2.3.1抛物线及其标准方程(学、教案)

2.3.1抛物线及其标准方程(学、教案)
2.3.1抛物线及其标准方程(学、教案)

1 2. 3.1 抛物线及其标准方程

一、学习目标

1.掌握抛物线的定义、几何图形,会推导抛物线的标准方程

2.能够利用给定条件求抛物线的标准方程

3.通过“观察”、“思考”、“探究”与“合作交流”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。并进一步感受坐标法及数形结合的思想

二、学习重点

抛物线的定义及标准方程

三、学习难点

抛物线定义的形成过程及抛物线标准方程的推导(关键是坐标系方案的选择)

四、学习过程

(一)复习旧知 在初中,我们学习过了二次函数2y ax bx c =++,知道二次函数的图象是一条抛物线 例如:(1)24y x =,(2)24y x =-的图象(自己画出函数图像)

(二)学习新课

1.抛物线的定义

探究1观察抛物线的作图过程,探究抛物线的定义:

抛物线的定义:

思考:若F 在l 上呢?(学生思考、讨论、画图)

2.抛物线的标准方程

要求抛物线的方程,必须先建立直角坐标系.

探究2 设焦点F 到准线l 的距离为(0)p p >,你认为应该如何选择坐标系求抛物线的方程?按照你建立直角坐标系的方案,求抛物线的方程.

讨论:小组讨论建系方案及其对应的方程,你认为哪种建系方案使方程更简单? 推导过程:

我们把方程2

2(0)y px p =>叫做抛物线的标准方程,它表示的抛物线的焦点坐标是,02p ?? ???,准线方程是2p x =-。 在建立椭圆、双曲线的标准方程的过程中,选择不同的坐标系得到了不同形式的标准方程,对于抛物线,当我们选择如图三种建立坐标系的方法,我们也可以得到不同形式的抛物线的标准方程: (学生分前两排,中间两排,后面两排三组分别计算三种情况,一起填充表格)

图形 标准方程 焦点坐标 准线方程

双曲线与抛物线的参数方程(教学设计)

2.2.2双曲线与抛物线的参数方程(教学设计) 教学目标: 知识与技能目标:掌握双曲线与抛物线的参数方程,理解参数的几何意义。会用曲线的参数方程解决一些实际问题。 过程与方法:通过双曲线与抛物线参数方程的推导,进一步掌握求曲线方程的方法。 情感态度价值观:数学问题解法的多样性,思维多样性。 教学重点:双曲线与抛物线参数方程的应用。 教学难点:双曲线与抛物线参数方程的推导。 教学过程: 一、复习回顾: 1、椭圆的参数方程: 椭圆122 22=+b y a x (a>b>0)参数方程 ???==θ θsin cos b y a x (θ为参数); 椭圆2 2221(0)y x a b b a +=>>的参数方程是cos sin x b y a θθ=??=?(θ为参数) 二、师生互动,新课讲解: 1、双曲线的参数方程的推导: 1)双曲线122 22=-b y a x 参数方程 ? ??==θθtan sec b y a x (θ为参数) 双曲线 ???==θ θtan sec b y a x (θ为参数) 2、判断双曲线两种参数方程的焦点的位置的方法. 如果x 对应的参数形式是sec φ,则焦点在x 轴上. 如果y 对应的参数形式是sec φ,则焦点在y 轴上. 例1:如图,设M 为双曲线122 22=-b y a x (a>0,b>0)任意一点,O 为原点,过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点,探求平行四边形MAOB 的面积,由此可以发现什么结论? 2a 222y x -=1(a>0,b>0)的参数方程为:b

