论陶瓷窑炉烧成气氛的控制

论陶瓷窑炉烧成气氛的控制
论陶瓷窑炉烧成气氛的控制

窑炉烧成工安全操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 窑炉烧成工安全操作规程(标准 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

窑炉烧成工安全操作规程(标准版) 1,工作时,必须穿戴劳动保护用品,严禁穿短裤、拖鞋、凉鞋,防止高温烫伤。 2,送气、点火必须提前开启排烟风机3-5分钟,再进行,防止窑内煤气浓度过高,产生炸窑。 3,定期对煤气分支管道和煤气阀门检查是否泄漏,如发生泄漏应及时处理或更换。 4,处理煤气泄漏时,必须保持环境通风,禁止使用明火。 5,运行中的风机、传动电机、电线、电缆若有异常,严禁乱动乱拆、应马上找维修电工、班长解决。 6、经常检查炉内喷枪燃烧情况,及时调整配比,保证炉内煤气充分燃烧。 7、窑炉喷枪的调整要及时准确,以免气温、气压不稳造成事故,

随时观察仪表的工作情况,每隔1小时观察窑炉内是否有堵塞现象,并做好记录。 8、烧成工每小时对窑炉温度和负压、干燥器温度进行记录,窑炉温度和设定温度不同时,及时对助燃风机、火枪煤气软管进行检查处理。 温度设定:窑炉以设定温度为准上下浮动30度;干燥塔以设定温度为准上下浮动50℃ 9、每小时一次目测砖的平直度,测量磨边后砖的平直度,基平直度超标(弯曲不超过1.4㎜;上翘0.8㎜),砖的弯曲,上翘呈自然状态时,及时调节高温带四块仪表的温度。基出现不规则变形时,立即汇报,以便尽早处理。 10、每半小时一次测量砖的尺寸,大时,高温带上下温度各加一度;小时,各减一度。若一片砖的尺寸相差5㎜时调整上下烧咀的火焰长度,每次调节不得超过两节窑炉。并做好标记,出砖后测量。 11、空窑时及时通知煤气站,然后检查棍棒的粘结情况,并将

陶瓷窑炉的分类

陶瓷窑炉的分类及特点 一、陶瓷窑炉分类 1、按构造型式分:梭式窑、隧道窑、辊道窑、推板窑、圆型(转盘窑)、钟罩窑 2、按供热方式分:煤窑、柴窑、电窑、燃气窑。煤窑、柴窑已被淘汰,清洁能源窑炉(电、燃气)已走向成熟阶段。 3、按烧成温度分:高温窑、中温窑、低温窑。 二、陶瓷窑炉介绍 1、梭式窑:是间歇烧成的窑,跟火柴盒的结构类似,窑车推进窑内烧成,烧完了再拉出来,卸下烧好的陶瓷。窑车如同梭子,故而称为梭式窑。 2、隧道窑:一般是一条长的直线形隧道,其两侧及顶部有固定的墙壁及拱顶,底部铺设的轨道上运行着窑车。燃烧设备设在隧道窑的中部两侧,构成了固定的高温带,烧成带,燃烧产生的高温烟气在隧道窑前端烟囱或引风机的作用下,沿着隧道向窑头方向流动,同时逐步地预热进入窑内的制品,这一段构成了隧道窑的预热带。在隧道窑的窑尾鼓入冷风,冷却隧道窑内后一段的制品,鼓入的冷风流经制品而被加热后,再抽出送入干燥器作为干燥生坯的热源,这一段便构成了隧道窑的冷却带。 3、辊道窑:辊道窑是连续烧成的窑,以转动的辊子作为坯体运载工具的隧道窑。陶瓷产品放置在许多条间隔很密的水平耐火辊上,靠辊子的转动使陶瓷从窑头传送到窑尾,故而称为辊道窑。 4、倒焰窑:燃烧所产生的火焰都从燃烧室的喷火口上行至窑顶,由于窑顶是密封的,火焰不能继续上行,在走投无路的情况下,就被烟囱的抽力拉向下行,经过匣钵柱的间隙,自窑底吸火孔进支烟道,主烟道,最后由烟囱排出。 5、推板窑:又称推板式隧道窑,是一种连续式加热烧结设备,按照烧结产品的工艺要求,布置所需的温区及功率,组成设备的热工部分,满足产品对热量的需求。把烧结产品直接或间接放在耐高温、耐磨擦的推板上,由推进系统按照产品的工艺要求对放置在推板上产品进行移动,在炉膛中完成产品的烧结过程。 三、陶瓷窑炉选择 1、对于日产量在20M3以下,且产品种类较多,烧成温度各异,由于其本身产量难以满足隧道窑的生产量,推荐采用快速烧成梭式窑。 2、对于日产量等于或大于20M3,但其釉色复杂,如窑变结晶釉需一定的恒温及冷却时间,可采用传统梭式窑或电热梭式窑;如果窑变釉或结晶釉只是部分,可以选用快速窑,快速窑不是只快,也可以放慢。慢,温差可控制很小。但慢的节能效果差。 3、对产量较大、高度较高、重量较重、温度较高、釉色单一,可选用台车式隧道窑。如高温日用陶瓷,卫浴陶瓷。 4、对温度在1300℃以内,产量较大的艺术陶瓷、日用陶瓷、卫浴陶瓷,建议采用辊道窑,或大型快速梭式窑。

