面度

一般来说现在的先进的仪器都有自带的测量平面度的,但是,如果没有这些仪器,那么我们怎么测量或计算出平面度呢?

如果根据图纸要求,量出约4x4的点

-0.03, -0.02, -0.02, -0.03

0.05, 0.08, 0.07, 0.06

0.04, 0.01, 0.03, 0.02

-0.01, -0.02, -0.02, -0.03

如果用最小二阶乘法,该怎么去计算出平面度大小?别告诉我用最大减最小,那不靠谱。最好是公式和EXCEL的函数表达式

平面度误差测量数据处理。

在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。

一、平面度误差的测量

平面度误差是指被测实际表面对其理想平面的变动量。

平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。

平面度误差测量的常用方法有如下几种:

1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。

2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。

3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。

除上述方法可测量平面度误差外,还有采用平面干涉仪、水平仪、自准直仪等用于测量大型平面的平面度误差。二、平面度误差的评定方法

平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。

1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。

2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。

3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小二乘平面,且具有最小距离的两包容平面间的距离作为平面度误差值。最小二乘平面是使实际被测表面上各点与该平面的距离的平方和为最小的平面。此法计算较为复杂,一般均需计算机处理。

4、最小区域法:是以包容实际被测表面的最小包容区域的宽度作为平面度误差值,是符合平面度误差定义的评定方法。

三、平面度误差的数据处理

由上述平面度误差的测量方法和评定方法阐述可知,测量方法和评定方法不同,数据处理的方法也不相同。选定某一测量方法和评定方法,可能直接得到实际表面的平面度误差值,如采用打表法进行测量,再用对角线法评定其平面度误差,则可不必进行数据处理,可直接得到测量结果;采用水平仪进行测量,则不论采用何种评定方法,均需进行数据处理;而对于任何一种测量方法,如果按最小区域法来评定其平面度误差,都必须进行数据处理才能得到平面度误差值。

另外,还应注意到,测量基准面和评定基准面一般是不重合的(或说不平行的)。尤其是符合最小条件的评定基准面的位置是按实际表面的形状确定的,不可能在测量之前预先确定,如图一所示。且测量所得到的原始数据中的最大值与最小值并不一定是实际表面上的最高点和最低点,故在数据处理之前,一般应根据所测数据对实际表面的形状特征进行大致分析,初步判断实际表面是凸形、凹形、鞍形或其它复杂形态,以免过多重复计算花费时间,必要时还可画出其数据空间分布示意图,进而确定其评定基准面。

数据处理方法有:解析法、坐标变换法和投影作图法等。其中坐标变换法对数据处理带有一般性,应该熟练掌握。

坐标变换法是将被测实际表面上各点对测量基准面的坐标值,转换为与评定方法相对应的评定基准面的坐标值。由于评定基准面的旋转可使各测得值产生不同的变化,从而获得不同的

评定结果。坐标变换法又称为旋转法,其实质是在测得数据上加上一对应的等差数列。各测点的旋转量如图二所示。

当采用最小区域法评定实际表面的平面度误差时,最小区域法判别准则亦应熟练掌握,才能在数据处理之前做到胸有成竹,避免过多重复计算而少走弯路。平面度最小区域的判别准则是:由两平行平面包容实际被测要素时,实现至少三点或四点接触,且具有下列形式之一者,即为最小区域,如图三所示。

图一

图二

最大值与最小值可直接得到被测表面的平面度误差值为:

f1= 90-(-50)=140μm。

2、三远点法确定平面度误差

选择a3、b1、c 2三点组成的三角形作为评定基准面,采用旋

转法将此三点旋转至等高,计算旋转量,并将各点旋转量与原始

数据各对应点相加,可得评定数据如图五所示。

建立方程组:解之得:

由评定数据可知,过最高点b2 =115和最低点a1=0,可作两包容平面且平行a 3=b1=c3=5 组成的三角形评定基准面,则被测实际表面的平面度误差值为:f 2 =115 - 0 =115μm。

3、最小包容区域法确定平面度误差

由原始数据分析,实际表面为凸型,可实现三角形准则,今选择a1、a3、c2三点组成的三角形平面作为一个包容平面,采用旋转法将此三点旋转至等高,计算旋转量,并将各点旋转量与原始数据各对应点相加,可得评定数据如图六所示。

建立方程组:解之得:

由评定数据可知,最高点b2 =111.75,最低点a1=a3=c2 =0,其余各点的坐标值均在最高点与最低点之间,过最高点和最低点作两包容平行平面,符合最小包容区域的准则,故被测实际表面的平面度误差值为:f3=111.75 - 0=111.75μm.。