变式训练1:化下列参数方程为普通方程,并说明它们表示什么曲线?由此你有什么想法? 小结:参数方程的表示不唯一,如何判断是哪种曲线,必须化为普通方程。 4、抛物线的参数方程的推导: 1)抛物线方程y 2=2px(p>0)的参数方程为????? x =2pt 2y =2pt (t 为参数). 2)抛物线方程x 2 =2py(p>0)的参数方程为222x pt y pt =??=? (t 为参数) 3)抛物线方程y 2 =-2px (p>0)的参数方程为2 22x pt y pt ?=-?=-?(t 为参数) 4)抛物线方程x 2 = -2py (p>0)的参数方程为222x pt y pt =-??=-? 例2:如图O 是直角坐标原点,A ,B 是抛物线y 2=2px (p>0)上异于顶点的两动点,且OA ⊥OB ,OM ⊥AB 并 于AB 相交于点M ,求点M 的轨迹方程。 变式训练2(探究)在本例中,点A 、B 在什么位置时,?AOB 的面积最小?最小值是多少? 课堂练习: a 1(2()1()2x t t t b y t t ?=+????=-?? )为参数,a>0,b>0()2(b )()2t t t t a x e e t b y e e --?=-????=+??为参数,a>0,>02 1212121212121221(),,211x pt t M M t t M M y pt A t t B t t C D t t t t ?=?=?+-+-、若曲线为参数上异于原点的不同两点,所对应的参数分别是则弦所在直线的斜率是( )、,、,、,、20022(1,0)M y x M P M M P =-、设为抛物线上的动点,给定点,点为线段的中点,求点的轨迹方程。

(完整版)《抛物线定义及其标准方程》

抛物线及其标准方程 一、教学目标 1.知识目标:①掌握抛物线的定义、方程及标准方程的推导;②掌握焦点、焦点位置与方程关系;③进一步了解建立坐标系的选择原则. 2. 能力目标:使学生充分认识到“数与形”的联系,体会“数形结合”的思想。 二、教学过程 (一)、复习引入 问题1、 椭圆、双曲线的第二定义如何叙述?其离心率e 的取值范围各是什么? 平面内,到一个定点F 的距离和一条定直线l 的距离的比是常数e 的轨迹,当0<e <1时是椭圆,当e >1时是双曲线。自然引出问题:那么,当1 e 时,轨迹是什么形状的曲线呢? (二).创设情境 问题2、用制作好的教具实验:三角板ABC 的直角边BC 边上固定一个钉子,一根绳子连接钉子和平面上一个固定点F ,并且使绳子的长度等于钉子到直角顶点C 的距离。用笔尖绷紧绳子,并且使三角板AC 在定直线l 上滑动,问笔尖随之滑动时,在平面上留下什么图形?如何用方程表示该图形? 设计意图:从实际问题出发,激发学生的求知欲,将问题交给学生,充分发挥学生的聪明才智,体现学生的主体地位,同时引入本节课的内容. 师生活动: (1) 你们如何把这个实际问题抽象成数学问题吗? (2) 学生不一定能正确抽象出来,教师可适当引导:当笔 尖滑动时,笔尖到定点F 的距离等于到定直线l 的距离,在满足这样条件下,笔尖画出的图形。并抽象数学问题: (三)、新课讲授: (1)抛物线定义:平面内,到一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,F 到直线l 的距离简 称焦准距。 特别提醒:定点F 在定直线l 外。(并假设F 在直线l 上)

抛物线的定义及标准方程教案

<<抛物线的定义及标准方程>>教案 西乡二中陶小健 一.教学媒体的选择和设计 本课件需在多媒体教室完成,借助powerpoint、几何画板课件,从动态演示和实物模型入手,使学生对抛物线有一个初步的认识。 二.教学目标分析 1.知识目标 掌握抛物线定义,明确焦点和准线的意义;掌握抛物线标准方程;会推导抛物线标准方程,掌握P的几何意义,掌握开口向右的抛物线的标准方程的数形特点,并会简单的应用。 2.能力目标 通过抛物线概念和标准方程的学习,培养学生分析、抽象和概括等逻辑思维能力,提高适当建立坐标系的能力,提高数形结合和转换能力。 3.情感目标 通过学生们寻找生活中与抛物线有关的物体和形象,加强知识与实际的联系,增强学生的学习兴趣。 三.教材的重点和难点 掌握抛物线的定义及标准方程,进一步熟悉解析法的应用,会根据抛物线的标准方程、准线方程、焦点坐标、图象四个条件中一个求其余条件是本节课的教学重点。 教学难点是用解析法求抛物线的标准方程,及坐标系的选取。 四.教学过程 1、设置情境,引出课题 (借助多媒体)先给出一段悉尼海港大桥的视频和中国一古一今两张抛物线形大桥图片,让学生体会世界的古代文明和现代化建设成就。 再给出一幅抛球画面。