可控气氛热处理中碳势的测量与控制的研究

可控气氛热处理中碳势的测量与控制研究 系统地研究了可控气氛在热处理中的碳势,通过对炉气碳势的影响因素、碳势的测量方法、碳势的控制原理与方法的分析与综合,对影响炉气碳势的不利因素进行了剖析。同时针对这些不利因素,对炉气碳势的测量与控制方法进行了研究,提出了目前最佳的渗碳工艺方法,即在整个渗碳过程中对碳势进行台阶式控制的方法。 关键词:可控气氛;热处理;碳势;台阶式控制 中图分类号:TG156.99 文献标识码:A 钢铁零件在一般空气炉中加热,会发生氧化和脱碳。加热时的氧化不仅造成材料的损耗,而且影响零件的表面质量,脱碳使零件的耐磨性、强度,尤其是疲劳强度显著降低,缩短了零件的使用寿命。 可控气氛在热处理中的应用,能有效地防止零件在加热过程中的氧化脱碳,对零件在热处理中的变形和开裂倾向也有所改善,并且在化学热处理中采用可控气氛还可以准确控制表面渗入元素的浓度,提高渗件质量。但是从另一方面,我们也可以对可控气氛进行有效的控制,使炉气的气氛朝着有利于脱碳的方向发展,对低碳钢进行脱碳处理,便可以制得所需的纯铁。可控气氛热处理目前在我国使用尚不普遍,究其原因主要是设备投资高,对碳势的测量和控制仪表质量要求高,有些地方气源供应困难等。以上问题对于一些中小型厂就显得更为突出。因此,对可控气氛碳势的测量与控制就显得尤为重要。 1炉气碳势的定义 碳势是表征含碳气氛在一定温度下改变钢件表面含碳量能力的参数。所谓碳势,是指一定温度和炉气成分条件下,钢在奥氏体状态下与炉气成分间达到平衡时的碳浓度。该量值是气氛的特征,也是钢的特征,而且只有在系统处于平衡状态时才有意义。 2影响炉气碳势的因素 碳势是气体渗碳、脱碳等工艺过程中需要精确控制的主要参数。炉气的碳势未得到有效控制时,往往造成钢铁组件的渗层表面含碳量或渗层碳浓度达不到工艺要求。 在一定的渗碳温度下,炉气碳势主要取决于炉气的成分及在其高温下相互结合反应的结果。渗碳炉气成分主要有CO,H2,N2和少量的CO2,H2O,O2以及CH4和不饱和的碳氢化合物等。其中对钢起渗碳作用的炉气成分主要有CH4和CO,炉气中还不可避免地有少量的CO2,H2O和O2将对钢起氧化脱碳的作用,炉气的各组分在高温下的相互反应是十分复杂的,基本可归纳为以下的方程式: 2CO?圳[C]+CO2 CO+H2?圳[C]+H2O CH4?圳[C]+2H2 CO+H2O?圳CO2+H2 CH4+H2O?圳CO+3H2 2CO+O2?圳2CO2 CH4+CO2?圳2CO+2H2 炉气碳势(Cp)是除N2以外炉气各成分在一定的渗碳温度下经化学平衡反应后对钢体表面渗碳能力的参数。炉气中的H2O,CO2和O2含量虽很少,但是这些气体微量的变化也会影响炉气的碳势。根据理论分析和大量的实验,在一定的前提条件下分别建立了这些气体含量与炉气碳势之间的关系。即Cp=f(H2O%),Cp=f(O2%),Cp=f(CO2%),为炉气碳势(Cp)的测量与控制奠定了基穿 炉气碳势(Cp)是以低碳钢箔渗碳后达到平衡碳浓度来表示的。在相同的炉气碳势渗 碳时,当钢中含有碳化物形成元素如Cr,Mo,Mn等,则钢渗碳表面的碳浓度高于炉气

加热窑炉温度控制系统设计

加热窑炉温度控制系统 设计方案: 一、加热炉出口温度单回路反馈控制系统结构框图 图2 加热炉出口温度单回路反馈控制系统结构框图 二、串级控制系统 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求。 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图4所示。

图3 加热炉出口温度串级控制系统结构方框图 三、控制系统 方案:采用51单片机为主控芯片 此方案采用单片机为主控芯片。利用热电阻PT100作为温度传感器件,然后通过运算放大器OP-07构建差分放大器将温度信号转换成ADC0809模拟通道的输入的0-5V标准信号,再由ADC0809将模拟信号转换成八位数字信号,传送给单片机P0口,单片机将实时温度和设置参数通过数码管显示出来,同时通过键盘输入设定温度,单片机将设定温度同ADC0809传送过来的数据进行比较运算,利用PID运算,作出相应的判断,从单片机P1.0输出一个PWM波形来控制固态继电器的导通与关闭,从而控制窑炉的加热丝在一个固定周期中通电加热时间的长短来达到恒温控制的目的。系统原理框图如下图2所示: 图2 方案原理框图 六、窑炉温度控制系统硬件电路设计 本系统硬件电路主要由以下部分组成:供电电源电路、单片机最小系统电路、温度检测电路、数模转换电路、键盘输入电路、声光报警电路、继电器输出电路、LED显示电路 1.系统供电电源电路设计 主控电路所需的+5V电源;外围电路(如继电器、运算放大器)所需的+12V 和-12V电源。如图3系统供电电源电路原理图所示:此电路采用“降压→整流→滤波→稳压→滤波”的线形电源模式。这里选用了78M12、79M12、78M05三端稳压器。(原理图见图纸2)

陶瓷隧道窑微机温度控制系统

陶瓷隧道窑微机温度控制系统 摘要 目前我国陶瓷隧道窑炉大多采用人工或简单仪表控制,要想使窑炉长期达到最佳工作状态是不可能的,造成产品合格率、一级品率一直处于较低的水平。陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。 关键词:MSP430F149单片机、热电偶,变送器、大林算法、 I2C总线、多路开关

一.总体方案设计 1.对象的工艺过程 陶瓷隧道窑炉是由预热带、烧成带和冷却带三个部分组成,瓷件烧成温度在1320℃左右,窑内温度场主要由烧成带12对喷嘴燃冷煤气产生,窑炉系统用8组风机来调节窑内的压力场。排烟风、助燃风将直接影响烧成带的温度场,急冷风会影响最终产品的质量。 温度控制系统将采集的各点温度值,经A/D转换后与设定值进行比较,控制器输出经由D/A变换,变成 4~20mA形式模拟量输出给电动执行器,驱动蝶形阀调节喷嘴的煤气进给量,从而控制烧成带的温度。12只温度传感器与12个喷嘴一一对应。