例二、用水平仪测量某实际表面的平面度误差,所测数据按测量顺序累积后,各测点坐标值(单位:μm),如图七所示,试确定其平面度误差值。

解:采用水平仪测量,不可能直接得到测量结果,现采用坐标变换法进行数据处理,以适用

不同评定方法获得实际表面的平面度误差值。

1、对角线法确定平面度误差

将两对角线的测得值旋转至等高,计算旋转量,并将各点旋转量与

最大值与最小值可直接得到被测表面的平面度误差值为:

f1= 90-(-50)=140μm。

2、三远点法确定平面度误差

选择a3、b1、c 2三点组成的三角形作为评定基准面,采用旋

转法将此三点旋转至等高,计算旋转量,并将各点旋转量与原始

数据各对应点相加,可得评定数据如图五所示。

建立方程组:解之得:

由评定数据可知,过最高点b2 =115和最低点a1=0,可作两包容平面且平行a 3=b1=c3=5 组成的三角形评定基准面,则被测实际表面的平面度误差值为:f 2 =115 - 0 =115μm。

3、最小包容区域法确定平面度误差

由原始数据分析,实际表面为凸型,可实现三角形准则,今选择a1、a3、c2三点组成的三角形平面作为一个包容平面,采用旋转法将此三点旋转至等高,计算旋转量,并将各点旋转量与原始数据各对应点相加,可得评定数据如图六所示。

建立方程组:解之得:

1、一个最高(低)点在另一包容平面上的投影位于三个最低(高)点所形成的三角形区域内,称为三角形的准则,如图三(a)、(b)所示。

2、两个最高点的连线与两个最低点的连线在包容平面上的投影相交,称为交叉准则,如图三(c)所示。

3、一个最高(低)点在另一个包容平面上的投影位于两个最低(高)点的连线上,称为直线准则。如图三(d)所示,直线准则是三角形准则和交叉准则的特殊情况

四、举例

例一、用打表法测量某实际表面的平面度误差数据(单位μm),如图四所示,试确定其平

面度误差值。

解:1、对角线法确定平面度误差

因实测数据两对角线已等高,不必再进行数据处理,根据实测数据的由评定数据可知,最高点b2 =111.75,最低点a1=a3=c2 =0,其余各点的坐标值均在最高点与最低点之间,过最高点和最低点作两包容平行平面,符合最小包容区域的准则,故被测实际表面的平面度误差值为:f3=111.75 - 0=111.75μm.。

例二、用水平仪测量某实际表面的平面度误差,所测数据按测量顺序累积后,各测点坐标值(单位:μm),如图七所示,试确定其平面度误差值。

解:采用水平仪测量,不可能直接得到测量结果,现采用坐标变换法进行数据处理,以适用不同评定方法获得实际表面的平面度误差值。

1、对角线法确定平面度误差

将两对角线的测得值旋转至等高,计算旋转量,并将各点旋转量与原始数据各对应点相加,可得评定数据如图八所示。

建立方程组:解之得:

根据评定数据可得被测实际表面的平面度误差值为:f 1=37-(-7.5)=44.5μm。

2、三远点法确定平面度误差

选择a2、b1、c 3三点组成的三角形作为评定基准面,采用旋转法将此三点旋转至等高,计算旋转量,并将各点旋转量与原始数据各对应点相加,可得评定数据如图九所示。

建立方程组:解之得:小包容区域准则,不在交叉线上的其余点均可落在此包容区域内,故实际被测表面的平面度误差值为:f3=32-(-10)=42μm。

例三、某被测实际表面的平面度误差数据(单位:μm),如图十一所示,数据处理采用投影作图法,试按最小包容区域法评定其平面度误差值。

解:投影作图法实质是画法几何基础理论中的投影变换法,其中有换面法和旋转法。将实测数据置于投影体系中,对选定的评定基准面变换成某投影面的垂直面,即可根据相应的评定方法确定被测实际表面的平面度误差值。

根据被测实际表面的原始数据判断为凸形表面,可实现三角形准则。画出各测点的空间分布示意图,如图十二所示。选择a 3、b1、c2三点组成一个三角形包容平面,若过最高点b 2作另一包容平面,则可实现最小包容区域准则。今采用换面法确定其平面度误差,将各测点向V/H投影体系中进行投影,并将a3、b1、c2 三点组成的三角形平面变换成V1/H 新投影体系中的垂直面,其余测点都向V1面投影,过最高点b 2作平行线与垂直面平行,可见其余测点均在两平行线之间,如图十三所示。则被测实际表面的平面度误差为两平行线