学生在学习了圆锥曲线中的椭圆后自然想到抛物线。借此教师点明并板书课题:今天我们就来学习抛物线,研究一下《抛物线的定义和标准方程》。 2.实验探索,归纳定义 为了加深对抛物线直观形象的认识,教师操纵微机,展示多媒体课件,顺序显示下列图形: 1)一条直尺和沿直尺一侧的一定直线L; 2)一个直角三角板并把其一直角边紧靠在直尺的一侧(即定直线L上); 3)取一段细线一段固定在直角三角板另一条直角边上,把细线紧靠在直尺直角三角板一条直角边上,截取一段使其恰好等于到直尺一侧(即定直线L)的距离; 4)再取定直线L 外一个定点F ,把细线的另一端固定在这个定点F 上,取一支铅笔P 靠在三角板的直角边上并使细线扯紧; 5)让直角三角板一条直角边紧靠在直尺的一侧(即定直线L上) ,上下移动时铅笔P 就画出一段曲线-------抛物线。 教师展示完成多媒体课件后,找一至两个同学再一次来操作课件展示抛物线的形成过程,并提出问题让同学思考。 课堂上要充分发挥学生的主体作用,引导学生合作探究得出定义,这是本节课的第一个探究点。学生在此问题中,认为简单,其实很容易出错,并且在探究错因时,难于理解。我给提供平台、激发学生兴趣,首先要求学生独立思考、自主探究,然后引导学生小组交流讨论,最后让小组代表总结。这里学生容易忽视定义的两个前提—(1)在平面内,(2)点F 不能取在定直线L 上.教师要根据学生探究的情况恰当引导学生去发现这些问题,得出抛物线的定义后,要及时给于探究全面、分析问题到位的小组同学表扬,对定义描述尚有不足的同学也要及时鼓励,期待他们在下一个探究点能做的更好。得出抛物线的正确定义后,教师板书抛物线的定义。

抛物线及其标准方程1教案

教 案 授课课题:§8.5抛物线及其标准方程(一) 授课课型:新授课 教学目标: 知识目标:1.掌握抛物线定义及其标准方程 2.熟练掌握抛物线的四种标准方程、焦点坐标、准线方程间的相互关系 能力目标:1.训练学生的运算能力 2.培养学生的数形结合思想、分类讨论思想 情感价值观:1.学习用联系、对比的观点看问题 2.由圆锥曲线的统一定义,对学生进行运动、变化、对立、统一的辩证唯物主义思想教育 教学重点:抛物线定义及抛物线的四种标准方程 教学难点:1.抛物线的标准方程的推导 2.把握抛物线的四种标准方程、图象、焦点坐标、准线方程间的联系 教学教具:多媒体 教学方法:启发引导 学习方法:运用已有知识探究、归纳、总结、运用 教学过程: 一、课题引入 1.生活中的抛物线 2.椭圆、双曲线的第二定义 与一个定点的距离和一条定直线的距离之比是常数e 的点的轨迹是什么? 二、进行新课 1.抛物线的定义 在平面内,与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫抛物线。 定点F 叫抛物线的焦点,定直线l 叫抛物线的准线 的轨迹是抛物线则点若 M e d MF ),1(1== 2.标准方程的推导 2 )2 (),( 2 02),0(,,22 p x d y p x MF d MF d l M y x M p x l p F p p KF KF K l F x xoy + =+-==-==Θφ,则的距离为到点是抛物线上任意一点,设点的方程为),准线,的坐标为(那么焦点设的中点重合 并使原点与线段,垂足为且垂直与直线轴经过点使如图,建立直角坐标系 y

2 0,2)0(2)0(22 )2(2 222p x p p px y p px y p x y p x - ===+=+- ),它的准线方程是坐标是(在轴的正半轴上, 。它表示的抛物线焦点叫做抛物线的标准方程方程,得将上式两边平方并化简φφ 利用对称知识可得其它情况 3.总结提升 相同点: (1)顶点为原点;(2)对称轴为坐标轴; (3)顶点到焦点的距离等于顶点到准线的距离为 2 p . 不同点: (1)一次项变量为x(y),则对称轴为x(y)轴; (2)一次项系数为正(负),则开口方向坐标轴的正(负)方 记忆方法:P 永为正,一次项变量为对称轴,一次项变量前系数为开口方向, 且开口方向坐标轴的正(负)方向相同 4.尝试题一 (1)已知抛物线的标准方程是x y 62 =,求它的焦点坐标和准线方程; (2)已知抛物线的焦点坐标是F (0,-2),求它的标准方程. 5.练习:(1)根据下列条件,写出抛物线的标准方程: ①焦点是F (3,0); ②准线方程 是x = 4 1 ; ③焦点到准线的距离是2. ④抛物线经过点P(-2,-4) (2)求下列抛物线的焦点坐标和准线方程:

