排列组合(ABC级).学生版

排列组合(ABC级).学生版
排列组合(ABC级).学生版

一、排列问题

在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.

根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.

排列的基本问题是计算排列的总个数.

从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .

根据排列的定义,做一个m 元素的排列由m 个步骤完成:

步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;

步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;

……

步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m -

-=-+()(种)方法;

由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+ ()()(),即

121m n P n n n n m =---+ ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.

二、排列数

一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-???? (

)(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,知识结构

排列组合

记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-???? ()() .

在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.

三、组合问题

日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.

一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.

从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.

从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元

素的组合数.记作m n C .

一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:

第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;

第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.

根据乘法原理,得到m m m n n m P C P =?. 因此,组合数12)112321

m

m n n m m P n n n n m C m m m P ?-?-??-+==?-?-???? ()(()()(). 这个公式就是组合数公式.

四、组合数的重要性质

一般地,组合数有下面的重要性质:m n m n n

C C -=(m n ≤) 这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从

n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.

例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255

C C =. 规定1n n C =,01n C =.

五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①

所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1

个物体,不能有没分到物体的组出现.

在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.

六、使用插板法一般有如下三种类型:

⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的

(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.

⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下

[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.

⑶m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样

就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.

【例 1】 4个男生2个女生6人站成一排合影留念,有多少种排法?如果要求2个女生紧挨着排在正中间

有多少种不同的排法?

【巩固】 4男2女6个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法?

【例 2】 将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生B 与C 必须相邻.请问共有多

少种不同的排列方法?

例题精讲

【巩固】6名小朋友、、、、、

A B两人必须相邻,一共有多少种不同的站法?

A B C D E F站成一排,若,

若、

A B两人不能相邻,一共有多少种不同的站法?

【例 3】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排

法?

【巩固】四年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?

【例 4】8人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,有几种坐法?

【巩固】a,b,c,d,e五个人排成一排,a与b不相邻,共有多少种不同的排法?

【例 5】一台晚会上有6个演唱节目和4个舞蹈节目.求:

⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?

【巩固】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?

【例 6】有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?

【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?

【巩固】有12块糖,小光要6天吃完,每天至少要吃一块,问共有种吃法.

【例 7】10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?

【巩固】将13个相同的苹果放到3个不同的盘子里,允许有盘子空着。一共有种不同的放法。

【例 8】把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?

【巩固】三所学校组织一次联欢晚会,共演出14个节目,如果每校至少演出3个节目,那么这三所学校演出节目数的不同情况共有多少种?

【例 9】(1)小明有10块糖,每天至少吃1块,8天吃完,共有多少种不同吃法?

(2)小明有10块糖,每天至少吃1块,8天或8天之内吃完,共有多少种吃法?

【巩固】有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?

【例 10】马路上有编号为1,2,3,…,10的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯

方法有多少种?

MSDC 模块化分级讲义体系 五年级奥数.计数综合. 排列组合(ABC 级).学生版 Page7 of 9

【巩固】 学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏

灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?

【例 11】 在四位数中,各位数字之和是4的四位数有多少?

【巩固】 大于2000小于3000的四位数中数字和等于9的数共有多少个?

【例 12】 所有三位数中,与456相加产生进位的数有多少个?

【巩固】 从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少发生一次进位?

课堂检测

【随练1】 某小组有12个同学,其中男少先队员有3人,女少先队员有4人,全组同学站成一排,要求女

少先队员都排一起,而男少先队员不排在一起,这样的排法有多少种?

【随练2】 把7支完全相同的铅笔分给甲、乙、丙3个人,每人至少1支,问有多少种方法?

【随练3】 在三位数中,至少出现一个6的偶数有多少个?

【作业1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。

【作业2】 学校合唱团要从6个班中补充8名同学,每个班至少1名,共有多少种抽调方法?

【作业3】 能被3整除且至少有一个数字是6的四位数有个。

家庭作业

【作业4】学校乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排照相,请问:

(1)如果要求男生不能相邻,一共有多少不同的站法?

(2)如果要求女生都站在一起,一共有多少种不同的站法?

【作业5】由0,1,2,3,4,5组成的没有重复数字的六位数中,百位不是2的奇数有个.

【作业6】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?