窑温控制示意图 2.对象分析 被控过程传递函数s e s s G 403 o ) 251(25.2)(-+= 是一个大的延迟环节,而且温度的控制对系统的输出超调量有严格的限制,用最少拍无纹波数字控制器的设计,和PID 算法效果欠佳,所以本设计采用大林算法设计数字控制器。 3.控制系统设计要求 窑温控制在1320±10℃范围内。微机自动调节:正常工况下,系统投入自动。模拟手动操作:当系统发生异常,投入手动控制。 微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。 二、硬件的设计和实现 1.选择计算机机型和系统总线 本系统控制的回路12个,所以只需要一片微控制器即可实现,本设计采用TI 公司的MSP430系列单片机,MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,有较高的处理速度,在 8MHz 晶体驱动下指

温度碳势控制系统常见问题及工艺调试

碳势--温度控制系统常见问题及解决办法 一.氧探头 原理:氧化鋯在高温环境下,处于两种含氧量不同的气氛中时会产生电势差即氧势, 利用氧化鋯这种特性,可将此电信号引致仪表,进行计算,所以氧探头分气路与电路两大部分。 气路部分:请首先确认参比气是否正常,参比气调至100ml/min,将参比气管子放入清水中,应有气泡冒出。 1 .气路不畅: 氧势长时间在1000mv以下,甚至只有一、二百毫伏。用嘴吹一下参比气嘴子,应有一定阻力。但应比较通畅,吹时不费很大力。如吹不动,可用细铁丝疏通参比气嘴或重装探头。 2 . 漏气 (1)微漏:氧势比较稳定,但比正常值低,调节参比气时有较大波动。关断参比气时下降较快。重新装配氧探头,使瓷管与锆球良好密封。 (2)大漏:氧势只有一、二百毫伏,而且参比气嘴子有炉气冒出,用明火能够点着。如摇晃探头有哗啦声时,瓷管已断裂。同时再检查基座内部密封胶圈是否完好。更换已损坏部件。 电路部分: 氧化锆球产生电势差后,由氧探头的正负极连接,经插头连接电线传至仪表。用碳控仪自带的内阻测量功能,对氧探头及连线和氧化锆球的使用情况进行测量。 如果内阻在短期内大幅线性上升,则氧化锆球使用寿命将尽。如果内阻大于4k Ω,则氧探头及连线有问题。 二、氧探头常见故障 1、氧势上不去(或是上的比较慢,需一、两个小时):由于排气不够充分,造成 里面气氛不好。 解决办法:充分排气,打开排气孔,等氧势有上升趋势后再关孔。 2、氧势显示为零:内外电极装反了。 解决办法:在端子排上将Y+、Y-换位接好,再看是否有显示。 3、氧势不稳定来回跳动:看看机座内电极连线是否松动,或是有干扰(一般来自于风机漏电)。 解决办法:把氧探头的黄色机座拧下,把内电极连线的螺丝拧紧,再拧上黄色机座;若是来自于风机漏电的干扰,可在风机外壳上接一地线。 4、氧势在800mv以下:有可能是氧探头轻微漏气, 解决办法:先判断是否轻微漏气,可把参比气从200ml调到50ml,看氧势是否降落很多,大约100mv/min以内说明不漏气,若大于100mv/min说明漏气了,可与厂家联系,不宜再用。 三、碳控仪常见故障排除及维护: 1、主控阀和辅控阀同时不打开:造成的原因有可能是主、辅控共用的零线脱落,在端子排部分或在电磁阀接线处; 2﹑温度显示HHHH:表示断偶或未接入信号; 3、在800度以上炉气碳势正常时氧电势输出很低,在几十到100mv之间:无参比气进入氧探头内,处理办法是清理气路应检查气路或气泵或氧探头内部气

窑炉基本知识

窑炉有哪些 按煅烧物料品种可分为陶瓷用窑炉、水泥窑、玻璃窑、搪瓷窑等。前者按操作方法可分为梭式窑炉半连续窑和间歇窑。 按热原可分为火焰窑和电热窑。 按热源面向坯体状况可分为明焰窑、隔焰窑和半隔焰窑。 按坯体运载工具可分为有窑车窑、推板窑、辊底窑(辊道窑)、输送带窑,步进梁式窑和气垫窑等。 按通道数目可分为单通道窑、双通道窑和多通道窑。 一般大型窑炉燃料多为重油,轻柴油或煤气、天然气。 窑炉通常由窑室、燃烧设备、通风设备,输送设备等四部分组成。 电窑多半以电炉丝、硅碳棒或二硅化钼作为发热元件。其结构较为简单,操作方便。 此外,还有多种气氛窑等。 窑炉结构是否合理,选型是否正确,直接关系到产品的质量,产量和能量消耗的高低等,是陶瓷生产中的关键设备。 窑炉结构 ●间歇式窑炉 能耗大,产量较低,排烟温度在600℃~860℃。 影响梭式窑内温度场均匀性的关键因素: ①采用新型烧嘴,如:等温烧嘴,脉冲烧嘴,高速烧嘴。 ②调整烧嘴的布设, ③改善码坯的放置, ④合理布设烟道, ⑤对于梭式窑,余热利用, ⑥选择适当的温度检测点和控制方法。 ●连续式窑炉 ①隧道窑 温差大,特别是预热带;窑墙、窑车蓄热量大,能耗高 2400-12000×4.18kJ/kg产品;采用一些新技术能耗可降至1100-5200×4.18kJ/kg。采用新技术:无匣裸烧,轻质保温,轻质窑车。存在关键问题:还原烧成气氛的检测与控制②辊道窑 ●能耗较低:最低可达200-300×4.18kJ/kg产品; ●产量大:窑长220m以上,墙地砖产量10000m2/d以上; ●合理控制雾化风压和助燃风量 ●合理调节排烟风机,抽热风机的抽出量 ●合理设置挡火墙,挡火板 ●延长烧嘴或延长火焰的长度″引火归心″ ●在结构上,将全窑平顶或全窑筑拱的结构改造为烧成带筑拱的结构,可有效的减少断面温差。 窑炉的检修及保养 窑炉整体的检修和保养不可忽略,这关系到窑炉生产能力的大小,能否使窑炉达到设计产量,以及生产出的产品是否符合要求等。一是窑内通道内是否畅通,有没有影响车底冷却系统的障碍,车底冷却风机运转是否良好;二是窑内轨道的运行实际情况,是否有变形的部