抛物线的标准方程及性质

抛物线的标准方程及性质2018/11/25 题型一、抛物线的标准方程: 例题: 1、 顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 _______ 2、 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 3、 以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为 4、 点M 与点F (4,0)的距离比它到直线:50x +=的距离小1,则点M 的轨迹方程是 _______ 5、 抛物线x y =2上到其准线和顶点距离相等的点的坐标为 _______ 练习: 1、 抛物线的顶点在原点,对称轴是x 轴,点(-到焦点距离是6,则抛物线的方程为 _______ 2、 顶点在原点,以坐标轴为对称轴,且焦点在直线3x-4y =12上的抛物线方程是 _______ 3、 已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ________ 4、 若点A 的坐标是(3,2),F 为抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MA |+|MF |取最小值的M 的坐标为 _______ 题型二、抛物线性质: 例题: 1、 抛物线x y 122=截直线12+=x y 所得弦长等于 2、 抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|FA |+|FB |=________ 3、 如果过两点)0,(a A 和),0(a B 的直线与抛物线322 --=x x y 没有交点,那么实数a 的取值范围是 4、 已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,则这抛物线的方程是 练习: 1、 过A (-1,1),且与抛物线22y x =+有一个公共点的直线方程为 2、 边长为1的等边三角形AOB ,O 为原点,AB ⊥x 轴,则以O 为顶点,且过A 、B 的抛物线方程是________ 3、 若直线l 过抛物线y 2=4x 的焦点,与抛物线交于A ,B 两点,且线段AB 中点的横坐标为2,则线段AB 的长 4、 过点Q (4,1)的抛物线y 2=8x 的弦AB 恰被点Q 平分,则AB 所在直线方程是 题型三、抛物线的应用 例题: 1、 已知圆2290x y x +-=与顶点原点O ,焦点在x 轴上的抛物线交于A 、B 两点,△AOB 的垂心恰为抛物线的焦点,求抛物线C 的方程。

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

抛物线及其标准方程-课时作业

学习资料[文档副标题] [日期] 世纪金榜 [公司地址]

抛物线及其标准方程 (45分钟 100分) 一、选择题(每小题6分,共30分) 1.(2013·大理高二检测)已知抛物线的焦点坐标是F(0,-2),则它的标准方程为 ( ) A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y 2.如果抛物线y2=ax的准线是直线x=1,那么它的焦点坐标为( ) A.(1,0) B.(2,0) C.(3,0) D.(-1,0) 3.(2013·遵义高二检测)以坐标轴为对称轴,以原点为顶点且过圆x2+y2-2x+ 6y+9=0的圆心的抛物线的方程是( ) A.y=3x2或y=-3x2 B.y=3x2 C.y2=-9x或y=3x2 D.y=-3x2或y2=9x 4.抛物线y2=12x上与焦点的距离等于8的点的横坐标是( ) A.5 B.4 C.3 D.2 5.(2013·汝阳高二检测)一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过定点( ) A.(0,2) B.(0,-2) C.(2,0) D.(4,0) 二、填空题(每小题8分,共24分) 6.(2013·安阳高二检测)抛物线y=4x2上的一点M到焦点的距离为1,则点M的纵坐标是.

7.已知抛物线y2=2px的准线与圆(x-3)2+y2=16相切,则p的值为. 8.(2012·陕西高考)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米. 三、解答题(9题,10题14分,11题18分) 9.(2013·宜春高二检测)已知抛物线的顶点在原点,它的准线过-=1的左焦点,而且与x轴垂直,又抛物线与此双曲线交于点(,),求抛物线和双曲线的方程. 10.平面上动点P到定点F(1,0)的距离比到y轴的距离大1,求动点P的轨迹方程. 11.(能力挑战题)已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小. 答案解析 1.【解析】选D.由条件可知,抛物线的焦点在y轴负半轴上,且=2,∴p=4,所以它的标准方程为x2=-8y. 【举一反三】把题中条件改为“准线方程为x=-7”,它的标准方程如何?