排列与组合[1].版块八.排列组合问题的常用方法总结2.学生版

1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类 计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:1 1C C C m m m n n n -+=+.(规定0C 1n =) 知识内容 排列组合问题的常用方法总 结2

高中数学排列组合训练含答案

排列组合训练 一、单选题(共32题;共64分) 1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有() A. 5种 B. 4种 C. 9种 D. 20种 2.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有( ) A. 24种 B. 16种 C. 12种 D. 10种 3.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于() A. B. C. D. 4.用10元、5元和1元来支付20元钱的书款,不同的支付方法的种数为() A. 3 B. 5 C. 9 D. 12 5.学校将位同学分别推荐到北京大学、上海交通大学、浙江大学三所大学参加自主招生考试,则每所大学至少推荐一人的不同推荐的方法种数为() A. B. C. D. 6.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种. A. 8 B. 15 C. 18 D. 30 7.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是() A. B. C. D. 8.从6名男生和4名女生中选出3名志愿者,其中恰有1名女生的选法共有() A. 28种 B. 36种 C. 52种 D. 60种 9.6个人分乘两辆不同的汽车,每辆汽车最多坐4人,则不同的乘车方法种数为() A. 40 B. 50 C. 60 D. 70 10.一个教室有五盏灯,一个开关控制一盏灯,每盏灯都能正常照明,那么这个教室能照明的方法有种() A. 24 B. 25 C. 31 D. 32 11.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()

排列组合问题教师版

二十种排列组合问题的解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理. 教学目标 1.进一步理解和应用分步计数原理和分类计数原理. 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题.提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =???种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事. 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或 是分步与分类同时进行,确定分多少步及多少类. 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位,从1,3,5三个数中任选一个共有13C 排法; 然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种排法; 最后排中间三个数,从剩余四个数中任选3个的排列数共有34A 种排法; ∴由分步计数原理得113 4 34288C C A = 443

学而思小升初排列组合(排列组合三宝)

1.排列组合的意义与计算方法 2.排列组合三宝:捆绑法、插空法、挡板法 (★★☆) 8月26日晚上师资组刚到蜜桃仙谷,大家都很兴奋。王雨洁、夏川、杨秀情、谷运增、崔兆玉、刘丽娜、兰海等高年级的七位老师想站在一块儿合个影,这个时候争执出现了: ⑴雨洁觉得:7个人随便站成一排,她认为这样简单公平; ⑵夏川认为:7个人可以站成两排,前3后4,这样看起来比较美观; ⑶兰海固执:自己必须站在正中间,因为自己的脑瓜长的比别人更圆一些; ⑷兆玉发言:自己和丽娜站两端,“我们俩宽度一样,这样比较对称” ⑸秀情老师:“我和阿增不站两端,其余的随便排,快点,不要磨叽!” (★★☆) 高年级组的7位老师继续照相,这次排队有了新的讲究:雨洁、夏川、丽娜三位美女老师强烈要求必须相邻,任谁劝都不听,这时候只见摄像师老段拿着一根绳子嘿嘿阴笑着就走过来了:我能很快解决你们这样一共有几种排队方式的问题。 (★★☆) 刚才的事儿影响了照相的进度。嘿,在这段时间里老杨和谷老师打起来了,还把谷老师的耳朵给咬了……海哥在劝架的过程由于处理不当和老杨、谷老师同时起了矛盾,3人带着情绪照相,强烈要求:互不相邻(秀情:下一步就是把海哥的鼻子给啃下来),这样还有几种排队的方式?

(★★☆) 7个人照完相,集体已经讨论好晚饭的事儿了,大家一致决定从我们7人中推选出3个人来去买晚饭,其余人在这儿围着篝火唱个舞、跳个歌啊什么的。推选三个人去买饭,有几种选法? (★★★☆) 饭终于买回来了,这时候海哥、老杨、兆玉买回来了20个桃子,只见海哥悄悄地说:咱们7人悄悄的分了,每人至少一个(假定桃子一模一样)到底有多少种分法呢? 1.由数字1,2,3,4,5可以组成 ______个没有重复数字的正整数? 2.(2010年10月西城区实验中学小升初试题)三个老师和五个学生排成一列照相,如果要求三个男同学不相邻,两个女同学必须相邻,而三个老师必须相邻,那么一共有______种不同的排法。 3.个位比十位大,十位比百位大的三位数共有______个? 4.在图中1×5的格子中填入1,2,3,4,5,6,7,8中的5个数,要求填入的数各不相 同,并且填在黑格里的数比它旁边的两个数都大。共有______种不同的填法。 1.排列组合意义与计算方法 排列:解决有多少种排队方式的问题; A 要排队的个数总数=A 往前乘的个数开头 组合:解决有多少种组队方式的问题; =A C A 要组队的个数要组队的个数总数要组队的个数总数要组队的个数