热处理炉内气氛控制

热处理炉内气氛控制

————————————————————————————————作者:————————————————————————————————日期: 2

南京工程学院教案【教学单元首页】 第17-18 次课授课学时 4 教案完成时间:2013.2 章、节第九章热处理炉内气氛及控制;§9.1热处理炉内气氛种类;§9.2可控气氛的制备;§9.3碳势和氧势的测量与控制;§9.3碳势和氧势的测量与控制; 主要内容热处理炉内气氛种类 可控气氛的制备 可控气氛加热的基本原理碳势和氧势测量技术 碳势和氧势测量技术 压力与流量的测量 目的与要求目的:了解热处理炉内气氛的特、性质、制备原理及用途、常见碳势的测量技术等,为合理选择和使用炉内气氛及碳势设备奠定必要的理论基础。 要求:了解常见碳势、氧势、压力、流量测量技术与原理以及吸、放热型气氛制备原理与流程,掌握常见炉内气氛性质、特点和用途、碳势和氧势等概念。 重点与难点重点:炉内气氛种类、性质及应用;碳势、氧势、氧化脱碳机理。 难点:吸、放热型气氛制备装置构成及流程;碳势测量技术测试原理。 教 学 方 法 与 手 段 板书与多媒体教学结合。

第九章热处理炉内气氛及控制 研究炉内气氛目的:1)防止工件加热过程氧化、脱碳;2)对工件进行化学热处理。 §9.1热处理炉内气氛种类(P124-129) 热处理炉内气氛即炉内气体介质,主要有空气、真空和可控气氛等。可控气氛指成分和性质可适当控制的气体,包括反应生成气氛、分解气氛和单元素气氛,在热处理炉生产中常用可控气氛包括吸热式气氛、放热式气氛、氨分解气氛、滴注式气氛、氮基气氛和氢气等。P124什么是可控气氛? 一.吸热式气氛 定义:燃料气与少于或等于理论空气需要量一半的空气在高温及催化剂作用下,发生不完全燃烧生成的气氛。因反应产生的热量不足以补偿系统的吸热和散热(即不能维持反应温度),须借助外部热量维持反应的进行,故称为吸热式气氛。 成分:吸热式气氛主要成分是H2、CO和N2,还有少量的CO2和CH4。 用途:1)吸热式气氛碳势约0.4%,对低碳钢是还原性和渗碳性气氛。2)吸热式气氛主要用于渗碳载气、中高碳钢加热时的保护气氛(光亮淬火),但不宜作为高铬钢和高强度钢的保护气氛,因为碳与铬反应生成碳化物会使高铬钢贫铬;气氛中的氢易导致高强度钢氢脆。3) 吸热式气氛经过再处理除去CO和CO 2后获得的以H 2 和N 2 为主的气氛可用于不锈钢和硅钢光亮 加热保护气氛。(见P124表10-2) 二.放热型气氛 定义:原料气与理论空气需要量一半以上的空气不完全燃烧的产物。因反应放出的热量足以维持反应进行而不需外加热源,故称为放热型气氛。 成分:放热型气氛主要成份是N 2、CO、CO 2 。为提高气氛还原性,常再进行净化处理,以 除去其中氧化性成分CO 2和H 2 O。 通过改变空气和燃料气比以及净化处理,可在较宽范围内改变气氛成分和性质,一般又把这类气氛分为淡型(混合气中加入较多空气)、浓型(混合气中加入较少空气)和净化型(净化处理的放热式气氛)三种。 气氛性质:视气氛成分、工件含碳量和工作温度而定。可能是还原型和增碳性的,也可能是氧化型和脱碳性的。 用途:1)浓型放热式气氛是还原性、弱脱碳性气氛,常用于低、中碳钢光亮淬火保护气氛;2)淡型放热式气氛是为微氧化性和脱碳性气氛,常用于低碳钢和铜光洁加热保护气氛;3)净化型放热式气氛由于气氛中氧化性、脱碳性成分CO 2 被去除,主成分由氮气和一定量的CO和H2组成,属于还原性气氛,可用于中高碳钢光亮加热保护气氛;4)净化型气氛再加少量富渗碳气,可用作高碳钢保护气氛和化学热处理介质。 三.氨分解气氛及氨燃烧气氛 分类:分加热分解气氛(吸热式)和燃烧气氛(放热式)两类。燃烧气氛又分完全燃烧和不完全燃烧气氛两种。 制备原理:将无水氨加热到800-900℃,在催化剂作用下,分解成氢气+氮气的气氛。 氨分解气氛(75%H2+25%N2)特点和应用:具有强还原性和弱脱碳性,常用于不锈钢、硅钢、铜和高铬钢光亮加热保护气氛。 完全燃烧气氛组成和应用:主要由氮气(99%)和少量氢气(1%)组成,属于中性气氛,可用于铜和碳钢光洁加热保护气氛。 氨不完全燃烧气氛组成和应用:主要由氮气(76%)和氢气(24%)组成,具有还原性和

