稀土金属的特性及其在钢铁中的作用

稀土金属的特性及其在钢铁中的作用
稀土金属的特性及其在钢铁中的作用

稀土金属的特性及其在钢铁中的作用

xx都学刊

f,

稀三,午问.衔破lI

(自然斟学版)1993年第3期

].I 6一

稀土金属的特性及其在钢铁中的作用

xxji『

稀土金属(Re)的研究日益深入,稀土工业在迅速发展.我们应当对稀土的性质和在

钢铁中的作用有较多的认识.

1稀土金属的特性

稀土金属指钪,钇和1;个镧系元素.它们的原子结构有两个明显的特征:一是稀土原

子的价电子基本构型同为(n,1)dns.,有三个价电子.二是由于镧系收缩形成的稀土原

子相互间的原子半径,离子半径相差不大.这两个因素决定了稀土金属之间性质十分相

似,化学活性很强.

稀土金属单质多显银白色或灰色,有金属光泽,辩和钕显淡黄色.钪的比重为3.】,钇

的比重为4.3.其余介于6—9之间.镧和铈柔软可塑与锡相似.钕和钐的硬度和铁相似,

稀土金属的熔点大致随着原子尺寸的减小而顿序增高.按La到cd到Lu的顺序由9000

到1700?逐渐增加.

稀土的化学活性很大,与许多元素反应,尤其与氧,硫反应最为强烈稀土金属在化合

物中多为三价,有些元素表现出三价或四价稀土元素以氧化物的形式存在于自然界,因

彼此性质相似成为分离稀土的难题.从化合物中分离稀土的方法一般有分步结晶法,分级

沉淀法,氧化还原法及离子交换法.有时根据性质和用途把稀土金属分为两个系列;一个

是从La到Eu,一个是从Gd到Lu.短系列开始的元素表现出较高化合价,短系列未端表

现出低出化合价.这正符合4f亚层上电子排布1—7成半充满状态,另一为8一】4到全充

满状态.半充满或全充满的状态表现出较稳定的低价性质.还依比重数值称作轻稀土金

属和重稀土金属.这均显示结构决定着性质的原则.

2稀土在钢铁中的作用

稀土在钢铁中应用很广,在稀土处理钢的品种方面已纳入标准,通过鉴正的品种达

40多个,我国经常生产的已有2O多种.

稀士处理的铸铁有球铁,蠕铁及灰铁三大类.我国还发展了一些中国特色的用作球化

剂,蠕化剂及孕育剂的稀土添加剂.

稀土的应用是其特殊结构及性质的体现,较多的核电荷,较小的半径,较少的价电子

决定稀土的活性比一般金属强,和Ca相似.

其强烈的还原性在钢冶炼中作为脱氧剂,脱硫剂许多实验还证明,钢中加稀土后.氧

含量明显降低.其脱硫性:有人算出铈脱硫平衡常数1600?下为10I3--10稀土与氢的

强烈作用能提高氢在钢中的溶解度,经过充分去氢的稀土加入钢后,产生”固氢”作用,可

以抑制钢中氢引起的脆性和”白点”.

稀土在较低的温度下与氨的亲合力比液态钢中大得多,可以改善与氨有关的性质,如

使钢的奥氏体晶粒长大倾向减弱,降低高氮钢的脆性转变温度使珠完体中的渗碳体变

薄,变短,且发生弯曲,甚至发生断裂,成为不连续的短棒状渗碳体.稀土金属的强烈活性可以消除钢中的有害杂质,一定量的稀土和钢中磷,砷,锑,铅等

低溶点杂质交互作用,一方面形成溶点较高的化台物,另一方面抑制这些杂质在晶界上的

偏析.在低碳钢中当暑?6.7时,即出现稀土脱砷产物.在低氧硫纯铁中加入少量稀土足以与锑反应并使富集在晶界的锑转移到晶内,减少锑在—Fe晶界上的偏聚

稀土在钢中能改变原来杂物的形状和分布.如在一定的氧,硫含量下加入适量的稀

土,可得到分散的球状夹杂物,超过适宜量则出现聚集的稀土夹杂物.总体上讲钢中加入

稀土使夹杂物含量减少.

虽然稀土原子半径较铁为大,但从内耗测定和稀土对钢某些性能的影响来看,稀土在

钢中是可能互溶的.稀土在钢中的固溶作用与微台金化作用引起晶界结构,化学成份和能

量的变化,甚至影响其它元素的扩散及新相的成核与长大.铜中稀土含量因不同钢种,不

同的冶炼方法和不同的加稀土方法有很大差异.钢中氧,硫含量低会使稀土含量增大.钢

中铝含量增加,稀土含量也增大.随着加入稀土总量的增加,稀土的固溶量也增大.稀土

在钢中的分布是不均匀的,多偏聚于晶界,因为晶界上有一些原子较疏松的区域.这些偏

聚和与其它元素的交互作用对钢的组织和性能产生明显的影响.