历年高考抛物线真题详解理科

历年高考抛物线真题详解理科 1.【2017课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1, l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12 D .10 2.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线上 任意一点,M 是线段PF 上的点,且 =2 ,则直线OM 的斜率的最大值为( ) (A )(B )(C )(D )1 3.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线2 2(p 0)y px =>上 任意一点,M 是线段PF 上的点,且 PM =2MF ,则直线OM 的斜率的最大值为( ) (A (B )2 3 (C (D )1 4.【2016高考新课标1卷】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、 E 两点.已知|AB |=DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 5.【2015高考四川,理10】设直线l 与抛物线 24y x =相交于 A , B 两点,与圆 () ()2 2250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条, 则r 的取值范围是() (A ) ()13, (B )()14,(C )()23,(D )()24, 6.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点 A , B , C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ?与ACF ?的面积之比是()

抛物线及其标准方程练习题

` 课时作业(十二) [学业水平层次] 一、选择题 1.(2014·广东省茂名)准线与x 轴垂直,且经过点(1,-2)的抛物线的标准方程是( ) A .y 2=-2x B .y 2=2x C .x 2=2y D .x 2=-2y 【解析】 本题考查抛物线标准方程的求法.由题意可设抛物线的标准方程为y 2=ax ,则(-2)2=a ,解得a =2,因此抛物线的标准方程为y 2=2x ,故选B. 【答案】 B ; 2.(2014·人大附中高二月考)以双曲线x 216-y 2 9 =1的右顶点为焦 点的抛物线的标准方程为( ) A .y 2=16x B .y 2=-16x C .y 2=8x D .y 2=-8x 【解析】 因为双曲线x 216-y 2 9=1的右顶点为(4,0),即抛物线的 焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x . 【答案】 A 3.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线的斜率为2, 且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于

( ) C .2 D .23 | 【解析】 抛物线的焦点为(3,0),即c = 3.双曲线的渐近 线方程为y =b a x ,由b a =2,即 b =2a ,所以b 2=2a 2= c 2-a 2,所以 c 2=3a 2,即e 2=3,e =3,即离心率为 3. 【答案】 B 4.抛物线y 2=12x 的准线与双曲线y 23-x 2 9=-1的两条渐近线所 围成的三角形的面积为( ) A .3 3 B .2 3 C .2 【解析】 本题主要考查抛物线和双曲线的基本量和三角形面积的计算.抛物线y 2=12x 的准线为x =-3,双曲线的两条渐近线为y =± 3 3 x ,它们所围成的三角形为边长为23的正三角形,所以面积为33,故选A. 【答案】 A 二、填空题 5.(2014·绵阳高二月考)抛物线y 2=2x 上的两点A 、B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________. · 【解析】 抛物线y 2 =2x 的焦点为F ? ?? ??12,0,准线方程为x =-12, 设A (x 1,y 1)、B (x 2,y 2),则|AF |+|BF |=x 1+12+x 2+1 2=5,解得x 1 +x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2.

双曲线、抛物线的参数方程

双曲线 、抛物线的参数方程 1.双曲线的参数方程 (1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的参数方程是??? ??x =a sec φy =b tan φ (φ为参数),规定参数φ的取值范围为φ∈[0,2π)且φ≠ π2,φ≠3π 2 . (2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2 b 2=1(a >0,b >0)的参数方程是? ?? ??x =b tan φy =a sec φ(φ为参数). 2.抛物线的参数方程 (1)抛物线y 2 =2px 的参数方程为? ??? ?x =2pt 2 y =2pt (t 为参数). (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 1.参数方程? ????x =2t 2 , y =4t (t 为参数)表示的曲线不在( ) A .x 轴上方 B .x 轴下方 C .y 轴右方 D .y 轴左方 解析:选D.原参数方程可化为y 2 =8x ,故图象不在y 轴左方.选D. 2.下列不是抛物线y 2 =4x 的参数方程的是( ) A.?????x =4t 2 y =4t ,(t 为参数) B .?????x = t 2 4y =t ,(t 为参数) C.? ????x =t 2y =2t ,(t 为参数) D .? ????x =2t 2 y =2t ,(t 为参数) 解析:选D.逐一验证知D 不满足y 2 =4x . 3.双曲线?? ?x =23tan α y =6sec α ,(α为参数)的两焦点坐标是( ) A .(0,-43),(0,43) B .(-43,0),(43,0) C .(0,-3),(0,3) D .(-3,0),(3,0) 解析:选A.tan α= x 23 ,sec α=y 6,