窑炉使用说明书

窑炉使用说明书封面

目录 第一章、窑炉本体、隧道窑工作系统及配套运转设备系统 一、窑体构造 二、隧道窑工作系统 三、配套运转设备系统 第二章、隧道窑工作原理 一、隧道窑内部气体流动 二、隧道窑内的传热 第三章、烘窑与点窑 一、准备工作 二、程序和步骤 三、点火烧窑 四、注意事项 第四章、窑炉温度调节及操作控制 一、温度曲线(焙烧曲线) 二、隧道窑的特征 三、干燥窑和隧道窑各段温度调节 四、干燥的影响 五、正常操作及思路 1、发热量 2、进车速度 3、码坯方式

4、风机调整 六、几种特殊情况下的操作 1、停电 2、焙烧段温度偏低、偏高的纠正 3、焙烧段前移、后移的纠正 4、焙烧段过长、过短的纠正 5、车底温度高的纠正 6、非正常情况处理 第五章、停窑步骤 第六章、整体操作注意事项 第七章、应建立的几种概念 一、整体性、宏观性 二、预见性、滞后性 三、统一性 第八章、设备维护保养 第九章、焙烧后成品常见问题和防治 一、裂纹 二、石灰爆裂 三、黑心砖 四、泛霜 五、砖面烧焦起泡 六、欠火砖

七、哑音砖 第十章、窑炉操作规程 一、准备工作 二、进车 三、点火前检查 四、操作注意事项

第一章、窑炉本体、隧道窑工作系统及配套运转设备系统 一、窑体构造 1、生产设备:我公司使用窑炉为连续式窑车隧道窑和干燥窑。干燥窑顾名思义,起到干燥砖坯作用,干燥窑内热量主要靠隧道窑抽取冷却段的余热和部分预热段的烟气提供。隧道窑靠砖坯自身释放的热量来烧制。 2、窑体长度:干燥窑长80米,隧道窑长80.6米,其中0.6米为5道窑门所占长度。 3、窑体容量:窑车长度2米,可容纳40辆窑车。 4、干燥窑结构:普通红砖支撑墙结构。温度不可超过200℃。 5、隧道窑构造 顶部:采用耐高温平吊顶结构。 墙体:高温带:由内到外依次为粘土耐火砖,硅藻土保温砖,硅酸铝纤维干法毡和红墙外墙。低温带:由内到外依次为粘土耐火砖,加气堇青石砖和红砖外墙。 基础:采用毛石砌筑垫层,上层贯通钢筋混凝土条形基础结构。 二、焙烧窑工作系统 隧道窑按结构划分为三段:预热段、焙烧段(也可称烧成段)、冷却段。 1、预热段

窑炉简答题

一、填空题 1. 辊道窑预热带设置搅拌风孔的作用是喷入低温空气,降低窑头温度 2. 窑墙耐火材料结构形式有传统、组合、全耐火纤维。 3. 陶瓷窑炉冷却带分为急冷段、缓冷段和低温冷却段三段。 4. 规定压力制度是为了保证温度制度和气氛制度的实现。 5. 隧道窑内烧成带的温度控制主要控制实际燃烧温度和最高温度点。 6. 辊道窑中辊子之间留有空隙的目的是利于气流通过。 7. 材料的热膨胀系数会影响其耐热震性能。 8. 陶瓷烧成制度包括温度制度、压力制度、气氛制度。 9. 回转窑内火焰过长会使烧成带的最高温度降低,液相出现过早,易引起结圈。 10. 水泥生料的预热效果用表观分辨率和真是分辨率来辨别。 11. 回转窑的支撑结构包括轮带、托轮组、对挡轮。 12. 回转窑内烧成带长度用主窑皮的长度来判定。 13. 气流进入旋风筒的方式有直入式、涡壳式。 14. 在分解炉内,分解是前提,换热是基础,燃烧是关键,分解是目的。 15. 气固悬浮预热效果在很大程度上与生料早气流中分散状况有关。 17. 耳池是指布置在平板玻璃池窑两侧,与窑相通、向外凸出的长方形或正方形小池。 18. 按结构将陶瓷窑炉窑顶耐火材料结构分为拱顶型和平顶型两种。 19. 陶瓷辊子的材质有高铝质、耐热合金、重结晶SiC 等。 20. 搅动气幕是指将一定的热气体以较大的气流速度和一定的角度自窑顶一排的小孔喷出迫使窑内的热气体向下运动,产生搅动,使窑内的温度均匀。 21. 马蹄焰玻璃池窑有滴料法和吸料法两种机械成型方法。 22. 倒焰窑上的吸火孔的作是烟气进入烟道。 23. 湿法生产的回转窑内链条有垂挂和花环两种挂法。 24. NSP是Newsuspension Preheater Kiln 的缩写。 25. 蓄热室内格子体结构是否合理对使用寿命和格子体蓄热效能有影响。 26. 锡槽内调节闸板是指有效调节锡槽生产能力的装置。 27. 悬浮预热器内结皮矿物的组成是硅钙石和硫硅钙石。 28. 分解炉内燃料的燃烧是分解的基础,比分解反应速度慢,是控制因素。 29. 水泥煅烧系统中一次风是指通过喷煤管输送煤粉的空气,二次风是指供燃料燃烧的空气。 30. 回转窑上密封装置的类型有迷宫式和接触式两大类。 31.窑炉(热工设备)即这样一些结构空间,在这些结构空间内,能够用加热的方法,按照工艺要求的烧成制度,使原料(生料)经过一系列的物理化学变化变为产品(熟料)。 32.影响窑炉使用寿命的有关耐火材料的性能指标主要有两个:一是重燃烧变化,二是耐热震性。 33.所谓泡界线,简单来说就是未熔化好的、有许多泡沫的、不透明的玻璃液与熔化好的、透明的玻璃液之间的分界线。辊道窑的工作系统是指燃烧系统、排烟系统和冷却系统。 34.能源技术的进步、耐火材料工艺的进步和烧成技术的进步等方面的进步使陶瓷窑炉技术迅速改观。 35.封闭气幕是指在隧道窑横截面上,自窑顶及两侧窑墙上喷射多股气流进入窑内,成为一道气帘,由于气体的动压转变为静压,使窑头形成1-2Pa的正压,而避免了漏入窑内。