稀土对钢的宏观组织,微观组织,晶粒度的影响有过许多研究和报道,例如,稀土使不

锈钢钢锭的宏观组织致密,表面质量改善,使15CrMov钢枝状晶显着减少,晶轴变短.稀

土在碳素钢中有细化晶粒的效果.

对钢的组织和性能的影响作用主要有:能降低钢的液相线和固相线,使液钢的流动性

增大.

改变铸态组织,使钢的晶粒细化,夹杂物的分布和状态得到改善,提高铸件致密性,增

强塑性.在不锈钢,高速钢等高台金钢中稀土可以明显改善钢的热塑性,扩大可塑温度范

围.这是因为稀土减少了晶界上硫的偏析,及其与晶界上低熔点有害杂质的作用.同样的

道理,稀土也能减弱高碳工具钢淬火开裂倾向.通过稀土强化晶界可改善耐热钢及高温台

金的热强性.提高钢轨,轴承钢及某些铸铁的耐磨性.提高疲劳性能,改善焊接性能等

稀土的抗腐蚀作用有许多报道.钢中含铈量大于0.015时在盐酸和硫酸中的腐蚀

行为有了显着改善.含铈0.056的钢改善了抗点腐蚀能力和在4o氯化钙溶液中的抗

应力腐蚀性能.对低硫钢的抗H.S腐蚀作用稀土表现尤为突出;含硫0.005的16Mn钢

对H.s介质的腐蚀破裂和诱发裂纹仍很敏感,加入适量稀土后明显提高了抗Hs腐蚀破

坏能力.在低硫钢中加入稀土,钢的韧性及疲劳性能仍有改善.在低硫16Mn钢的研究中

发现,稀土比钙在控制夹杂物形态和彻底消除MnS夹杂物方面更为有效.(下转51页)

:工

I

口f

图8

I

Ogl\一,

图9

(上接第7页)

稀土抗腐蚀性能的原因可能是稀土的加入降低了钢中非金属夹杂物的含量,减少了

腐蚀的基础条件.再者稀土的电极电位较高,在腐蚀过程中伴随放氢反应时在钢的阳极出

现强烈极化而降低了腐蚀速度.稀土的抗高温氧化作用也可用此原因解释.对于不锈钢

中稀土的抗腐蚀作用,也有的解释为稀土通过捕获合金中的硫,防止了稀土,Ni 的硫

化,改善了Ni,合金的热腐蚀抗力

稀土在钢铁中的作用还处于研究实验阶段,有待在工业生产中大面积推广.不同的实

验条件可能得出不同的结论,作出不同的解释.总之,稀土金属原子结构的特殊性决定它

们具有与一般金属不同的性质.钢铁中运用不同的方法和形式加入稀土或稀土化台物能

够对钢铁的组织结构性能等产生不同程度的影响;微台金化作用,减少杂质的作用,”固

氢作用,硬化作用以及在组织性能方面改善铸态组织,抑制品粒长大,改善热塑性,抑制

脆性,提高强性耐磨性和抗氧化抗腐蚀性作用等.进一步认识和研究稀土金属的结构,性

质及反应机理,认识规律,探孵原因,必能开拓出更广阔的应用前景.

稀土金属的特性及其在钢铁中的作用

稀土金属的特性及其在钢铁中的作用殷都学刊 f, 稀三,午问.衔破lI (自然斟学版)1993年第3期 ].I 6一 稀土金属的特性及其在钢铁中的作用 田沂ji『 稀土金属(Re)的研究日益深入,稀土工业在迅速发展.我们应当对稀土的性质和在 钢铁中的作用有较多的认识. 1稀土金属的特性 稀土金属指钪,钇和1;个镧系元素.它们的原子结构有两个明显的特征:一是稀土原 子的价电子基本构型同为(n,1)dns.,有三个价电子.二是由于镧系收缩形成的稀土原 子相互间的原子半径,离子半径相差不大.这两个因素决定了稀土金属之间性质十分相 似,化学活性很强. 稀土金属单质多显银白色或灰色,有金属光泽,辩和钕显淡黄色.钪的 比重为3.】,钇 的比重为4.3.其余介于6—9之间.镧和铈柔软可塑与锡相似.钕和钐的硬度和铁相似,