之间的坐标值:f=54μm。若采用投影变换法中的旋转法亦可确定其平面度误差值,在此不再赘述。

由以上三例分析计算可知,数据处理采用坐标变换旋转法对各种评定方法带有普遍性,在多作练习和理解之后不难掌握,投影作图法有一定的直观性,当按最小区域法评定平面度误差时,能较方便地确定基准包容平面。当然实际测量中,所测数据可能多于9个,且数值不一定是简单的整数值,故数据处理还是比较繁复的。转载请注明出自( 六西格玛品质网https://www.360docs.net/doc/f216599175.html, ),本贴地址:https://www.360docs.net/doc/f216599175.html,/thread-222674-1-1.html

F=3*n-(2*Pl+Ph-p)-P1 其中N为构件数,PL为低幅数,PH为高副数,P为虚约束,P1 为局部自由度。

F=3*n-(2*Pl+Ph-p)-P1 其中N为构件数,PL为低幅数,PH为高副数,P为虚约束,P1 为局部自由度。

平面度常识及测量方法

平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

机械原理平面机构的运动简图及自由度习题答案

1. 计算齿轮机构的自由度. 解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。即如下 图所示: 该机构的自由度1213233231=?-?-?=--=h p p n F 2. .机构具有确定运动的条件是什么如果不能满足这一条件,将会产生什么结果 机构在滚子B 处有一个局部自由度,应去除。 该机构的自由度017253231=-?-?=--=h p p n F 定轴轮系 A B C 1 2 3 4 图2-22 A B C D G E H F

当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。 该机构当修改为下图机构,则机构可动: N=4, PL=5, Ph=1; F=?-?-= 自由度342511 3. 计算机构的自由度. 1)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?-= 自由度342511

2)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度31211 3)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度33241 第一章平面机构的运动简图及自由度 一、判断题(认为正确的,在括号内画√,反之画×) 1.机构是由两个以上构件组成的。() 2.运动副的主要特征是两个构件以点、线、面的形式相接触。() 3.机构具有确定相对运动的条件是机构的自由度大于零。() 4.转动副限制了构件的转动自由度。() 5.固定构件(机架)是机构不可缺少的组成部分。() 个构件在一处铰接,则构成4个转动副。() 7.机构的运动不确定,就是指机构不能具有相对运动。() 8.虚约束对机构的运动不起作用。() 二、选择题 1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。 A.构件数、运动副的类型及数目 B.构件的运动尺寸 C.机架和原动件 D. A 和B 和C 2.下面对机构虚约束的描述中,不正确的是()。 A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。 B.虚约束可提高构件的强度、刚度、平稳性和机构工作的可靠性等。 C.虚约束应满足某些特殊的凡何条件,否则虚约束会变成实约束而影响机构的正常运动。为此应规定相应的制造精度要求。虚约束还使机器的结构复杂,成本增加。 D.设计机器时,在满足使用要求的情况卜,含有的虚约束越多越好。 三、综合题

怎样计算平板的平面度

怎样计算平板的平面度 1、最近很多朋友都向我咨询铸铁平板的平面度怎么计算,我整理了一些资料不知道对大家有没有帮助;有兴趣的朋友可以参考一下。对于用刀口尺和微米量块检定尺寸较小的平板,其平面度算法比较简单。但是对于大尺寸平板需要用电子水平仪或者自准直仪来检定,其数据处理是比较繁琐,也没有更好的手算方法,通常只能借助程序进行数据处理。对于小铸铁平板,按照米字形测量,其算法如下: a1 a2 a3 b1 b2 b3 c1 c2 c3 测量a1b2c3对角线,在a1、c3位置架设1mm的等高量块,在b2位置塞入恰好能塞入的量块(原理同塞尺),如恰好塞入1.003mm的量块,说明受检点处凹下0.003mm,同理测量米字形的八条线,记下数据。如得到一组测量数据(单位:μm): a1,b2,c3=0,-3,0 c1,b2,a3=0,-3,0 a1,a2,a3=0,-1,0 b1,b2,b3=0,-1,0 c1,c2,c3=0,-1,0 a1,b1,c1=0,-2,0 a2,b2,c2=0,-2,0 a3,b3,c3=0,-1,0 得到米字形数据表为: 0 -1 0 -2 -3 -2 0 -1 0 平板的平面度为3μm 以上不过这是特例,很多平板的对角线所测得的数据是无法正好重合的,需要以一根对角线为基准,另外七条线采用数据叠加的方法运算,但道理是相通的,如果大家有什么不明白的可以再问我。以下大家可以参考一下啊。 铸铁平板1、范围本标准规定了精度等给为000级、00级、0级、1级、2级、3级铸铁平板的型式与尺寸,技术要求,检验方法,标志与包装等。本标准适用于工作面为160m×100mm~ 4000mm×2500mm(长度×宽度)的铸铁平板(以下简称平板)。2、引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文,本标准出版时,所示版本均为有效。所有标准都会被修订,使用