窑炉电气控制系统的电气原理设计

西南林业大学 本科毕业(设计)论文 (2016届) 题目:窑炉电气控制系统的电气原理设计 教学院(系、部)机械与交通学院专业机械设计制造及其自动化 学生姓名罗天华 指导教师李玮(教授) 评阅人(教授) 2016年月日

窑炉电气控制系统电气原理设计 罗天华 (西南林业大学机械与交通学院云南昆明650000) 摘要:窑炉是用耐火材料砌成的用以烧成制品的设备,是陶艺成型中的必备设施。人类上万年的陶瓷烧造历史,积累了丰富的造窑样式和经验。从原始社会的地上露天堆烧、挖坑筑烧到馒头状升焰圆窑、半倒焰马蹄形窑、半坡龙窑、鸭蛋形窑,再到现今的室内气窑、电窑,窑炉科技在不断改良发展中。 本文是针对窑炉电气控制原理及控制要求等,在查阅相关文献的基础上,通过现场调研分析窑炉的工作原理,根据窑炉加工工艺及控制要求的分析,完成了该设备的电气原理设计。通过该设计,将自己所学的理论知识和实践结合起来,真正了解了工业控制在工厂中的应用。对自己所学专业也有了深刻的认知和了解。 关键词:窑炉;电气原理;加工工艺;电气控制

Furnace temperature control system based on PID (integral structure part) LuoTianhua School of mechanical and traffic engineering, Southwest Forestry University, Kunming, Yunnan 650000, China Abstract: the furnace is built with refractory materials used to burn the equipment, is the necessary facilities in the ceramic molding. Millions of years of human porcelain history, has accumulated rich experience and made kiln style. From the primitive society to open pile burn, digging for building burned to the steamed bread shape up draught round kiln, half pour flame horseshoe shaped kilns, Banpo kiln, duck egg shaped kiln, and then to today's indoor gas furnace, electric furnace, furnace technology in continuous improvement in the development. This paper is based on the principle of PID control furnace temperature and control requirements, etc., based on access to relevant literature, through the field investigation and analysis of the working principle of the furnace, completed the overall structural design of the equipment. Through the design, the knowledge and theory of the combination of the PLC and the host computer has a more profound understanding of the design. Key words: kiln; upper computer; PLC;

采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比较

采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比 较 点击次数:302 发布时间:2011-2-16 采用O2探头和Lambda探头进行碳势控制的原理和各自优势之比较 前言 气体渗碳在热处理中仍然起着重要作用。气氛的温度和碳势(C-Potential)是工艺控制的最重要的参数。时至今日仍然没有直接测量碳势的方法能够用于在线工艺控制。炉内气氛的氧分压测量是碳势控制最常用的间接方法。氧探头有不同的类型。在这篇文章中我们将着重讨论氧探头构造上的区别以及各自的优点和缺点。 目前,渗碳工艺已为人熟知。除温度以外最重要的参数就是碳势。炉内气氛的碳势即非合金奥氏体的碳含量(以重量百分比表示),该碳含量与相应气氛保持均衡。比如气氛碳势为0.7%,那么奥氏体的碳含量即为0.7%。如果奥氏体碳含量高于0.7%,那么就应该进行脱碳直至其碳含量降为0.7%,反之,如果奥氏体碳含量低于0.7%,则应该进行渗碳直至其碳含量达到0.7%。另外,温度也是决定特定气氛碳势的重要因素。为了得到工件表面的准确渗碳深度,在热处理工艺中必须对炉内气氛碳势进行测量和控制。(注:此文由德国MESA ELECTRONIC GMBH发表,由深圳市倍拓科技有限公司翻译整理。如需引用,请注明出处。) 碳势间接测量 一般来说,碳势可以直接测量也可以间接测量。但是直接测量方法不适用于碳势连续测量及控制。不过,在必要的时候,可以使用直接测量对间接测量结果进行检测和修正。 下述公式就是碳势间接测量的原理: 这些化学反应既可在炉内气氛中发生,也可在工件表面发生。化学反应之后,CO释放出C,而O2, CO2和 H2O吸收C。如果气氛碳势高于工件表面碳含量,CO将C转移到工件表面,而 O2, CO2和 H2O吸收气氛中的C。如果气氛碳势低于工件表面碳含量,CO将C转移到气氛中,而O2, CO2和 H2O吸收工件中的C。在这两种情况下,这些化学反应都会导致工件表面碳含量和气氛碳势之间的均衡。

窑炉烧成工序安全操作规程

窑炉烧成工序安全操作规程 1 目的 确保烧成工艺的合理性及稳定性,从而保证产品质量稳定。 2 职责 2.1 工艺部负责下达烧成工艺卡。 2.2 窑炉主管、班长负责窑炉烧成曲线、压力制度和气氛制度的设定和调节。 2.3 司炉工负责烧成工序的操作和当班产品质量改善。 2.4 保养工负责窑炉的保养。 3 主要生产设备及工具 辊道窑窑体、进出砖平台、燃料供应和燃料系统、传动系统、排烟系统和冷却系统、自动控制系统;压力计、铁杆、铁钩、水平尺(管)、柴油小桶、直尺、肥皂水等。 4 操作规范 4.1 窑炉常规检查内容 4.1.1 做好上班前的准备工作,开好班前会,进行5分钟6S检查。 4.1.2 交接班时,要检查上一班工作记录、质检报表、温度记录表,了解上一班砖坯质量情况,如:砖 坯的尺码、砖形、平整度、针孔状况、色号、是否对板、主要烧成缺陷等。4.1.3 监视煤气压力、供电电压、传动变频和各风机变频频率(责任人;炉工) 4.1.4 进砖时要注意干燥与窑炉速度一致,进砖保持整齐,产品无碰撞现象(责任人:保养)