抛物线的几个常见结论及其应用

抛物线的几个常见结论及其应用 抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。 结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x =,212y y p =-。 例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证: 11AF BF +为定值。 结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦) 最短。 例:已知过抛物线 29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。AB 倾斜角为 3 π或23π。 结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证: (1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB

结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。反之也成立。 结论五:对于抛物线22(0)x py p =>,其参数方程为2 22x pt y pt =?? =?, , 设抛物线22x py =上动点P 坐标为2 (22)pt pt , ,O 为抛物线的顶点,显然222OP pt k t pt ==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率. 例 直线2y x =与抛物线2 2(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直, 且线段AB 长为P 的值. 解析:设点A B ,分别为2 2(22)(22)A A B B pt pt pt pt , ,,,则112A OA t k ==,12B OA OB t k k ==-=-. A B ,的坐 标 分 别 为 (84)2p p p p ??- ???,,,.AB =∴==2p =∴.

抛物线定义及标准方程

抛物线及其标准方程 一.知识回顾 二.教学目标 1.使学生掌握·抛物线的定义,理解抛物线标准方程的推导过程,能根据条件确定抛物线的标准方程. 2.,掌握抛物线的标准方程的推导方法,培养学生运用类比、数形结合思想解决问题的能力. 三.教学过程 1.抛物线的定义 在平面内,与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.点F叫做抛物线的,直线l 叫抛物线的

四.例题分析 题型一抛物线的定义 题型二 抛物线的标准方程 [例2] 根据下列条件写出抛物线方程 (1)已知抛物线焦点坐标是F (2,0); (2)已知抛物线的准线方程是X=-2 3。 变式2.根据下列条件写出抛物线的标准方程: (1)焦点是()30F , (2)准线方程是14 x =- (3)焦点在X 的正半轴上,焦点到准线的距离是2 题型三 求抛物线的焦点坐标及准线 [例3] (1)已知抛物线的标准方程是 y2 = 6 x ,求它的焦点坐标及准线方程。 (2)已知抛物线的焦点坐标是 F (0,-2),求抛物线的标准方程 1.抛物线标准方程的两种求法 (1)定义法:根据抛物线的定义得p ,再写出抛物线的标准方程. (2)待定系数法:先设出抛物线的标准方程,然后根据条件求出待定的系数代入方程即可. 变式3. 根据下列方程,写出抛物线的焦点和准线方程

(1).202x y = (2).0522=-x y 题型四. 抛物线定义求轨迹方程 [例4] 设P 为双曲线x 2 -y 212=1上的一点,F 1,F 2是该双曲线的两个焦点, 若|PF 1|∶|PF 2|=3∶2,则△PF 1F 2的面积为( ) A .63 B .12 C .12 3 D .24 变式4若把本题中的“|PF 1|∶|PF 2|=3∶2”改为“021=?PF PF ”,求△PF 1F 2的面积. 规律方法:在解决双曲线中与焦点有关的问题时,要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;与三角形有关的问题要考虑正弦定理、余弦定理、勾股定理等.另外在运算中要注意一些变形技巧和整体代换思想的应用. 五.课后作业

抛物线知识点整理资料讲解

抛物线方程 1 设,抛物线的标准方程、类型及其几何性质: 图形 焦点 准线 范围 对称轴轴轴 顶点(0,0) 离心率 焦点 注:①顶点. ②则焦点半径;则焦点半径为. ③通径为2p,这是过焦点的所有弦中最短的. ④(或)的参数方程为(或)(为参数).

