(完整word版)模型描述及TOPMODEL模型

(完整word版)模型描述及TOPMODEL模型
(完整word版)模型描述及TOPMODEL模型

流域水文是一个复杂的过程,其动态变化不仅受气候条件、土壤因子等的影响,植被在其中也起着非常重要的作用,只有将三者有机的结合起来,才能客观的反映流域水文动态,才能有效地对森林的水文功能进行评估。本研究拟采用的水文模型为TOPMODEL,气候模型为MT-CLIM, 考虑到本研究所涉及的范围,植被模型只选取蒸散发和林冠截流两部分。

TOPMODEL 模型

TOPMODEL 由Beven 和Kirkby 在1979年提出,是一个基于地形的半分布式模型。其理论基础为变动源面积(Variable Source Areas ),根据这个概念坡面流只在整个流域的一小部分上发生,产生坡面流的陆地表面是那些在降雨事件中地下水位上升至地表的饱和区域。O ’Loughlin (1981年)结合GIS 和现代图形技术增强了其模拟和可视化能力。TOPMODEL 被发展主要是作为一种研究工具,并且已经广泛地运用于实际当中。该模型的特点是结构简单,优选参数少,充分利用了容易获取的地形资料,而且与观测的物理水文过程密切联系。

TOPMODEL 的地形指数

地形指数的概念

地形是影响流域对降雨响应的重要因子,它决定了重力作用下流域中水分运动的趋势,因此也影响着水文系统的许多其它方面。TOPMODEL 提出了地形指数(Topographic Index )的概念,并假定相同地形指数的水文单元上有着相似的水文学特性,而不考虑其所在的位置。地形指数是水文模型的重要组成部分,它反映了土壤湿度、地表饱和度的空间分布,和径流生成的过程(Zhang and Montgomery, 1994),因此可以说地形指数是TOPMODEL 的核心。地形指数:

???

? ??=βtan ln A T ;

A: 特定集水区面积;

β:坡度角。

地形指数的计算

地形指数通常用DEM 计算,所选用的算法与所定义栅格的尺度或精度影响着计算结果。计算地形指数时,首要的任务是确定特定集水区面积(Specific catchment area),特定集水区面积由上坡面积 (Upslope area ,a) 求得。a 被定义为一点(point)或等高线上总的集水区面积(Moore 等,1991年)。A 为每单位宽度(L )等高线的上坡面积(A=a/L )。A 是一个有重要水文、地理意义的分布量(Burges 等,1994年),上坡面积和特定集水区面积的计算依靠于流向路径(Flow direction )的计算。本文采用David G. Tarboton (1997年)提出的一种简明有效的单流向算法来计算特定集水区面积。

TOPMODEL 的基本方程

TOPMODEL 基本方程的数学出发点是连续性方程和Darcy 定律,TOPMODEL 应用中有以下几点假设:

(1) 土壤饱和水力传导度K z 随着土壤厚度的增加服从指数递减;

fz z e K K -=0

式中:K 0:地表土壤的水力传导度;f :为参数,表示K 随z 的下降速度。

(2) 饱和壤流受地形梯度驱动,被地下水位控制,状态稳定,并且地下水位线和饱和壤

中流平行与地表;

S f o z f o b e Q e Q Q )/(θ?--==

λ-=e T Q 00

式中:Q b :饱和壤中流;Q 0土壤饱和时的排水量;Δθ:土壤可排水空隙率;S :

流域平均土壤饱和缺水量;T 0:饱和导水率;λ:ln(a/tan β);

(3) 相同地形指数的单元,有着相似的水文学特性。

根据以上假设建立方程:

()()??

????????--???? ?????? ??-+=i i i T ln δtan βa ln λm S S 式中:S i :i 处饱和缺水量;S :流域平均饱和缺水;m :水力传导度随深度递减的模型参数;

a :排水面积;β:坡度;T i :i 处的饱和导水率;λ:流域ln(a/tan β)的平均值;δ:流域ln (T i )的平均值。通常T i 的空间分布是未知的,因此假定T i 在整个流域上为常数,方程变为,这个方程即为TOPMODEL 的基本方程。

??

???????????? ?????? ??-+=i i a m S S βλtan ln 由于S i 代表着局部饱和缺水量,当任一单元S i ≤0时则表明土壤已经饱和,坡面流将发生。从公式中还可看出地形指数的高值单元更容易达到饱和而产生坡面流。

TOPMODEL 的产流计算

TOPMODEL 产流计算包括壤中流Q b 和饱和坡面流Q s 两部分,其中壤中流计算如式,坡面流则需先计算流域内局部饱和缺水量的情况。,模拟过程中,局部饱和缺水量是随时间变化的函数,可用下式表达:

()t r Q S S t t t δ-+=--11

式中:St :t 时刻土壤饱和缺水量;S t-1:t-1时刻土壤饱和缺水量;Q t-1:t-1时刻径流量;r :净补给率;Δt :模拟的时间步长;

坡面流的计算方程为:

???? ?