4.1.5 严格控制好各区温度,特别是烧成带温度,将其稳定在烧成曲线要求的±2度范围内(责任人: 炉工)。随时观察表温,如果发现温度无论是超过设定温度并持续上升,还是低于设定温度并持续下降, 如果不是疏砖引起,应着手检查控制电路、热电偶和执行器。 4.1.6 检查各喷枪的燃烧情况,使所有喷枪无火星、无突突声,火焰无歪斜、火焰颜色呈淡蓝色透明状、 无灰色烟雾。 4.1.7 经常检查,定期添加石棉和更换孔砖周围的石棉保证隔热效果,无漏光、漏火、渗风现象,又不 影响辊棒的灵活运转。 4.1.8 经常检查煤气管道的密封性,如感觉有煤气泄露的味道,可用肥皂水进行检查,此项工作必须有 两人在场,以防煤气中毒。 4.1.9 保证辊棒运转连续平稳,输送顺畅,无叠砖,传动机构润滑良好。窑炉转速(各段传动电机变频) 未经窑炉主管同意不得随意调节。 4.1.10 检查窑炉各个风机冷却水,确认风机运行平稳,无异常杂音,润滑良好,冷却系统顺畅无泄漏。 4.1.11 定期检查窑体上的耐火砖、挡火板等是否完好,定期清理窑内烂砖,以免堵塞窑炉气流通道, 造成温度不均衡,产品变形。 4.1.12 定期检查窑炉的压力制度,零压位是否有移动现象(每班)。 4.1.13 保持窑炉弱氧化气氛,排烟废气含氧在5-8%之间,投产稳定后2天或窑炉调节稳定后2天后进 行检测。 4.1.14 疏砖空窑操作: 4.1.14.1 短时间疏砖空窑时,可将急冷温度升高5-10℃。 4.1.14.2时间稍长的疏砖空窑时,可将急冷温度升高5-10℃,同时适当将排烟和抽热风机变频分别降

陶瓷窑炉烟气处理技术

陶瓷窑炉烟气处理技术 随着国民经济的不断发展,我国陶瓷工业也得到了迅猛发展。2005年我国陶瓷产量:日用陶瓷175亿件,建筑陶瓷35 m2,卫生陶瓷约9 000万件,产量均居世界第一,约占世界的2/3,形势一片大好。但其带来的负面影响——窑炉烟气污染也越来越突出。 我国大气中90%的SO x、85%的CO2、80%的RO x(粉尘)和50%的NO x污染均来自陶瓷窑炉、蒸汽锅炉以及其他各种工业窑炉[1]。据资料统计,目前仅在日用陶瓷、建筑陶瓷生产领域中就有3 000余座燃煤窑炉,达到窑炉总数的70%,因此处理陶瓷窑炉烟气污染就成为了目前应该研究的方向。 笔者结合陶瓷窑炉烟气的污染物形成机制,对目前窑炉烟气的处理技术和发展方向进行了综述。 1 陶瓷窑炉烟气污染产生的机制 陶瓷窑炉烟气中有害物质可分为两类:一类是气相化学物质,另一类是固相的烟尘,都是造成大气污染的主要物质。 1.1 气相化学物质的产生 燃煤产生的气相化学物质主要有SO X和NO X。 (1) SO X是由煤、粘土中的硫化物杂质在800 ℃左右被氧化所致。 在陶瓷生产中不仅燃烧的燃料中含有硫化物杂质,而且原料也有一些含硫的杂质,如:黄铁矿(FeS2)、Fe2(SO4)3、CaSO4、Na2SO4等。这些杂质存在于陶瓷坯体中,在烧成的过程中,要进行一系列氧化还原反应。 (2) NO X的产生类型有3种: a、热力型NO X,燃烧时的空气中带进来的氮在高温下与氧发生反应生成NO X被称为热力型NO X(T -NO X)。 b、燃料型NO X,因为煤中含有许多氮的有机化合物如芳香杂环氮化物、吡咯及衍生物,在高温作用下易产生NH3或HCN氧化生成NO X。 c、快速型NO X,指在燃烧过程中,燃料中的碳氢化合物发生分解,其分解的中间产物和N2反应生成的氮氧化物。快速型NO X生成量很少,可不予考虑。 1.2 固相烟尘的产生 煤被加热350~600 ℃时,大量释放出以碳氢化合物为主的挥发分,进入炉膛空间。但是在低温缺氧条件下,挥发分不可能正常燃烧,发生裂化、脱氢、叠合、环化而生成含碳量多的苯环物质——碳黑;不完全燃烧生成环烃物质——烟炱;还可能因还原反应而分解出游离的碳粒;由烟气带出的飞灰和未燃尽的煤炭颗粒微尘;这些物质总称烟尘。全世界每年约有1亿t烟尘排放到空气中,如不及时处理,不仅会污染环境,而且会损害人类的健康。 2 烟气脱硫(FGD)