平面度误差计算(精)

平面度误差计算 第1章、绪论 1.1、引言平面是由直线组成的,因此直线度测量中直尺法、光学准直法、光学自准直法、重力法等也适用于测量平面度误差。测量平面度时,先测出若干截面的直线度,再把各测点的量值按平面度公差带定义利用图解法或计算法进行数据处理即可得出平面度误差。也有利用光波干涉法和平板涂色法测量平面误差的。而基于3坐标测量机(以下简称CMM)的平面度测量和数据处理具有方便、快捷、高效的优势,这是因为3坐标测量机具有通用性强、测量精确高、测量效率高等优点,所以其他测量方法很难与之比拟。 3坐标测量机自从1959年由英国的Fementi公司发明以来,在这近510年的时间里,已经得到了极大的发展。特别是经过近210多年的发展和应用,在机械制造领域已经比较普及。但是随着科技的发展,也不断出现1些需要提高的想法,特别是超精密加工技术的发展,引起更多的构想。而现在随着微机械和纳米的兴起,对3坐标测量机的要求就更是提出了更多的想法,尤其是我国,因为处于发展之中,所以就这些方面,就更应当有个比较合适、周密的思考。例如在坐标测量机出现之前,很多0部件的测量是10分困难的,特别是复杂的0部件的测量,往往采取化整为0的办法,多次定位,逐个尺寸进行测量,尤其是测量时间太长,测量的误差又大,这是可以想象得到的。特别是自动化加工的出现,测量1直被认为是机械制造生产率提高和精度提高的瓶颈。特别是复杂的构件,测量的时间比制造的时间还长,如果百分之百的检测,那是无法想象的。比如汽车的外形测量,更是困难重重。 正是因为3坐标测量机的出现,这种现象便排除了。不仅解决了测量的速度,而且提高了测量的精度,特别是机械加工的换刀机构的移植到测量上,更扩大了功能,这对制造领域提高质量方面引起了很大的促进作用,特别是精密型CNC3坐标测量机(CNC-CMM),促进了计量的自动化,大幅度提高了测量的效率和精度,并且代替了当前计量室的大部分测量工作,而将测量工作能在生产第1线上得到解决。国内外发展的FMC、FMS的生产线上大部分配置了3坐标测量机,这样就可能在制造1完成,质量也得到了评价,甚至起到质量的监控的作用。例如德国的MTO(发电机涡轮制造厂)的28种复杂0件的加工车间,是以自动化加工为主的,全部产品的检验是由4台Zeiss公司的CMM 组合在1起的测量中心测量,当天生产,当天测量,不仅测量了0件,而且可以发现加工设备的处在什么状态,起到了质量监控的作用。 本文就是在传统测量平面度误差的基础上进1步拓展测量视野,以计算机为依托,使用目前世界上最先进最流行的3坐标测量机进行平面度误差测量。

平面构成中的点线面

平面构成中的点、线、面 先声明一下,我们这一次课的重点是解构,我们先要做到看山不是山,看水不是水,我们以后再回复自然。 上次课我们已经讲了平面设计理论的一些概念,知道了所谓的理论就是清理出自然美背后的规律,并且按规律来搞设计;同时,我们也讲了平面构成在平面设计中的基础性地位,不过我想,可能有同学对为什么要学平面构成还是有点疑惑,现在我就讲讲平面构成的目的。 小时候我们学画画,复杂的东西我们都画不出来,所以老师多半会教我们用一些简单的方型、三角型和圆型来画,这样,复杂的世界在我们孩子的眼中,就变成了一些几何图形。(如下图:) 平面构成也是一样的,上次课我已经讲过,自然的图案,它们之所以看起来美丽,是因为它们背后蕴含了美的规律,比如美女(见下图) 这个女孩绝大多数正常的人看了都会觉得美,为什么会有美的感觉呢?有人说是眼睛大,有人说是嘴小,其实,最重要的不是五官单个的表现,虽然每一项的好看是必要的,但更重要的是因为比例协调,比如双眼的宽度与眉心到鼻子相等,眉角、眼角与嘴角成一条线的结构等等,其实美与不美,我们心中都有分寸,但整容行业,就得靠这些比例来制造人造美女。整容行业所依据的比例,就是一些美的基本规律,我们平面设计,好比整容的行业,如果了解了自然中美的规律,按这个规律来设计图案,不就能够得到绝大多数人看上去很美的东西了吗?