???????+-=?S A i t s dA r t S A Q δ1t i i A S a ∑= 式中:A t :整个流域的面积;A S :流域中(S i ≤0)的面积。

考研高等数学公式(word版,全面

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

(完整word版)高等数学公式大全史上最全的高等数学公式,推荐文档

高等数学公式大全 微分方程的相关概念: 即得齐次方程通解。 , 代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。 得:的形式,解法: 为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x y y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0 ),(),(),(???一阶线性微分方程: ) 1,0()()(2))((0)(,0)() ()(1)()()(≠=+? +?=≠? ===+?--n y x Q y x P dx dy e C dx e x Q y x Q Ce y x Q x Q y x P dx dy n dx x P dx x P dx x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程: 全微分方程: 通解。 应该是该全微分方程的,,其中:分方程,即:中左端是某函数的全微如果C y x u y x Q y u y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),(),(),(0),(),(),(0),(),( 二阶微分方程: 时为非齐次 时为齐次,0)(0)()()()(2 2≠≡=++x f x f x f y x Q dx dy x P dx y d

高等数学上公式

学姐偷懒直接从网上下了一份公式总结,然后按照咱们的考试要求改了一下,特别诡异的那些公式我都删掉了,剩下的都是可能会出现的,哪些必须记哪些可以记也都写在后面了,有的出题形式我也加在知识点后面了,可以做个参考。这上面的知识点不很全,但应付考试差不多了,上面没有的学霸们可以自己再看看书哈。重点关注黑体字!!!电子版已发各部长,可以找部长要。祝大家都能考个好成绩~ ——魏亚杰 高等数学(一)上 公式总结 第一章 一元函数的极限与连续 1、一些初等函数公式:(孩子们。没办法,背吧) sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβ αβαβαβαβ αβαβ αβαββα±=±±=±±= ??±=±和差角公式: sin sin 2sin cos 22 sin sin 2cos sin 22 cos cos 2cos cos 22 cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()] 21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 222222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot αααααααα α ααααα ==-=-=-= --= 倍角公式:

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学教材word版(免费下载)

目录 一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (8) 9、函数的极限 (10) 10、函数极限的运算规则 (11)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑵、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

(完整word版)高等数学公式补充三角函数公式

此文档分为两部分:高等数学公式(13页)和补充的三角函数公式(7页)。 声明:源材料来自网络,自己稍加整理。 第一部分:高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

(word完整版)高等数学公式定理整理

高等数学公式定理整理 1.01版 本定理,公式整理仅用于参考,具体学习请多做题目以增进对知识的掌握。 蓝色为定理 红色为公式 三角函数恒等公式: 两角和差 tan αanα·ta +tan βanβ)-(tan α=β)-tan(αtan αanα·ta -(1tan βa +(tan α= β)+tan(αcos αosα·s ±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(?-?=+ 和差化积 ] 2 β) -(α]sin[2β)+(α-2sin[=cos β-cos α]2β) -(α]cos[2β)+(α2cos[=cos β+cos α] 2β) -(α]sin[2β)+(α2cos[=sin β-sin α] 2β)-(α]cos[2β)+(α2sin[=sin β+sin α

积化和差 β)] -cos(α-β)+[cos(α2 1 -=sin αinα·s β)]-cos(α+β)+[cos(α21 =cos αosα·c β)] -sin(α-β)+[sin(α21 =cos αosα·s β)] -sin(α+β)+[sin(α21 =sin αinα·c 倍角公式(部分):很重要! α tan -1α tan 2= tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α2 = 2sin αsinα·=sin2α22222 一、函数 函数的特性: 1.有界性: 假设函数在D 上有定义,如果存在正数M ,使得对于任何的x ∈D 都满足|f(x)|≤M 。则称f (x )是D 的有界函数。 如果正数M 不存在,则称这个函数是D 上的无界函数。 2.单调性 设f (x )的定义域为D ,区间I D 。X1,x2∈I ,那么,如果x1x2,那么就是单调减少函数。 3.奇偶性

2019考研高等数学公式(word版,全面)共15页文档

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

全部高等数学计算公式word版本

全部高等数学计算公 式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  一些初等函数: 两个重要极限: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 2 2 22 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 2222 2222222 2222 222 2 22 2 ππ

大学高等数学定理公式word版本

大学高等数学定理公 式

第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界, K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