空间直线知识点总结 1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交 ③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. 2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线) 3. 平行公理:平行于同一条直线的两条直线互相平行. 4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围) (直线与直线所成角) (斜线与平面成角) (直线与平面所成角) (向量与向量所成角 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)

高二数学教案:抛物线及其标准方程(1)

一.课题:抛物线及其标准方程(1) 二.教学目标: 1.使学生掌握抛物线的定义、抛物线的标准方程及其推导过程. 2.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力. 3.通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育. 三.教学重、难点: 1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识). 2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.) 四、教学过程 (一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.请大家思考两个问题: 问题1:同学们对抛物线已有了哪些认识? 在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征? 在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线. (二)抛物线的定义 1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线? 2.简单实验 如图2-29,把一根直尺固定在画图板内直线l的位置 上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳 子的一端固定于三角板另一条直角边上的点A,截取绳子 的长等于A到直线l的距离AC,并且把绳子另一端固定 在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板 的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右 滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反 复演示后,请同学们来归纳抛物线的定义,教师总结. 3.定义: 平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线 的准线. (三)抛物线的标准方程 设定点F到定直线l的距离为p(p为已知数且大于 0).下面,我们来求抛物线的方程.怎样选择直角坐标系, 才能使所得的方程取较简单的形式呢? 让学生议论一下,教师巡视,启发辅导,最后简单小 结建立直角坐标系的几种方案: 方案1:(由第一组同学完成,请一优等生演板.) 以l为y轴,过点F与直线l垂直的直线为x轴建立 直角坐标系(图2-30).设定点F(p,0),动点M的坐标为 (x,y),过M作MD⊥y轴于D,抛物线的集合为:

抛物线及其标准方程练习题

课时作业(十二) [学业水平层次] 一、选择题 1.(2014·广东省茂名)准线与x 轴垂直,且经过点(1,-2)的抛物线的标准方程是( ) A .y 2=-2x B .y 2=2x C .x 2=2y D .x 2=-2y 【解析】 本题考查抛物线标准方程的求法.由题意可设抛物线的标准方程为y 2=ax ,则(-2)2=a ,解得a =2,因此抛物线的标准方程为y 2=2x ,故选B. 【答案】 B 2.(2014·人大附中高二月考)以双曲线x 216-y 2 9=1的右顶点为焦 点的抛物线的标准方程为( ) A .y 2=16x B .y 2=-16x C .y 2=8x D .y 2=-8x 【解析】 因为双曲线x 216-y 2 9=1的右顶点为(4,0),即抛物线的 焦点坐标为(4,0),所以抛物线的标准方程为y 2=16x . 【答案】 A 3.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的一条渐近线的斜率为2, 且右焦点与抛物线y 2=43x 的焦点重合,则该双曲线的离心率等于 ( )

A. 2 B. 3 C .2 D .23 【解析】 抛物线的焦点为(3,0),即c = 3.双曲线的渐近线方程为y =b a x ,由b a =2,即b =2a ,所以b 2=2a 2=c 2-a 2,所以 c 2=3a 2,即e 2=3,e =3,即离心率为 3. 【答案】 B 4.抛物线y 2 =12x 的准线与双曲线y 23-x 2 9=-1的两条渐近线所 围成的三角形的面积为( ) A .3 3 B .2 3 C .2 D.3 【解析】 本题主要考查抛物线和双曲线的基本量和三角形面积的计算.抛物线y 2=12x 的准线为x =-3,双曲线的两条渐近线为y =±3 3x ,它们所围成的三角形为边长为23的正三角形,所以面积 为33,故选A. 【答案】 A 二、填空题 5.(2014·绵阳高二月考)抛物线y 2=2x 上的两点A 、B 到焦点的距离之和是5,则线段AB 的中点到y 轴的距离是________. 【解析】 抛物线y 2 =2x 的焦点为F ? ?? ??12,0,准线方程为x =-1 2, 设A (x 1,y 1)、B (x 2,y 2),则|AF |+|BF |=x 1+12+x 2+1 2=5,解得x 1 +x 2=4,故线段AB 的中点横坐标为2.故线段AB 的中点到y 轴的距离是2. 【答案】 2 6.对标准形式的抛物线,给出下列条件:

《2.4.1抛物线及其标准方程》优质课教学设计

课题:2.4.1抛物线及其标准方程 探究一:叩 如图,把一根直尺固定在画图板内直线l的位置上,一块三角板的学生活动 学生观察实物图学生观察 画抛物线的过程,得出结论