陶瓷窑炉干燥技术

谈谈干燥技术在陶瓷生产中的应用 摘要:陶瓷干燥技术一般采用热风烘干技术,能源来源方式有天然气燃烧,煤炭燃烧及电炉等三种方式,但是其干燥周期长而致资金周转慢,均匀性稍差,并且干燥窑炉占地面积大,能耗较大。 关键词:干燥技术、陶瓷胚体、生产应用 前言 一、干燥技术的原理及特点 干燥技术是采用加热、降温、减压或其他能量传递的方式使物料的湿分产生挥发、冷凝、升华等相变过程与物料分离已达到去湿目的的。干燥过程包括传热和传质两个相互的过程:传热过程中热空气将热量传递给物料,用于汽化其中的水分并加热物料;传质过程物料中的水分蒸发并迁移到热空气中,使物料中水分逐渐降低,得到干燥。 二、干燥过程可分为三个阶段 第一阶段是干燥过程中最主要的阶段,此阶段排出大量水分,在整个阶段中,排出速度始终是恒定的,故称等速干燥阶段。在此阶段中,水分的蒸发仅发生在坯体表面上,干燥速度等于自由水面的蒸发速度,故凡足以影响表面蒸发速度的因素都可以影响干燥速度。因此,在等速干燥阶段中,干燥速度与坯体的厚度(或粒度)及最初含水量无关。而与干燥介质(空气)的温度、湿度及运动速度有关。 第二阶段是降速干燥阶段,随着干燥时间的延长,或坯体含水量

的减少,坯体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。此时,水分从表面蒸发的速度超过自坯体内部向表面扩散的速度,因此干燥速度受空气的温度、湿度及运动速度的影响较小。水分向表面扩散速度取决于含水量、坯体内部结构(毛细管状况)、水的粘度和物料性质等。通常非塑性和弱塑性料水分的内扩散作用较强。粗颗粒比细颗粒的强,水的温度越高,扩散也越容易。 第三阶段干燥速度逐渐接近零,最终坯体水分不再减少。当空气中干球温度小于100℃时,此时保留在坯体中的水分称为平衡水分。这部分水分被固体颗粒牢固地吸附着。平衡水分的多少,取决于物料性质、颗粒大小和干燥介质的温度与相对湿度。 三、干燥技术分类 按干燥制度是否进行控制可分为,自然干燥和人工干燥,由于人工干燥是人为控制干燥过程,所以又称为强制干燥。 按干燥方法不同进行分类,可分为: ①对流干燥,其特点是利用气体作为干燥介质,以一定的速度吹拂坯体表面,使坯体得以干燥。 ②辐射干燥,其特点是利用红外线、微波等电磁波的辐射能,照射被干燥的坯体使其得以干燥。 ③真空干燥,这是一种在真空(负压)下干燥坯体的方法。坯体不需要升温,但需利用抽气设备产生一定的负压,因此系统需要密闭,难以连续生产。 ④联合干燥,其特点是综合利用两种以上干燥方法发挥它们各自

隧道窑控制系统及操作应用

隧道窑控制系统使用与窑炉基本故障排除方法 自动焙烧控制系统,实现自动焙烧首先必须要建立一个标准,利马窑炉控制设备提供了三种建立标准的办法,第一个是在机柜内有一个空气开关,这个开关上下扳动一次就可以自动建立这个扳动时刻为参考点的标准,这个扳动时刻一定是窑炉工作状况良好,烧出的砖质量好的情况下完成。第二个是可以根据所烧出砖的历史数据,选择比较理想的那车转,在顶车前五分钟的数据为参考点设定一个标准。第三个通过操作面板上界面人工修正的一个标准,通常可以参考设备的人工修正标准来控制焙烧。 正常焙烧温度、产量和质量的控制 一、合理配风,控制焙烧窑的温度、产量和质量主要是合理配风。所谓合理配风,就是窑里面焙烧点的氧气不多也不少,我们是用空气来烧砖,空气中的氧含量是21℅,可以用简单的办法检测窑里面是不是缺氧(风的大小)或不缺氧,在焙烧窑温度顶点(最高温度点)往前(进砖方向)走一个车位,打开火眼管盖子,将一块木柴从火眼管放进去,盖上管盖。揭开管盖,木柴已经燃烧有明火了,证明窑里面不缺氧;如果当揭开管盖,木柴过一两秒钟突然冒出明火就证明窑里面缺氧。计算机配风就是根据每次加风或是减风,焙烧段的温度是升高还是减少来决定的。 二、及时顶车,顶车就是烧砖,烧砖就等于往窑里面投煤(砖里面有内燃煤),控制风及顶车实质上就是控制氧气和煤耗,控制这两个就可以把窑烧好,烧出质量好产量高的产品。

风闸的使用 风闸的使用正确与否显得十分重要,风闸的使用大致分为三种,一是梯形闸,二是桥型闸,三是倒梯形闸。 梯形闸,就是从进砖的方向的风闸开得最大,从风闸的2号或者3号是最高的一个拉闸,最大的拉闸,就是风管半径的一个拉闸。例如直径400MM的风闸,最大的拉闸就是200MM,往后走可以拉6对、8、9对闸,并逐步减小。 拉梯形闸,要求砖坯要干,砖坯进窑就加温,出高产量。 桥型闸,2、3车位是最低的,8、9车位也是最低的,中间是最大的,也就是风闸呈中间大两头小分布格局。 桥型闸用处是进窑的砖坯不干,通过拉桥型闸使不干的砖坯在焙烧窑里面的2、3车位继续烘干,但对产量有一定的影响。 倒梯形闸,进砖方向风闸开得小,逐步大,与梯形闸相反,倒梯形闸就是放热的作用,往往是在焙烧窑的温度比较高,干燥窑的温度比较低的情况下使用,倒梯形闸也是解决进窑砖坯不干的一种拉闸方法,对产量有较严重的影响。 有了温度控制系统,就可以看温度拉闸,操作原理,例如6车位温度比较高,就把2 、3、4、5车位的闸放低5公分,7、8、9车位的闸拉高5公分,在顶了5车过后6车位的温度就会降低。反之,6车位温度比较低,就把2 、3、4、5车位的闸拉高5公分,7、8、9车位的闸放低5公分,在顶了6车过后6车位的温度就会升起来。 火眼的使用

相关文档
最新文档