稀土金属的熔点大致随着原子尺寸的减小而顿序增高.按La到cd到Lu的顺序由9000 到1700?逐渐增加. 稀土的化学活性很大,与许多元素反应,尤其与氧,硫反应最为强烈稀土金属在化合 物中多为三价,有些元素表现出三价或四价稀土元素以氧化物的形式存在于自然界,因 彼此性质相似成为分离稀土的难题.从化合物中分离稀土的方法一般有分步结晶法,分级 沉淀法,氧化还原法及离子交换法.有时根据性质和用途把稀土金属分为两个系列;一个 是从La到Eu,一个是从Gd到Lu.短系列开始的元素表现出较高化合价,短系列未端表 现出低出化合价.这正符合4f亚层上电子排布1—7成半充满状态,另一为8一】4到全充 满状态.半充满或全充满的状态表现出较稳定的低价性质.还依比重数值称作轻稀土金 属和重稀土金属.这均显示结构决定着性质的原则. 2稀土在钢铁中的作用 稀土在钢铁中应用很广,在稀土处理钢的品种方面已纳入标准,通过鉴正的品种达 40多个,我国经常生产的已有2O多种. 稀士处理的铸铁有球铁,蠕铁及灰铁三大类.我国还发展了一些中国特色的用作球化

17种稀土元素名称及用途

17种稀土元素名称及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce)"铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中。美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr) 大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为"钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。 镨的广泛应用: (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

稀土在高分子材料中的应用

稀土在高分子材料中的应用 摘要:论述了稀土在高分子材料中的基本应用,如作为稳定剂、催化剂、补强剂、促进剂、偶联剂、颜料、催干剂及其特殊的功能性应用,如作为磁性剂、抗菌剂、阻燃剂、光能转化剂等。并展望了稀土在高分子材料中的应用前景。 关键词:高分子材料;稀土;应用 Application of Rare Earths in Polymeric Materials Lei Guo,Ge Hu Abstract:In this paper, the traditional applications of rare earth such as stabilizers, catalyzers,accelerants, coupling agents, and pigments as well as the functional applications such as magnetic agents,antimicrobial agents, fire retardants, and light energy converters in the polymeric materials wereintroduced. An outlook was given on the future application of rare earths in the polymeric materials. Key words:polymeric material; rare earth; application 1引言 稀土共17种元素,包括Sc、Y和镧系(从La到Lu)。稀土元素具有独特的4f电子结构,丰富的能级跃迁,大的原子磁矩,很强的自旋轨道耦合等特性。与其他元素形成稀土配合物时,配位数可在3~12间变化,使稀土化合物晶体结构多样化[1]。 这些特性赋予稀土元素及其化合物独特的光、电、磁、热等功能,在一些体系中加入少量的稀土化合物往往产生不同于原体系的性能,因而有“工业味精”之称,被认为是构筑信息时代新材料的宝库。稀土在轻工纺织和农林畜牧等各个领域以及有色冶金、石油化工、玻璃陶瓷、磁性材料等功能材料方面均取得了可喜的成绩。稀土在高分子材料中的应用是其应用研究的一个重要方面,涉及有机合成、精细化工、材料加工等领域。有关研究已显示稀土化合物在改进高分子材料加工和使用性能等方面具有独特的功效,并赋予高分子材料新的特殊功能[2]。本文系统论述了稀土在高分子材料中的应用。 2稀土在高分子材料中的基本应用 2.1稳定剂 稀土稳定剂的主要成分是镧和铈的有机或无机盐类。其主要品种是硬脂酸稀土及稀土盐和铅盐复合型稳定剂。