平面构成就是需要从自然美的背后发掘一下比例、对称、统一之类的规律(见上图,对称的设计使这个音乐会的招贴体现出了美感)。 平面构成强调组合,它分为自然构成和抽象构成,更强调抽象构成, 自然构成也就是自然的图案之间的分割、组合、排列等。 抽象构成就是将自然界中的复杂图案解构为点、线、面这三种最基本的构成元素,然后 按照一定的规律进行构成。 刚才我们不是讲了孩子时候的画吗?其实这种抽象构成就可以理解为孩子时的画,为了不受复杂图案的影响,我们透过现象看本质,比如,我们可以将上面三幅图中的许多钞票看成一个个的点,将上图那个人与车的剪影看成一个面,将右图建筑物中的装饰看成线。这样,复杂的图形在我们的设计里就成了点、线与面,那么,我们就可以运用点、线、面之间组合、 排列、分割等规律来对付我们手里的设计素材了。

平面度的测量分解

平面度测量 工作单位:广东技术师范学院机电学院机械精度检测实验室作者:刘涵章关键词:平面度平面度误差三远点法三角形准则对角线准则对角线法 目录 一、什么是平面度 二、平面度误差值的各种评定方法 三、误差值评定的步骤: 四、实验教学中的实验仪器和实验步骤: 五、平面度误差值的各种评定方法应用举例 六、总结

一、什么是平面度 首先谈一谈什么是平面度,平面度就是实际平面相对理想平面的变动量。换句话说,就是被测平面具有的宏观凹凸高度相对理想平面的偏差。也可以说成是平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是用以限制实际表面加工误差所允许的变动范围。这个变动范围可以在图样上给出。(可以插入一个图) 二、平面度误差值的各种评定方法 1. 最小区域判别准则: 由两个平行平面包容实际被测平面S时,S上至少有四个极点分别与这两个平行平面接触,且满足下列条件之一:(1)至少有三个高(低)极点与一个平面接触,有一个低(高)极点与另一个平面接触,并且这一个极点的投影落在上述三个极点连成的三角形内(三角形准则);(2)至少有两个高极点和两个低级点分别与这两个平行平面接触,并且高极点连线和低极点连线在空间呈交叉状态(交叉准则);这两个平行平面之间的区域即为最小区域,该区域的宽度即为符合定义的平面度误差值。就是最高点与最低点的差值。如下图所示: 2.三远点平面法和对角线平面法: 平面度误差值还可以用对角线平面法和三远点法评定。对角线平面法是指以通过实际被测平面一条对角线(两个角点的连线)且平行另一条对角线(其余两个角点的连线)的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之差作为平面误差值。 三远点平面法是指以通过被测平面上相距最远的三个点构成的平面作为评定基准,取各测点相对于它的偏离值中最大偏离值(正值或零)与最小偏离值(零或负值)之值差作为平面度误差值。应当指出,由于从实际被测平面上选取相距最远的三个点有多种可能,因此按三远点平面法评定的平面度误差值不是唯一的,有时候差别颇大。 评定过程就是根据上述判别准则去寻找符合最小条件的理想平面位置的过程。可有多种数据处理方法,其中旋转法为最基本的方法。此法适用于前述各种测量方法获得的统一坐标值的数据处理。 三、误差值评定的步骤:

教案平面机构的自由度

平面机构的自由度 【教学目的】 1、掌握运动链成为机构的条件。 2、熟练掌握机构自由度的计算方法。能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。 【教学内容】 1、引出自由度的概念,明确自由度和约束的关系; 2、推导自由度计算公式,并加以举例说明; 3、学会利用公式计算平面机构的自由度。 【教学重点和难点】 1、机构自由度的计算 【教学方法】 1、课堂以讲授为主,结合实物文件进行分析讲解。 2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。【教学内容】 1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机构的 自由度。 2、自由度的引入 构件的独立运动称为自由度。一个作平面运动的自由构件具有3个独立的运动,见图1。 图1 平面自由度 即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。 构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。 如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。 如图3中转动副限制了2相限制1沿x轴y轴移动,引入两个约束。

如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。 图4 高副及表示符号 3 自由度公式的推导 如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。 当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。于是,该机构的自由度应为 ()H L H L p p n p p n F --=+-=2323 (1) 4 自由度的计算 图5 平面四连杆机构 图6 平面五连杆机构 (1)三个活动构件,四个低副,零个高副。 104233=-?-?=F (2)四个活动构件,五个低副,零个高副 342502F =??= 总结: 平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。

第一章平面机构运动简图与自由度计算(精品文档)