排列组合培优训练

排列组合强化训练 1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为( ) A.120 B.324 C.720 D.1280 2.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A.40 B.74 C.84 D.200 3.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有( ) A.18个B.15个C.12个D.9个 4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是( ) A.512 B.968 C.1013 D.1024 5.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是( ) A.36 B.32 C.24 D.20 6.现有一个碱基A,2个碱基C,3个碱基G,由这6个碱基组成的不同的碱基序列有( ) A.20个B.60个C.120个D.90个 7.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是( ) A.2男6女B.3男5女C.5男3女D.6男2女 8.已知集合A={1,2,3},B={4,5,6},从A到B的映射f(x),B中有且仅有2个元素有原象,则这样的映射个数为( ) A.18 B.9 C.24 D.27 9.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有( ) A.24种B.36种C.60种D.66种10.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的个数为( ) A.8 B.9 C.10 D.11 11.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( ) A.36种B.42种C.50种D.72种 12.设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子, 现将这五个球投放到五个盒子内,要求每个盒内放1个球,并且恰好有两个球的编号与盒子编号相同,则这样的投放方法总数为( ) A 60 B 48 C 30 D 20 13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有_______. 14. 将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有

高中数学排列组合难题十一种方法教师版

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有 m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花 盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素, 再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法

六年级下册数学-小升初平面图形组合专项试题-s1-人教版

-小升初平面图形组合专项试题-人教版 一、解答题(题型注释) (1 ) (2) 2.仔细数一数,填一填。 (1)右图是由个小三角形拼成的。 (2)右图有个三角形。 (3)右图共有个正方形。 3.根据游戏的需要,幼儿园阿姨用两个长8米、宽4米的长方形地垫先后 拼成一个长方形游戏垫和一个正方形游戏垫(如图所示),拼成的长方形 游戏垫和正方形游戏垫的周长分别是多少? 4.如图,长方形中,,,三角形的面积为 平方厘米,求长方形的面积. 5.如图在中,,求的值. 6.请你画出已学过的4种图形,使它们的面积相等,并计算出它们的面积. 7.为了迎接“六?一”儿童节,学校做了一幅长方形的宣传画,长7米,宽50分 米.这幅宣传画的周长和面积各是多少? 8.如下图,在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求 三角形ABC的面积。 9.如下图,是一块长方形草地,长方形的长是14米,宽是12米。中间有三条宽为2 米的道路,两条是长方形,一条是平行四边形。则草地的面积有多大? 10.如图(1)(2)(3)(4)都是由9个边长为1厘米的正方形组成的3×3平方厘 米的正方形,其中的阴影四边形的面积分别记为,,和,则,,ABCD:2:3 BE EC=:1:2 DF FC=DFG2 ABCD A B C D E F G ABC △ 1 2 DC EA FB DB EC FA === GHI ABC △的面积 △的面积 I H G F E D C B A

和中最小的与最大的和是多少平方厘米?

参数答案 1. (1) 解: (2) 解: 【解析】1.根据题干的要求画图相应图形。 2. (1)4 (2)3 (3)5 【解析】2. 3.解:拼成长方形的周长是:(8+8+4)×2 =20×2 =40(米) 答:拼成的长方形游戏垫的周长是40米. 拼成后正方形的周长是: 8×4=32(米) 答:拼成的正方形游戏垫的周长是32米 【解析】3.用两个长8米,宽4米的长方形,拼成一个大长方形,这个大长方形的长是(8+8)米,宽是4米;拼成正方形的边长是8米,然后根据长方形的周长公式:C=(a+b)×2,正方形的周长公式:C=4a,代入数据解答即可. 4.72【解析】4.连接,. 因为,,所以 . 因为,,所以平方厘米,所以平方厘米.因为,所以长方形 的面积是平方厘米. 5. 1 7 【解析】5. 连接BG,设1份,根据燕尾定理, ,得(份),(份),则(份),因此,同理连接AI、CH得,,所以 如果任意一个三角形各边被分成的比是相同的,那么在同样的位置上的图形,虽然形状千变万化,但面积是相等的,这在这讲里面很多题目都是用“同理得到”的,即再重复一次解题思路,因此我们有对称法作辅助线. 6.16平方厘米 AE FE A B C D E F G :2:3 BE EC=:1:2 DF FC= 3111 () 53210 DEF ABCD ABCD S S S =??= V长方形长方形 1 2 AED ABCD S S = V长方形 11 ::5:1 210 AG GF==510 AGD GDF S S == V V 12 AFD S= V 1 6 AFD ABCD S S = V长方形 ABCD 72 I H G F E D C B A BGC S △ =::2:1 AGC BGC S S AF FB == △△ ::2:1 ABG AGC S S BD DC == △△ 2 AGC S= △ 4 ABG S= △ 7 ABC S= △ 2 7 AGC ABC S S = △ △ 2 7 ABH ABC S S = △ △ 2 7 BIC ABC S S = △ △ 72221 77 GHI ABC S S --- == △ △