稀土在金属表面改性中的应用

应用技术 稀土在金属表面改性中的应用 李安敏,许伯藩 (武汉科技大学材料与冶金学院,湖北武汉430081) [摘要] 扼要总结了有关稀土在金属表面改性中的应用研究情况,分析了稀土在金属表面改性中的作用,并对其机理进行了初步探讨。 [关键词] 稀土元素;金属表面;表面改性 [中图分类号]TG113.2;TG146.4 [文献标识码]B [文章编号]1001-3660(2002)04-0040-03 The Application of R are E arth to the Surface Improvement of Metal Material LI An2min,XU Bo2fan (C ollege of Material&Metallurgy,Wuhan University of Science&T echnology,Wuhan430081,China) [Abstact] The effects of the rare-earth to the surface of metal material are reviewed,and s ome trend to research im proving the surface properties of metal material is introduced. [K eyw ords] Rare-earth element;Metal surface;Snrface im proverment 0 引言 由于稀土以其优良的性能,被广泛应用于冶金、电子、化工、医学等行业中,特别是在钢铁生产中,由于稀土的净化作用、变质作用、微合金化作用[1],改善铸锭冶金质量,提高钢材的性能,取得了显著效益。近年来,稀土逐渐被应用于金属表面改性工程(如化学热处理、激光表面改性、喷焊、堆焊等)中,也显示出稀土元素独特的改性作用,同时稀土在这些金属表面改性的行为及其改性机理需要材料工作者进一步研究,使稀土更好地发挥其在金属表面改性中的作用。 1 稀土在金属表面改性中的作用 由于稀土有上述的特点,材料科学工作者利用稀土的这些特点,将稀土应用于金属表面改性中,并取得了一定的成果。 1.1 稀土在化学热处理中的应用 稀土在化学热处理中的应用有以下4种方法:粉末法、盐浴法、熔盐电解法、气体法。孙轩华等用自制 的稀土硅和E NE催化剂对45钢进行了稀土覆层的研究,研究表面渗后试样表面为高硬度的白亮层,过渡层中先共稀铁素体消失,全部变为细球状珠光体,其硬度增至H V504。 王荣滨等[3]用(70%FeB+20%K BFe+10%RE)进行固硼稀土共渗,获得70~80μm的单相致密的Fe2B渗层,硬度可达H V2000~2100。王荣滨还用(70%NaB 4 O7+10%NaF+10%Na2O3+10%RE)进行盐浴硼稀土共渗,处理的Crl2钢制无缝钢管冷拔内、外模,可提高寿命10倍以上。 程先华[4]在化学热处理渗剂中添加微量稀土元素,研究其对工艺过程、渗层的组织和性能的影响以及其在生产中的应用,发现稀土元素在化学热处理中显示出优异催渗效果,与普通化学热处理相比,可使渗入速度提高20%~35%。 杨顺贞[5]研究发现稀土对低温固体B2C2N共渗与有催渗作用。王伟兰等[6]研究稀土对H13模具钢低温粉末渗硼的影响,发现加稀土渗硼仍具有比较明显的“滑化”效果,能够提高渗硼的耐磨性,合适的饿稀土加入量促进渗层趋向均匀,致密,并有一定的催渗作用。 [收稿日期]2002203202 [作者简介]李安敏(1973-),女,广西武鸣人,硕士,主要从事金属表面改性研究。 04Aug. 2002 SURFACE TECHN OLOG Y V ol.31 N O.4

稀土的性质及用途

立志当早,存高远 稀土的性质及用途 稀土元素系典型的金属元素,其金属活泼性仅次于碱金属和碱土金属。稀土元素的电子层结构和核结构决定了稀土元素及其化合物的性质,而稀土的许多独特性质,又决定着它们的应用。有关稀土的结构与性质的关系示于下表。经历了60 多年的开发,因提取工艺复杂,产品价格昂贵,发展速度缓慢,消费量也不大。20 世纪50 年代以后,稀土分离技术得到了迅速的发展,近代的离子交换法、溶剂萃取法取代了经典的分级结晶、分步沉淀法,并在工业生产中获得各种较纯的单一稀土产品,从而为稀土的应用奠定了基础。近十年,稀土广泛用于冶金、石油化工、玻璃陶瓷、新材料领域。 在冶金工业方面:稀土金属或氧化物、硅化物加入钢中,能起到精练、脱硫、中和低熔点有害质的作用,并可以改善钢的加工性能;稀土铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机,柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面:用稀土制成的分子筛催化剂,具有活性高、选择性好,抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气特比镍铝催化剂大1.5 倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面:稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广

稀土在钢中的作用

稀土在钢中的应用 1 概况 稀土,系指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素。是芬兰学者加多林(Johan Gado1in)在1794年发现的。当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,总称为稀土。但后来研究发现,稀土在地壳中的丰度要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使丰度最少的稀土元素也比铂族元素多,说明稀土并不稀少。也不是“土”,全部是金属元素。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现己探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上。所以才有了“世界稀土在中国,中国稀土在包头”之说。现在包钢每年采出的稀土矿石量为230万吨-250万吨,这一部分矿石中多数稀土品位都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大。现已形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。 包钢虽然有很丰富的稀土资源,但在稀土处理钢的品种及处理效果等方面,与武钢、济钢、本钢等相比还有很大差距。如何把稀土的资源优势变成经济优势,还需进一步研究和开发。 2 稀土在钢中应用的现状 近几年来国内外的钢铁生产实践表明,钢经过稀土处理,可对钢的性能产生一系列的作用。现在我国用稀土处理钢有80多个品种,年产量达60万吨,预计2002年全国稀土钢产量达300万吨。包钢是稀土之乡,稀土处理钢也开发了一些,但只占包钢钢产量的0.5%。因此大力开发应用稀土资源,进行稀土钢的开发及应用研究,应提到日程上来。 包钢研究稀土在钢中的应用始于60年代。当时稀土当作灵丹妙药,认为无论放到哪种钢里都有作用,甚至提出过“以稀土代替镍、铬”的口号,到70年代中期,对稀土在钢中的应用出现了两种截然不同的见解,一种意见认为稀土在有些钢中作用很明显,应该继续进行试验研究;另一种意见则认为,稀土对含硫较高的钢有一些作用,但是随着生铁含硫量的降低,稀土这一作用将逐渐消失,因此稀土处理钢是没有前途的。到80年代后期,由事实证明,稀土确实有用,当然也不是万能的。钢中含有微量稀土元素,即可明显地优化铸坯质量,提高钢的