本课程是测控专业一门近机类课程,上课之前尤其要作专业引导工作,以树立对本课程的正确认识。课程安排:课堂教学60学时,实验教学12学时,共计72学时。 第一章平面机构运动简图与自由度计算 学时8 知识要点:运动副概念和分类、平面机构低副和高副、平面机构运动简图、平面机构自由度计算 难点:自由度计算和虚约束判断,结合多媒体重点讲解。 §1 概述 机构是按一定方式联接的构件组合,是用来转递运动和力或改变运动的形式。 研究机构的目的: ⑴探讨机构运动的可能性、具有确定运动的条件; ⑵将机构按特点分类,建立运动分析和动力分析的一般方法; ⑶学会关于运动简图的绘制。 (4)熟悉构件组成机构的规律,以合理设计和创新机构。 §2运动副及其分类 运动副:两构件直接接触,而又能产生一定相对运动的联接(可动联接)。?? 例如:滚珠轴承的滚珠与内外座圈之间为点接触;互相啮合的轮齿之间为点或线接触;而轴颈与

轴承或滑块与导槽之间为面接触。 运动副要素:构成运动副的点、线、面。 按运动情况可把运动副分为平面运动副和空间运动副。本节将主要讨论平面运动副。 构件作运动时,可分为三个独立的运动。当X或Y值变化时,构件将沿X或Y轴移动;当α值变化 。 2只能绕垂直于XOY平面的轴相对运动。 图4-1b,构件2沿Y轴相对移动和垂直于XOY平面的轴相对移动受约束,构件2相对于构件1只能 2沿公法线n-n A独立转

沿接触点公法线相对移动的可能性即被取消。因此,从相对运动来看,平面运动副有三种型式: ⑴具有一个独立相对转动的运动副(转动副);F=1 ⑵具有沿一个方向独立相对移动的运动副(移动副);F=1 ⑶具有一个独立移动和一个独立转动的运动副。F=2 按照接触的特性,通常把运动副分为高副和低副。 点接触或线接触的运动副称为高副;平面高副具有一个约束。F=2 面接触的运动副称为低副。平面低副具有两个约束。F=1 §3 平面机构的运动简图 机构运动简图:表明各机构间相对运动关系的简单图形。仅仅用简单的线条和符号来代表机构和运动副,并按照一定的比例表示各运动副间的相对位置,不考虑与运动无关的因素。 表4-1 绘制运动简图时,首先要搞清楚所要绘制机械的结构和运动原理,然后从原动件开始,按照运动传递的顺序,分析各构件相对运动的性质,确定运动副的类型和数目;并合理选择视图平面。选取适当的长度比例尺,按一定的顺序进行绘图,并将比例尺标注在图上。 例题4-1 试画出图4-4a所示油泵机构的运动简图。 解此机构主要由圆盘1、导杆2、摇块3和机架4等四个机构组成,其中构件1为原动件,构件4为机架。该机构的工作情况是:当回转副B在AC中心线的左边时,从机架4的右孔道吸油;当B在AC 中心线的右边时,经机架4的左孔道排油。 构件1与构件4和构件2、构件3与构件4分别在A、B、C点构成转动副,构件2与构件3组成移动副它们的导路沿BC方向。 现在选择适当的投影面和比例尺,定出各转动副的位置即可绘制出机构运动简图,如图4-4b所示。

平面度常识及测量方法

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。

2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。 4、光束平面法:光束平面法是采用准值望远镜和瞄准靶镜进行测量,选择实际表面上相距最远的三个点形成的光束平面作为平面度误差的测量基准面。 除上述方法可测量平面度误差外,还有采用平面干涉仪、水平仪、自准直仪等用于测量大型平面的平面度误差。 二、平面度误差的评定方法 平面度误差的评定方法有:三远点法、对角线法、最小二乘法和最小区域法等四种。 1、三远点法:是以通过实际被测表面上相距最远的三点所组成的平面作为评定基准面,以平行于此基准面,且具有最小距离的两包容平面间的距离作为平面度误差值。 2、对角线法:是以通过实际被测表面上的一条对角线,且平行于另一条对角线所作的评定基准面,以平行于此基准面且具有最小距离的两包容平面间的距离作为平面度误差值。 3、最小二乘法:是以实际被测表面的最小二乘平面作为评定基准面,以平行于最小

平面机构自由度计算例题及答案

1. 2. 3. 4. 5. 6.

1.构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0. E处为局部自由度,C处为复合铰链. F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定) 2. B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。 3.A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 4. 没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 5. 计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。

6. F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 结论:构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接触的) 移动副 高副(点或线接触) 约束数为2 约束数为1

例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 H P -=L 2P -3n F =3×2 -2×2-1 =1 图 凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F (F >0或F≥1)。 若 原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度 (b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动