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

高考数学专题七:排列组合二项式定理教师版教师原创 全国通用

高考数学专题七:排列、组合、二项式定理 一、高考考试说明 计数原理 (1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. (2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题. (3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. (4)会用二项式定理解决与二项展开式有关的简单问题. 二、核心知识点归纳: 一、分类加法计数原理与分步乘法计数原理 1.分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同方法. 2.分步乘法计数原理 完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法. 注意: 1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的. 2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的. 二、排列与组合 1.排列与排列数 (1)排列: 从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出

m个元素的一个排列. (2)排列数: 从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m 个元素的排列数,记作A错误!. 2.组合与组合数 (1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m 个元素的一个组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C错误!. 3.排列数、组合数的公式及性质 注意: 1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关. 2.计算A错误!时易错算为n(n—1)(n—2)…(n—m). 3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数. 4.排列问题与组合问题的识别方法:

2015排列组合习题(学生版)

1.现要从甲、乙、丙、丁、戊五人中选出三人担任班长、副班长、团支书三种不同的职务,且上届任职的甲、乙、丙都不再连任原职务的方法种数为()A.48B.30 C.36 D.32 2.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是 1.将3封信投入3个信箱,可能的投放方法共有种 A.1 B.6 C.9 D.27 2.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A.81B.64C.48D.24 3. 今4本不同的书放入2个不同的大抽屉中,共有不同的放法为() A.6种;B.8种;C.16种;D.20种; 4.若4个人报名参加3项体育比赛,每个人限报一项,则不同的报名方法的种数有A. 3 4 A B.34 C C.34 D. 43 5. 4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同报法的种数是()A.34B.43C.24D.12 6.在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有()种. A. 3 4 A B.34 C C.34 D. 43 7.将3个不同的小球放入4个盒子中,则不同放法种数有()A.81B.64C.12D.14 8.有5位同学想参加语文、数学、外语三种课外兴趣小组,每人只能报一项,则有( )种不同的报名方式. A.8种B.15种C. 5 3种D.35种 9. 6名同学争夺3项冠军,获得冠军的可能性有种。 10.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法? (2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果? 11. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为:A. 5 3B.35C.35 A D.35 C 12. 5名同学去听同时进行的3个名师讲座,每个同学可自由选择,且必须选择一个讲座,则不同的选择种数是A. 3 5B.53C.5×4×3 D.5×4 13.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加) (1)每人恰好参加一项,每项人数不限(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加项目不限. 14.同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同的分配方式有____种. 15. 学校举行运动会,有四位同学参加三项不同的比赛 (1)每位同学必须参加一项比赛,有多少种不同的结果? (2)每项比赛只许一位学生参加,有多少种不同的结果?

六年级下册数学试题-小升初排列与组合应用题及答案16-人教版

评卷人得分 一、解答题(题型注释) 1.口袋中有1,2,3,4四个球,任意摸出2个球,有几种可能的结果? 2.用4、6、8、0四个数字组成多少个没有重复的四位数? 3.有A、B、C、D四位同学排成一行表演节目,C固定排在左起第三的位置,一共有多少种不同的排法?请你列出来。 4.中午食堂准备了三种菜,分别是豆腐、芹菜和红烧肉。就餐时至少选一种,最多选三种,一共有多少种不同的搭配方法? 5.(1)用下面4张数字卡片能组成多少个不同的两位数? 739 4 (2)如果用下面4张卡片,能组成多少个不同的四位数呢? 039 4 6.一种小彩灯,由红、黄、绿三种颜色组成。用灯的亮灭表示不同的信号。一共可以表示多少种不同的信号? 7.快餐店规定:一份盒饭可以配一个荤菜和一个素菜。想一想,用下面的菜配盒饭,有多少种不同的配菜方法? 8.按下面的要求,用0、1、5、7这几个数字写出没有重复数字的小数。 (1)小于1而小数部分是三位的数字。