浅谈稀土的应用现状与前景

浅谈稀土的应用现状与前景 12化本 120900017 贺惠苹 摘要:21世纪的发展使稀土工业面临着新的挑战。为了适应时代的脉搏,探索新的产品和用途,必须对各种形式的稀土产物的特性和可能产生的附加值进行广泛、深入的研究。我国有丰富的稀土资源,约占世界己探明储量的80%以上。我国是世界稀土资源大国,我国稀土资源的特点是储量大、类型多、品种全、质量好、开采成本低。除Pm外的16个稀土元素,在我国从南到北分布齐全。北方以包头矿为主,生产轻稀土;南方以江西、四川、湖南、广东等省为主,生产中、重稀土。目前已形成了良好的生产布局,产量稳居世界首位。因此,开发推广稀土应用对充分利用我国富有的稀土资源、推动稀土产业的发展,具有重要的社会意义。 关键字:稀土资源应用前景 引言:稀土在国民经济发展中发挥着愈来愈重要的作用,其作用并不在于其自身的价格,而在于它在其他领域的应用能产生其自身价值数十倍甚至上万倍的经济效益和社会效益。近年来稀土应用领域越来越广泛,新的应用不断出现。以我国为例,稀土应用已遍及国民经济的13个领域40多个行业,经济效益十分显著。另一方面,稀土在高新技术领域的应用前景十分广阔,是高新技术发展的战略材料。稀土元素因其特有的4f层电子结构,而具有很好的光、电、磁性质,成为光、电、磁等新型功能材料的核心。它还可以与其他元素组合成性能优异的功能材料,在新材料发展中起重要作用。稀土材料在高新技术领域中具有十分重要的战略地位,人们都在大力加强稀土新材料的研究和开发,竞争十分激烈。[1] 一稀土在钢铁冶金领域的应用 稀土元素由于其特殊的原子结构和活性,作为微量添加剂用于钢、铸铁、钦、铝、镍、钨、钥等材料中,能产生消除杂质、细化晶粒和改善组成的神奇功效,从而改进合金的机械、物理和加工性能,提高合金的热稳定性和耐腐蚀性。例如,稀土作为添加剂,可以净化钢液,改变钢中夹杂物的形态和分布,细化晶粒,改善钢的组织和性能.稀土在钢铁冶金中的应用是中国稀土的最大消费领域。特别是在铸铁中的应用很普遍,一直占最大的比例。稀土在钢中的用量占的比例相应小一些。稀土在铸铁中的作用主要是作为球化剂、蠕化剂和孕育剂使用;稀土处理的合金铸铁件亦有发展。稀土铸铁主要应用于冶金行业的轧辊、钢锭模,以及汽车和拖拉机行业的曲轴、汽缸体、变速箱、履带,机械行业的各种齿轮、凸轮轴、各种机座,建筑行业的各种口径的输水管线和暖气片等。目前存在的问题是,稀土铸铁的用量还不多,推广面应进一步扩大。在钢中的作用主要是脱硫、脱氧、细化晶粒、去除杂质等作用,从而改善钢的各项力学性能。[2] 二稀土在有色冶金中的应用 稀土金属具有很高的化学活性和较大的原子半径,因此,将其用于有色金属及合金中,一般都可以产生良好的效果,如细化晶粒、防止偏析、去气、除杂、净化和改善金相组织等作用,从而在一定程度上改善合金的力学性能、物理性能、

各种稀土元素的应用领域

各种稀土元素的应用领域 镧(La):镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce):1,铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。2,目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。3,硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。4,Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨(Pr):1,镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉

混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。2,用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。3,用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。4,镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。 钕(Nd):钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