《高等数学公式》word版

高等数学公式 注:tan 和tg 都表示正切;ctg 和cot 都表示余切 导数公式: ()()(sin )sin() 2(cos )cos() 2 n n x x n x x n π π =+?=+? 基本积分表: 2 20()sec ()csc (sec )sec (csc )csc ()ln 1(log )ln x x a C tgx x ctgx x x x tgx x x ctgx a a a x x a '='='=-'=?'=-?'=' = 12 2 ()(arcsin )(arccos )1 ()11 ()1x x x x arctgx x arcctgx x μμμ-'='= '='= +'=- +? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 222 22 22 ln cos ln sin sec ln sec csc ln csc 11ln 21ln 2arcsin tgxdx x C ctgxdx x C xdx x tgx C xdx x ctgx C dx x arctg C a x a a dx x a C x a a x a dx a x C a x a a x x C a =-+=+=++=-+=++-=+-++=+--=+????????

《高数一全套公式》word版

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:

微积分公式大全Word版

微积分公式 sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 x sin -1 x dx = x sin -1 x+2 1x -+C cos -1 x dx = x cos -1 x-2 1x -+C tan -1 x dx = x tan -1 x-?ln (1+x 2 )+C cot -1 x dx = x cot -1 x+?ln (1+x 2)+C sec -1 x dx = x sec -1 x- ln |x+12 -x |+C csc -1 x dx = x csc -1 x+ ln |x+12-x |+C tanh coth sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln | x x e e 211---+| + C d uv = u d v + v d u d uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ

高等数学公式(word版,全面)

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a x x x x x x x x x x a x x ln 1 )(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 2 2 = '='?-='?='-='='2 2 22 11 )(arctan 11 )(arctan 11 )(arccos 11 )(arcsin x x x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学常用公式汇总————(可编辑修改word版)

高数常用公式 平方立方: (1)a2-b2= (a +b)(a -b) (2)a2+ 2ab +b2= (a +b)2 (3)a2- 2ab +b2= (a -b)2 (4)a3+b3= (a +b)(a2-ab +b2 ) (5)a3-b3= (a -b)(a2+ab +b2 ) (6)a3+ 3a2b + 3ab2+b3= (a +b)3 (7)a3- 3a2b + 3ab2-b3= (a -b)3 (8)a2+b2+c2+ 2ab + 2bc + 2ca = (a +b +c)2 (9)a n-b n= (a -b)(a n-1+a n-2b + +ab n-2+b n-1), (n ≥ 2) 倒数关系:sinx·cscx=1 tanx·cotx=1 cosx·secx=1 商的关系:tanx=sinx/cosx cotx=cosx/sinx 平方关系:sin^2(x)+cos^2(x)=1 tan^2(x)+1=sec^2(x) cot^2(x)+1=csc^2(x) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 降幂公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 两角和差: sin(α±β)=sinα·cosβ±cosα·sinβ cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 积化和差: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

(完整word版)常用微积分公式大全

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

(完整word版)高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于) () (lim 0x F x f x x ''→;当 )()(lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型 同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“00 ”或“ ∞ ∞ ”型才能运用该法则; ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

同济第六版高等数学教案WORD版第02章导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。 4、 会求分段函数的导数。 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数。 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数。 §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

(完整word版)高数符号大全,推荐文档

高等数学常用符号大全及符号的含义

acsc x y,余割函数反函数在x处的值,即 x = csc y θ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y, 当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在 Σ 其上部。如j从1到100 的和可以表示成:。这表示 1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量

d2f/dx2 f关于x的二阶导数 f(2)(x) 同样也是f关于x的二阶导数 f(k)(x) f关于x的第k阶导数,f(k-1)(x)的导数 T 曲线切线方向上的单位向量,如果曲线可以描述成 r(t), 则T = (dr/dt)/|dr/dt| ds 沿曲线方向距离的导数 κ 曲线的曲率,单位切线向量相对曲线距离的导数的值:|dT/ds| N dT/ds投影方向单位向量,垂直于T B 平面T和N的单位法向量,即曲率的平面 τ 曲线的扭率: |dB/ds| g 重力常数 F 力学中力的标准符号 k 弹簧的弹簧常数 p i第i个物体的动量 H 物理系统的哈密尔敦函数,即位置和动量表示的能量 {Q, H} Q, H的泊松括号 以一个关于x的函数的形式表达的f(x)的积分 函数f 从a到b的定积分。当f是正的且 a < b 时表示由x轴和 直线y = a, y = b 及在这些直线之间的函数曲线所围起来图形的 面积 L(d) 相等子区间大小为d,每个子区间左端点的值为 f的黎曼和 R(d) 相等子区间大小为d,每个子区间右端点的值为 f的黎曼和 M(d) 相等子区间大小为d,每个子区间上的最大值为 f的黎曼和

相关文档
最新文档