(2)大于5而小数部分是三位的数字。 9.春节期间,小军、小刚、小丽与小红之间互相拜年。 (1)他们4人每2人通一次电话,一共通了多少次? (2)如果他们互相寄一张节日贺卡,一共寄了多少张? 10.一枚硬币连续掷三次,试着列出各种可能的结果。 11.用0、1、2、3这四个数字,能组成多少个不同的两位数,写下来。 12.用2、3、5、7组成没有重复数字的两位数,能组成多少个个位是单数的两位数? 13.用2、5、8这三个数字排成一个三位数,使它是2的倍数,共有几种排法? 14.用2、7、0和小数点可以组成哪些不读“零”的一位小数?请将它们写出来。 15.按要求从0、2、5和9这4个数字中选出3个,组成三位数。 ①组成的数是2的倍数。 ②组成的数是5的倍数。 ③组成的数是偶数。 答案 1.一次摸出两个球,可能有(1,2)、(1、3)、(1、4)、(2、3)、(2、4)、(3、4),共6种可能; 答:有6种可能的结果。 【解析】1.一次摸出两个球,可能有(1,2)、(1、3)、(1、4)、(2、3)、(2、4)、(3、4),共6种可能出现的结果;据此解答。 2. 3×3×2×1=18(个) 答:用4、6、8、0四个数字组成18个没有重复的四位数。 【解析】2.先确定千位上的数字,有三种可能,再确定百位上的数字,有三种可能,然后确定十位上的数字,有两种可能,最后确定个位上的数字。 3.6种 ABCD ADCB BACD BDCA DBCA DACB 4.只选一种菜有3种方法,选两种菜有3种方法,选三种菜有1种方法,一共有7种方法。 5.(1)12个(2)18个 6.8种 7.6种 【解析】7.解:2×3=6(种)答:有6种不同的配菜方法。荤菜有2种,素菜有3种,用乘法计算配菜的种类即可。 8.(1)0.157 0.175 0.517 0.571 0.715 0.751

完整版排列组合练习题及答案

排列组合》 一、排列与组合 1. 从9 人中选派2 人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有90 种不同的方案,那么男、女同学的人数是 A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 A.12 个 B.13 个 C.14 个 D.15 个 5.用0,1 ,2,3,4,5 这六个数字, (1 )可以组成多少个数字不重复的三位数? (2)可以组成多少个数字允许重复的三位数? (3)可以组成多少个数字不允许重复的三位数的奇数? (4)可以组成多少个数字不重复的小于1000 的自然数? (5)可以组成多少个大于3000,小于5421 的数字不重复的四位数? 二、注意附加条件 1.6 人排成一列(1 )甲乙必须站两端,有多少种不同排法? (2)甲乙必须站两端,丙站中间,有多少种不同排法? 2. 由1 、2、3、4、5、6 六个数字可组成多少个无重复数字且是6 的倍数的五位数? 3. 由数字1 ,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第379 个数是 A.3761 B.4175 C.5132 D.6157 4. 设有编号为1、2、3、4、5 的五个茶杯和编号为1、2、3、4、5的五个杯盖,将五个杯盖盖在

人教版的高中的数学《排列组合的》教案设计

排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法.一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1十m2十…十m n种不同的方法. (2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A 村经B村去C村,共有多少种不同的走法? 板书:图 这里,从A村到B村有3种不同的走法,按这3种走法中的每一

北师大版高中数学选修2-3第2讲:排列组合(学生版)