稀土在钢铁及有色金属中的应用充满希望

稀土在钢铁及有色金属中的应用充满希望 近年来,我国经济持续稳定、健康增长,同时带来的是对资源的需求亦日益迫切,我国已成为钢铁、材料需求大国。作为稀土资源丰富的国家,合理开发和利用稀土,进一步研究和探索稀土在钢铁及有色金属的应用,是十分必要和及时的。 稀土元素是典型的金属。在17个稀土元素中,按金属的活泼次序排列,由钪、钇、镧递增,由镧到镥递减,镧元素最活泼。稀土元素可以和氮、氢、碳、磷等发生反应。可广泛地应用到钢铁和有色金属中。 一、稀土在钢铁中的应用 1.稀土在钢中的应用 稀土真正应用于钢是在第二次世界大战期间,因战争而大量的需求,人们发现稀土元素加入钢中,可提高钢的性能。也就是在冶炼钢的时候,如果加入稀土元素的方法得当,比例合适,就会得到优质的碳素钢。尤其是不锈钢在稀土族元素的帮助下,不仅制造工艺简化了,而且不锈钢的抗氧化性也能明显提高和改善。也就是说,稀土改善钢的许多性能都是和稀土变质钢的凝固组织和夹杂物有关。 稀土元素的微合金化作用主要是由稀土原子在晶界上偏聚,与其它元素交互作用,引起晶界的结构,化学成分和能量的变化,并影响其他元素的扩散和新相的成核与长大,最终导致钢组织与性能的变化引起的。钢中稀土金属含量因不同钢种,不同冶炼方法和不同的稀土加入方法而有很大差异。在冶炼过程中,稀土可以与钢中磷、砷、锡、锑、铋、锆等低熔点有害元素相作用。形成熔点较高的化合物。也有抑制这些杂质和晶界上的偏折。 稀土加入钢液中生成球状稀土硫化物或硫氧化物,取代容易形成的长条状MnS 夹杂,使硫化物形状得到控制,提高了钢的热塑性,特别是横向冲击性,改善钢材的各向异性。稀土使棱角状高硬度的氧化铝转化为球状硫化物及铝酸稀土,有利于提高钢的抗疲劳性能。 通过热力学分析和研究表明:在钢铁中加入稀土可提高钢铁的强度、耐磨性和抗氧化等性能。 我国稀土在钢铁中应用始于20世纪60年代初,许多单位参与这项工作,在上百种钢号中进行“稀土(合金)钢”的开发试验研究工作,最后真正在工业上正式生产的钢号不足10个,如16Mn、601、603以及部分Fe-Cr-Ac系电热合金等。 经过“六五”、“七五”期间的联合攻关,由许多单位等参加的国家重点科技攻关项目“稀土在钢中应用研究”得到完成,钢中稀土加入方法研究取得成果的主要标志是:解决了钢中加稀土方法,克服了水口“结瘤”,稳定且提高了钢中稀土回归率,改善了钢坯或铸坯的低倍组织,也实现了稀土在钢坯或铸坯中的均匀分布。 我国稀土在钢中的应用已有30多年的历史,稀土处理钢的牌号近50个,主要分两类;第一是含Cu、P类的低合金钢,主要利用稀土改善钢的耐蚀性;第二是Mn、Nb、V、Ti稀土处理低合金钢,这类钢除利用稀土改善钢的耐腐蚀外,更主要利用改善钢的强度和耐磨性。 1980年我国稀土处理钢的产量仅为1.5万吨、1985年为11.2万吨,1990年达34万吨,1995年52.2万吨,2000年为77.9万吨,近几年的产量为:2001年为74.6万吨,2002年为83.1万吨,2003年为94.0万吨(历史最高)。

稀土的分类及其用途

稀土的分类及其用途 2009年09月28日 09点34分06秒 【概述】 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(RareEarth)。简称稀土(RE或R)。 韩国并不是主要的稀土使用国,目前我国出口的稀土数量达到每年5万吨(合法出口),主要的应用大国为日本,欧洲和北美。与此同时稀土在我国的应用也在积极开展,目前占到7万吨。我国每年稀土实际的矿产的实际投入量大约为15万吨,这个数字近年来没有明显变化。尽管如此,稀土的数量仍然不能满足目前全球在汽车,电子等行业用量的要求。特别是稀土在抛光,催化,磁性材料方面的增长也是非常突出。然而稀土的应用也存在着参差不齐的问题,一些元素,例如:Sm,Gd,Ho,Er等就没有得到充分的应用而大量荒弃,非常可惜。 【稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rareearthmetals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE 表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【17种稀土元素名称的由来及用途】 稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。 这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 镧(La)"镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。