平面度算法说明

检测工件平面度算法说明: 1:在基准面上取3个点分别为P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)利用三点成面的公式计算出平面AX+BY+CZ+D=0作为基准平面 注:1、P1的X,Y坐标由人工输入,其余点有输入的X,Y移动量计算得出 2、所有点的Z坐标由激光测距仪提供 3、计算平面公式时,须计算出A,B,C,D A=y1*z2-y1*z3-y2*z1+y2*z3+y3*z1-y3*z2; B=-x1*z2+x1*z3+x2*z1-x2*z3-x3*z1+x3*z2; C=x1*y2-x1*y3-x2*y1+x2*y3+x3*y1-x3*y2; D=x1*y2*z3-x1*y3*z2-x2*y1*z3+x3*y1*z2+x2*y3*z1-x3*y2*z1; 2:在计算面上取3个点分别为P4(x4,y4,z4),P5(x5,y5,z5),P6(x6,y6,z6)利用点到平面的距离公式分别求出D1,D2,D3,然后计算出D1,D2,D3的平方差,通过平方差的大小来判断计算面与基准面之间的平行度 注:1、计算点到面的距离公式是:D=abs(ax0+by0+cz0+d)/sqrt(a*a+b*b+c*c); 2、计算方差公式为:Avg = (D1+D2+D3)/3 Var = ((D1-Avg)^2+(D2-Avg)^2+(D3-Avg)^2)/3 3、假设Par为设定的公差,则Par与Var之间的转换公式为Var = (4*Par*Par)/9,这个Var 即为设定的Var的上限(利用求极限法求出的) 4、程序运行页面显示的测量值为Display = Max(D1,D2,D3)-Min(D1,D2,D3),理由为 Display在Par之内才能算计算面的上下浮动的合理范围之内要是Display大于Par, 则肯定表示在Par之内。 基准面

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参 数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接 触的) 例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 =3×2 -2×2-1 =1 图 运动 副 低副(面接触) 移动副 高副(点或线接触) 约束数为2 约束数为1

凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F(F>0或F≥1)。 若原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度(b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动 5.计算机构自由度时应注意的事项 1)复合铰链:两个以上个构件在同一条轴线上形成的转动副。 由m个构件组成的复合铰链,共有(m-1)个转动副。 2)局部自由度:在某些机构中,不影响其他构件运动的自由度称为局部自由度局部自由度处理:将滚子看成与从动杆焊死为一体。 注意:在去除滚子的 同时,回转副也应同 时去除,这就相当于 使机构的自由度数减 少了一个,即消除了 局部自由度。 3)虚约束:重复而不起独立限制作用的约束称为虚约束 计算机构的自由度时,虚约束应除去不计。 几种常见虚约束可以归纳为三类: 第一类虚约束:两构件之间形成多个运动副,它们可以是移动副(图2-17)或转动副(图2-18),这类虚约束的几何条件比较明显,计算自由度的处理也较简单,两个构件之间只按形成一个运动副计算即可。 图3-14 导路重合的虚约束图3-15 轴线重合的虚约束第二类虚约束:机构中两构件上某两点的距离始终保持不变。如用一个附加杆件把这两点铰接,即形成虚约束。这两个点可以是某动点对某固定点的关系(如2-15中的E、F),也可以是两个动点之间的关系。这类虚约束常见于平行四边形机构,计算自由度时应撤去附加杆及其回转副。 第三类虚约束:机构中对运动不起作用的对称部分可产生虚约束(图2-19)。这类虚约束常见于多个行星齿轮的周转轮系,计算自由度时应只保留一个行星轮而撤去所有多余的行星轮及其有关运动副。 最后必须说明,虚约束是人们在工程实际中为改善机构或构件受力状况,在一定条件下所采取的

平面机构自由度计算思考题和习题

平面机构自由度计算思考题和习题 1、思考题 什么是构件、运动副、运动链自由度?它们有何异同点? 什么是运动副约束?平面运动副中最多约束数为多少?为什么? 试写出计算平面运动链自由度公式,并从物理概念简述其推演过程。 计算运动链自由度的目的何在? 机构具有确定运动的条件是什么?如果不满足该条件可能会出现哪些情况? 什么是虚约束?总结归纳出现虚约束的几种情 况。 2、习题 1)通过自由度计算判断图示运动链是否有确定运动 (图中箭头所示构件为原动件)。如果不满足有确 定运动的条件,请提出修改意见并画出运动简图。 2)计算下列各运动链的自由度,并指出其中是否有复合铰链、局部自由度、虚约束。最后判断该机构是否有确定运动(图中箭头所示构件为原动件),为什么? (A) (B) (C) (D)

3、习题答案 1)计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。 2)答案 (A)没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (B)A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (C) F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。 (D) B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。