北师大版高中数学排列组合 __________________________________________________________________________________ __________________________________________________________________________________ 1.理解排列组合的概念. 2.能利用计数原理推导排列公式、组合公式. 3.熟练掌握排列、组合的性质. 4.能解决简单的实际问题. 1.排列与组合的概念: (1)排列:_____________________________________________________________________叫做从n个不同元素中取出m个元素的一个排列. 注意:○1如无特别说明,取出的m个元素都是不重复的. ○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”. ○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列. ○4在定义中规定m≤n,如果m=n,称作全排列. ○5在定义中“一定顺序”就是说与位置有关. ○6如何判断一个具体问题是不是排列问题,就要看从n个不同元素中取出m个元素后,再安排这m个元素时是有顺序还是无顺序,有顺序就是排列,无顺序就不是排列. (2)组合:___________________________________________________________________叫做从n 个不同元素中取出m个不同元素的一个组合. 注意:○1如果两个组合中的元素完全相同,不管它们的顺序如何,都是相同的组合,组合的定义中包含两个基本内容:一是“取出元素”;二是“并成一组”,“并成一组”即表示与顺序无关. ○2当两个组合中的元素不完全相同(即使只有一个元素不同),就是不同的组合. ○3组合与排列问题的共同点,都要“从n个不同元素中,任取m(m≤n)个不同元素”;不同点:前者是“不管顺序并成一组”,而后者要“按照一定顺序排成一列”. ○4根据定义区分排列问题、组合问题. 2.排列数与组合数: (1)排列数的定义:_______________________________________________________________叫做

(word完整版)小升初奥数—排列组合问题

小升初奥数—排列组合问题 一、 排列组合的应用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9, 那么确保打开保险柜至少要试几次? 【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3, 3;2,2,2,3六种。 第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择; 第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312?=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择. 综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次. 【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个 数字都不相同的时刻一共有多少个? 【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不 同的数字,所以有2 6P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有2 7P 种选法,所以共有2 6P ×27P =1260种选法。 从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。 【例 4】 4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法: ⑴ 甲不在中间也不在两端; ⑵ 甲、乙两人必须排在两端;

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.已知(1+a x )(1+x)5的展开式中x 2 的系数为5,则a = (A )-4 (B )-3 (C )-2 (D )-1 2.若52345012345(23)x a a x a x a x a x a x -=+++++,则:等于() A .55 B .-l C .52 D .52- 3,则的值为 A . B .C 4.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有() A.36种 B.30种 C.24种 D.6种 5.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 6.()()8 x y x y -+的展开式中27x y 的系数为________.(用数字填写答案) 7.(x-2)6的展开式中3x 的系数为.(用数字作答) 8.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=________. 9.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数: (1)选其中5人排成一排; (2)排成前后两排,前排3人,后排4人; (3)全体排成一排,甲不站在排头也不站在排尾; (4)全体排成一排,女生必须站在一起; (5)全体排成一排,男生互不相邻; (6)全体排成一排,甲、乙两人中间恰好有3人. 10.7个人排成一排,按下列要求各有多少种排法? (1)其中甲不站排头,乙不站排尾; (2)其中甲、乙、丙3人必须相邻; (3)其中甲、乙、丙3人两两不相邻; (4)其中甲、乙中间有且只有1人; (5)其中甲、乙、丙按从左到右的顺序排列. 2312420)()(a a a a a +-++16-16

人教版高中数学排列组合教案设计

实用文档 排列与组合 一、教学目标 1、知识传授目标:正确理解和掌握加法原理和乘法原理 2、能力培养目标:能准确地应用它们分析和解决一些简单的问题 3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力 二、教材分析 1.重点:加法原理,乘法原理。解决方法:利用简单的举例得到一般的结论. 2.难点:加法原理,乘法原理的区分。解决方法:运用对比的方法比较它们的异同. 三、活动设计 1.活动:思考,讨论,对比,练习. 2.教具:多媒体课件. 四、教学过程正 1.新课导入 随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.

实用文档 2.新课 我们先看下面两个问题. (l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有 2班,轮船有 3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 板书:图 因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有 4十2十3=9种不同的走法. 一般地,有如下原理: 加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m种不同的方法,在第二类办法中有m种不同的方法,……,21在第n 类办法中有m种不同的方法.那么完成这件事共有N=m十m2n1十…十m种不同的方法.n(2) 我们再看下面的问题: 由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法? 板书:图

(完整版)高中数学排列组合习题精选

1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。 2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种 3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果? 4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() 5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。 A .8 B .9 C .10 D .11 6、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢? 7、集合A ={a,b,c,d},B={1,2,3,4,5}。(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个 8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种。 9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案。 10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种 11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C.84 D .96 12、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 13、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .10 14、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数。若m =4,则不同的“规范01数列”共有(A )18(B )16(C )14 (D )12

相关文档
最新文档