稀土在钢中的应用

稀土在钢中的应用 朱兆顺张建 武钢集团鄂钢公司技术部,湖北省鄂州市 436002 摘要:本文简要的分析了稀土在钢铁冶金中的应用。用稀土这个高技术材料来强化和提升钢铁传统产业,在低合金钢、合金钢中加入微量稀土,提高钢质增强国际竞争力,把稀土的资源优势转化为钢材的品种优势和经济优势,具有十分重大的意义。 关键字:稀土,微合金化,弥散硬化,稀土铌重轨 1.稀土的分类 根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。 轻稀土(又称铈组)包括:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)。 重稀土(又称钇组)包括:铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钪(Sc)、 钇(Y)。 2.稀土金属的某些物理特性 表1

3.稀土的用途 由于稀土元素的特殊性质,决定了稀土的用途。钢铁工业中应用的主要是稀土硅铁合金(含轻稀土混合金属20%~45%),稀土硅铁镁合金(稀土金属6%~25%,镁7%~12%),重稀土硅铁合金(含钇类混合稀土60%以上)。混合稀土金属(含轻稀土95%以上),富铈或镧的稀土硅铁合金(Ce占70%或La占50%以上)。其中炼钢生产中最常用的有两种,一是稀土合金,块状稀土硅铁合金,以前用于大包投入,大包压入,粉状一般用于大包内喷粉、模铸中注管喷粉等方法加入钢中;二是混合稀土金属,制成(φ0.5mm~φ2mm)或棒(≥φ2mm),丝用于钢包、中注管或连铸结晶器,使用喂丝机喂入钢中,棒采用模内吊挂的方法熔入钢中。稀土金属包芯线作为线性添加材料的新品种,由于喂丝技术在炼钢生产中的广泛应用,必将得到进一步的发展。 4.稀土在钢中的作用机理 4.1微合金化作用 稀土元素的微合金化作用初步认定主要是稀土原子在晶界上偏聚与其它元素交互作用,引起晶界的结构、化学成分和能量的变化,并影响其它元素的扩散和新相的成核与长大,最终导致钢组织与性能的变化。钢中稀土金属含量因不同钢种,不同冶炼方法和不同的稀土加入方法而有很大差异。稀土强化晶界,阻碍晶间裂纹的形成和扩展,有利于改善塑性尤其是高温塑性;稀土能抑制动态再结晶、细化晶粒和沉淀相尺寸并促进铁素体中Nb(C、N),(Nb、Ti)(C、N)和V(C、N)的析出;溶解的稀土可改变渗碳体的组成和结构并使碳化物球化、细化和均匀分布。 4.2与其它有害元素的作用 一定量(量的多少还需进一步测算)的稀土可以与钢中磷、砷、锡、锑、铋、铅等低熔点有害元素相作用。一方面,稀土可以与这些杂质形成熔点较高的化合物;另一方面,还能抑制这些夹杂在晶界上的偏祈。例如,钢存在热脆性,是由于钢中有一些低熔点的金属元素,当把稀土加入钢液中,生成高熔点金属化合物,不熔于钢中而进入炉渣,起到净化作用,使钢中杂质减少,从而克服了热脆性。 4.3稀土元素的脱硫、脱氧 热力学分析和大量有关钢中稀土夹杂研究表明,钢中[O]、[S]含量在一定范围内,钢液中加入稀土时,极易生成稀土的氧硫化物。当钢中氧含量降至201ppm以下时、加入钢液中的稀土首先形成RE203S型夹杂物,而后形成RE3S4或RES型的硫化物,这些硫化物可能包裹在氧硫化物外围,组成复合夹杂物或稀土硅酸盐化合物,它们熔点高且非常稳定,显球状,钢液经过适当的镇静之后,这些稀土氧化物、硫化物或稀土硅酸盐化合物将从钢中排除,从而净化了钢液。稀土在钢中的作用90%是通过对硫化物形态的控制来实现的。当RE/S为2.7-3.0时,硫化物形态控制效果达到最佳状态。 4.4捕氢作用 稀土能吸收大量的氢,可以制成储氢材科,稀土加到钢中,可以抑制钢中氢引起的脆性和白点。已有研究表明,稀土有降低氢的扩散系数,延缓氢在裂纹尖端塑性区的富集,从而使裂纹扩展的孕育期和断裂时间延长因此,稀土有抑制钢的氢脆作用。 4.5弥散硬化作用 向钢液中喷吹稀土氧化物(CeO2)粉剂,可以提高钢的强度和韧性,降低脆性转变温度提高钢的持久强度。其原因是一方面 CeO2可以作为结晶核的细化铸态晶粒;另一方面,弥散分布的CeO2质点可以提高晶界对位错运动的阻力。 4.6变性夹杂 稀土加入钢液中生成球状稀土硫化物或硫氧化物,取代容易形成的长条状MnS夹杂,使硫化物形状得到控制,提高了钢的热塑性,特别是横向冲击韧性,改善钢材的各向异性。稀土使棱角状高硬度的氧化铝夹杂转为球状硫氧化物及铝酸稀土,有利于提高钢的疲劳性能。 5.稀土对钢材性能的影响