一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC并且把绳子另一端固定在图板上的一点F;用一支粉笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样粉笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们思考抛物线有怎样的几何特征,并归纳抛物线的定义,教师总结. 定义: 平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线. 探究二: 抛物线的标准方程 设定点F到定直线l的距离为p(p为已知数且大于0).下面, 我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢? 让学生议论一下,教师启发辅导, 小结:取过焦点F且垂直于准线l的直线为x 轴,x 轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32). 设pT|=P则焦点F的坐标为(§, 0),准线1的方程为抛物线上的点M(x, y)到l的距离为d,抛物线是集合p=(M||MF|=d}. 学生思考讨论建系的各种形

线四种形式,完成下表 师:如何看焦点的确定焦点位置? 椭圆:看分母。 双曲线:看符号。 抛物线:看一次项,再看一次项系数定开口 探究三: 二次函数y=ax 2 (a>0)的图像为以上四种形式的那一种?并求其焦 点和准线。 三. 巩固练习 例1 (1) 已知抛物线的标准方程是y 2=6x,求它的焦点坐标和准线方程; 练习1.求下列抛物线的焦点坐标和准线方程:(1)y 2=20x ⑵y=2x 2; ⑶2y 2+5x=0;⑷ x 2+8y=0;. 例2.已知抛物线的焦点坐标是F(0 , 2),求它的标准方程. 小结:求抛物线的标准方程的步骤。 后 一…] 得: 定乂求抛 讨论 得出 抛物 根据以前 所学知识 将表格补 充完整。 学生回忆 椭圆和双 曲线的确 定焦点的 方法。 y2 =2物线的标 px(p > 准方程 0) .

抛物线知识点整理

抛物线知识点整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

抛物线方程 1 设,抛物线的标准方程、类型及其几何性质: 图形 焦点 准线 范围 对称轴轴轴 顶点(0,0) 离心率 焦点 注:①顶点. ②则焦点半径;则焦点半径为. ③通径为2p,这是过焦点的所有弦中最短的. ④(或)的参数方程为(或)(为参数). 空间直线知识点总结

1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交 ③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. 2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线) 3. 平行公理:平行于同一条直线的两条直线互相平行. 4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围) (直线与直线所成角) (斜线与平面成角) (直线与平面所成角) (向量与向量所成角 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)

抛物线的标准方程及性质

抛物线的标准方程及性质 一、抛物线定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系? 点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 则P>0 求抛物线的方程 解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴设︱KF ︱= p 则F ( 0,2p ),l :x = -2 p 。 设抛物线上任意一点M (X ,Y )定义可知 |MF|=|MN| 即:2 )2(22p x y P x +=+- 化简得y 2 = 2px (p >0) 二、标准方程 把方程y 2 = 2px (p >0)叫做抛物线的标准方程,其中F ( 2P ,0),l :x = - 2 P 而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK| 一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式. 1.四种抛物线的标准方程对比 图形 标准方程 焦点坐标 准线方程 ) 0(22>=p px y ?? ? ??0,2p 2 p x - = ) 0(22>-=p px y ?? ? ??-0,2p 2 p x = ) 0(22>=p py x ? ?? ? ?2,0p 2 p y - = ) 0(22>-=p py x ??? ? ? -2,0p 2 p y =

2、怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来? 顶点在原点 三、抛物线的性质 设抛物线的标准方程y 2=2px (p >0),则 (1)范围:抛物线上的点(x ,y )的横坐标x 的取值范围是x ≥0.,在轴右侧抛物线向右上方和右下方无限延伸。 (2)对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴.抛物线和它的轴的交点叫做抛物线的顶点. (3)顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。 (4)离心率:抛物线上的点与焦点的距离和它的准线的距离的比叫做抛物线的离心率,其值为1. (5)在抛物线y 2=2px (p >0)中,通过焦点而垂直于x 轴的直线与抛物线两交点的坐标分 别为),2 (),,2(p p p p -,连结这两点的线段叫做抛物线的通径,它的长为2p . (6)平行于抛物线轴的直线与抛物线只有一个交点. 但它不是双曲线的切线. (7)焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+++=++ 四、例题讲解 例1.求下列抛物线的焦点坐标和准线方程 (1)y 2=6x (2)y x 2 1 2 =(3)2x 2+5y=0 解:(1)因为2p=6,p=3,所以焦点坐标是( 23,0)准线方程是x=-2 3 (2)因为2p=21,p=41,所以焦点坐标是(0,8 1 ),准线方程是Y=-81

相关文档
最新文档