平面度算法说明

精品文档 检测工件平面度算法说明: 1:在基准面上取3个点分别为P1(x1,y1,z1),P2(x2,y2,z2),P3(x3,y3,z3)利用三点成面的公式计算出平面AX+BY+CZ+D=0作为基准平面 注:1、P1的X,Y坐标由人工输入,其余点有输入的X,Y移动量计算得出 2、所有点的Z坐标由激光测距仪提供 3、计算平面公式时,须计算出A,B,C,D A=y1*z2-y1*z3-y2*z1+y2*z3+y3*z1-y3*z2; B=-x1*z2+x1*z3+x2*z1-x2*z3-x3*z1+x3*z2; C=x1*y2-x1*y3-x2*y1+x2*y3+x3*y1-x3*y2; D=x1*y2*z3-x1*y3*z2-x2*y1*z3+x3*y1*z2+x2*y3*z1-x3*y2*z1; 2:在计算面上取3个点分别为P4(x4,y4,z4),P5(x5,y5,z5),P6(x6,y6,z6)利用点到平面的距离公式分别求出D1,D2,D3,然后计算出D1,D2,D3的平方差,通过平方差的大小来判断计算面与基准面之间的平行度 注:1、计算点到面的距离公式是:D=abs(ax0+by0+cz0+d)/sqrt(a*a+b*b+c*c); 2、计算方差公式为:Avg = (D1+D2+D3)/3 Var = ((D1-Avg)^2+(D2-Avg)^2+(D3-Avg)^2)/3 3、假设Par为设定的公差,则Par与Var之间的转换公式为Var = (4*Par*Par)/9,这 个Var即为设定的Var的上限(利用求极限法求出的) 4、程序运行页面显示的测量值为Display = Max(D1,D2,D3)-Min(D1,D2,D3),

平面机构自由度计算 (1)

百度文库- 让每个人平等地提升自我! 1 平面机构虚约束的分析 机构是由若干构件组成的,是实现机械预期运动的装置,这些“预期运动”都是在原动 件的驱动下实现的,而其原动件的数目必须等于它的自由度。由此可见,准确计算机构的自由度对于正确分析和设计机构至关重要。在各种实际机构中,为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,往往要多增加一些构件与运动副(1)这些运动副中往往包括虚约束。 在计算平面机构自由度时,最常用的公式是契贝舍夫公式,简称契氏公式(2): W=3n-2P L-P H 现计算下图所示机构的自由度: 可知,n=4, P L=6, P H=0,所以W=3*4-2*6=0 显然答案是错误的,原动件个数是1。这是因为该机构中出现了虚约束。所谓虚约束,笔者认为就是指不产生约束的约束,也即是所引入的构件由于几何尺寸满足一定的规律,不会对所在机构产生约束。 在机构自由度计算中.产生虚约束的情况有4种情况(3): (1)如果将机构的某个运动副拆开,机构被拆开的两部分在原联接点的运动轨迹仍相互重合,则产生虚约束。 (2)在机构运动过程中,如果某两构件上两点之间的距离始终保持不变.那么,若将此两点以构件相连,则因此而引入的约束必为虚约束。 (3)如果两构件在几处接触而构成移动副,且各接触处两构件的相对运动方向一致;或者两构件在几处配合而构成转动副,且各配合处的轴线重合,则只应考患一处运动副引入的约束,其他各处为虚约束。 (4)机构中对运动不起作用的对称部分亦是虚约束。 笔者认为,在分析机构是否含有虚约束时,最好的方法是先分析该构件的功能,特别是“可疑”构件的作用,然后试着去掉该构件,看该机构还能否实现所期待的功能,因为引入虚约束的目的是为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,且不影响机构的运动规律。例如以上机构的虚约束的作用是约束下面的导杆在水平方向运动,如果去掉E,,该机构的运动规律并没有发生改变,就可以断定E,是虚约束。 在机械设计中,虚约束往往是“点睛之笔”,它能够使机械变得更加科学、实用。学会分析虚约束的最终目的是在自己设计机械机构的时候能够“因地适宜”、灵活地运用虚约束。能否熟练实用虚约束是判断机械设计者是否合格的重要标准。—————————————————————————————————————— 参考文献 (1)徐锦康.机械原理[M].北京:机械工业出版社 (2)李学荣.四连杆机构综合概论(第一册)[M].北京:机械工业出版 社。1985. (3)孙桓,陈作模机械原理(第5版)[MJ北京:高等教育出 版社,1996. 电气工程及自动学院 胡佳男

平面度

一般来说现在的先进的仪器都有自带的测量平面度的,但是,如果没有这些仪器,那么我们怎么测量或计算出平面度呢? 如果根据图纸要求,量出约4x4的点 -0.03, -0.02, -0.02, -0.03 0.05, 0.08, 0.07, 0.06 0.04, 0.01, 0.03, 0.02 -0.01, -0.02, -0.02, -0.03 如果用最小二阶乘法,该怎么去计算出平面度大小?别告诉我用最大减最小,那不靠谱。最好是公式和EXCEL的函数表达式 平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

相关文档
最新文档