稀土元素及用途

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。稀土的分类】 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 【名称由来】 17种稀土元素名称的由来及用途 镧(La) "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。她也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.

稀土在钢中的应用

第一章综述 在钢的冶炼中应用稀土是我国推广稀土应用最早的领域之一。通过冶金工作者40多年的努力,我国已研制出稀土耐热钢、稀土耐磨钢、稀土耐腐蚀钢和稀土高强度低合金等钢种。 1.1 稀土的分类及用途 稀土是指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素,是芬兰学者加多林(Johan Gado1in)在1794年发现的,当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,统称为稀土。但后来研究发现,稀土在地壳中的含量要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使含量最少的稀土元素也比铂族元素多,说明稀土并不稀少,也不是“土”,全部都是金属元素[1]。 稀土元素根据其性质的差异和分离工艺的要求一般分为轻稀土和重稀土两类,其中镧、铈、镨、钕、钜、钐、铕为轻稀土。稀土元素是典型的金属元素,它们的金属活泼性仅次于碱金属和碱土金属,较其他金属元素都活泼,能与多种元素化合,且稀土金属的燃点很低,如铈165℃,钕270℃,极易与氧发生反应。所有的稀土金属能在180℃-200℃的空气中被氧化成RE2O3型氧化物,稀土氧化物的熔点都很高,生成自由能负值很大,说明其氧化物都是很稳定的化合物。由于稀土元素的性质特殊,决定了稀土的用途。钢铁工业中应用的主要是稀土硅铁合金(含轻稀土混合金属20%-45%),稀土硅铁镁合金(稀土金属6%-25%,镁7%-12%),重稀土硅铁合金(含钇类混合稀土60%以上)。混合稀土金属(含轻稀土95%以上),富铈或镧的稀土硅铁合金(Ce占70%或La占50%以上)。其中炼钢生产中最常用的有两种,一是稀土合金,块状稀土硅铁合金,以前用于大包投入,大包压入,粉状一般用于大包内喷粉、模铸中注管喷粉等方法加入钢中;二是混合稀土金属,制成丝(φmm-φmm)或棒(≥φmm),丝用于钢包、中注管或连铸结晶器,用喂丝机喂入钢中,棒采用模内吊挂的方法熔入钢中。稀土金属包芯线作为线性添加材料的新品种,由于喂丝技术在炼钢生产中的广泛应用,必将得到进一步的发展。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现已探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布较集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上,所以才有了“世界稀土在中国,中国稀土在包头”的说法。现在包钢每年采出的稀土矿石量约为230万吨到250万吨,这一部分矿石中多数稀土含量都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大,现在已经形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。

稀土元素的发现、种类和用途

稀土元素的发现、种类和用途稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。 1.稀土种类 镧系元素:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)共15种元素。 与镧系的15个元素密切相关的:钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 2.稀土分类 (1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆 (2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组: (1)除钪之外(有的将钪划归稀散元素) (2)轻稀土组:为镧、铈、镨、钕、钷; (3)中稀土组:钐、铕、钆、铽、镝; (4)重稀土组:钬、铒、铥、镱、镥、钇。

17种稀土元素名称的由来及用途(图文)

17种稀土元素名称的由来及用途 2010年03月22日 13:30 在海湾战争中,加入稀土元素镧的夜视仪成为美军坦克压倒性优势的来源。上图为氯化镧粉末。(资料图) 镧(La)

“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。 镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

铈可作催化剂、电弧电极、特种玻璃等。铈的合金耐高热,可以用来制造喷气推进器零件。(资料图) 铈(Ce) “铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。

(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 镨钕合金(资料图)

稀土矿用途及分类

稀土矿的用途和分类 稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 铥的主要用途有以下几个方面: (1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X 射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。 (2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。 (3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),

达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。 (4)铥还可在新型照明光源金属卤素灯做添加剂。 (5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。 镱(Yb)年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊 特必(Ytterby)命名为镱(Ytterbium)。 镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

相关文档
最新文档