关于游乐设施冲击系数选取的一点看法

关于游乐设施冲击系数选取的一点看法
关于游乐设施冲击系数选取的一点看法

关于游乐设施冲击系数选取的一点看法

1 关于动力学问题

结构动力学分析通过虚拟实验精确、快捷地预测产品的整机性能,解决产品的动力学、变形、强度、寿命等问题。在产品设计开发中,将分散的零部件设计和分析技术融合在一起,在计算机上建造出产品的整机模型,并针对该产品在投入使用后的各种工况进行仿真分析,预测产品的整体性能,进而改进产品整体设计,提高产品性能。使产品设计人员在各种虚拟环境中,真实模拟产品整体的运动及受力情况,分析其性能,更好地理解机械系统的运动,精确预测载荷变化。

在游乐设施设计计算方面,与动力学对应的标准是冲击系数,但冲击系数的选取,各个游乐设施的生产制造企业存在着不同意见,到底这个数据该如何取值呢?

2 旧版规范对冲击系数的规定

旧版《游乐设施安全规范》GB8408-2008中4.2.3.2规定:游乐设施在运动过程中有可能出现冲击,从而产生冲击载荷(如滑行车类中,可能来自于轨道连接处或磨损后轨道形成的凹坑),设计时一般无法准确计算,因此,该类游乐设施进行强度计算时,其载荷(永久载荷及活载荷)必须乘以冲击系数K(见表1)

由《游乐设施安全规范》释义第4.2.3.2节:同类别的游乐设施采用同一冲击系数,显然是不合理的,因此,以速度大小确定冲击系数是比较科学的;有的游乐设施其乘人部分有公转也有自转,还可能同时有升降,我们称之为组合运动,其速度的取值应取几种运动合成速度的最大值。

由以上分析可知,游乐设施的动载系数,是由其组合运动的最大速度决定的,表1中给出的冲击系数仅供参考,需要根据根据设备的最大组合速度通过插值去取。但大多数企业仅按照表1中给出的数据去取,就陷入了误区,而忽视了表1中给出的仅仅是冲击系数的下限值(“≥”而不是“=”)。而且冲击系数仅与永久载荷和活载荷有关,其它载荷是无需附加冲击系数的。

3 新版规范对冲击系数的规定

新版《大型游乐设施安全规范》GB8408-2018中6.1.2.15.1规定:游乐设施在运动过程中有可能出现冲击,从而产生冲击载荷(如滑行车类中,可能来自于轨道连接处或磨损后

轨道形成的凹坑),则运动部件受到的载荷(永久载荷和活载荷以及所承受的惯性力)应乘以不小于k1=1.2的冲击系数。

6.1.2.15.2规定:如果该运动部件在实际运行过程中会有更大的冲击力而且不能将冲击力降到设计要求范围内,那么就需要相应地提高冲击系数来进行修改计算。

从新旧版规范的规定来看,看似降低了冲击系数的要求,实则不然。新版中加入惯性力,惯性力需要乘以冲击系数计入总载荷的。另外新版并未降低,大多数只看到了1.2的冲击系数,却忽视了前面的定语“不小于”。这种“降低冲击系数要求”的做法,可能会让生产制造企业在设计过程中,无所适从。到底冲击系数该取多少?

这些疑问或者称作困惑,可以借助动力学分析去解决。因为在设计阶段,产品的运动部件还没有处于“实际运行过程中”,如果要借助“实际运行过程中”去确定冲击系数,就会出现:设计→鉴定→制造→安装→运行→测试→再设计→………,这样的循环过程中。增加了企业的开发周期,加大了企业的开发新产品成本,中国的游乐设施制造企业大多为民营企业,也没有多少企业真正去这样做。

动力学计算可以确定在动力载荷作用下,结构的内力、位移、反力等量值随时间变化的规律,从而找出最大值,以作为设计分析的依据。动力学分析能够较精确地计算出作用在零件上的载荷,对主要零件进行强度计算。并可根据计算结果反复地修改零件的结构尺寸,直到满足设计要求。所以对游乐设施进行动力学分析计算就显得尤为重要。

4 理论力学计算

自控飞机是自控飞机类游艺机中的一个品种,自控飞机是一种座舱绕中心轴旋转,飞机又可自行升降的游乐设备。是根据飞机交战情景设计的一种游乐设备。自控飞机的转盘,在回转电机作用下沿旋转盘的中心轴线做旋转运动。

自控飞机的旋转速度最大值为5m/s,考虑上下起伏运动速度的影响,自控飞机冲击系数的最大值取1.4(由于新版规范对冲击系数的规定相对宽泛,仍依据旧版规范取值)。

气缸的推力与座舱和主臂之间存在杠杆平衡,当座舱力臂最大同时气缸力臂最小时,气

缸的推力达到最大值,此时,主臂处于水平位置。如图1所示。

图1 气缸载荷示意图

由图纸可知,a=1.655m,b=2.06m,c=1.15m,则根据三角关系:

2.06tan 4.081.655 1.15b a c θ===--

则可知,主臂水平位置时,气缸杆与主臂的水平夹角为76°。

则根据力臂平衡原理:

514sin 2F L F L F a θ+=

其中:1F —座舱和乘人的重力,值为2976N ;

L —主臂的有效臂长,值为7m 。

5F —主臂的重力,值为1704×9.8=2087N ; 根据公式可求得,420872976721.655sin 76

F ??+? ???=?=17521N 考虑1.4倍的冲击系数,可得气缸轴的载荷:17521×1.4=24529N

5 动力学计算

使用通用结构分析软件ANSYS Workbench Environment(AWE)18.0中的刚体动力学分析模块Rigid Dynamics ,对自控飞机进行动力学分析。

为了模拟自控飞机的动力学响应。设定分析时间为50s 。自控飞机的各运行部件从启动到运行整个运行过程中,连接部位的约束反力,如图2所示。箭头表示约束部受的反作用力。

图2 气缸轴连接支反力示意图

自控飞机在运行过程中,提取主臂气缸轴连接部位的反作用力的曲线,如图3所示。

图3 气缸轴连接支反力时间历程曲线

由图3可知,稳定运行时,气缸轴承受的压力载荷为17822N,与理论计算值17521N的误差为1.7%,由于升降运动受到的冲击载荷为27473N,与理论计算的冲击载荷24529N的误差为12%。为什么冲击载荷的误差会较大呢?主要是冲击系数选择偏小造成的,而实际的冲击系数27473/17822=1.5。

6 结论

由于游乐设施运行的特性,追求刺激,运行相对激烈,冲击载荷选取需要根据动力学分析去确定,或者根据规范按照插值去科学选取,而新版规范对此数据规定的相对宽泛。作为设计人员,需根据设备的运行工况,进行科学的计算。对自控飞机而言,有油缸提升和气缸提升两种形式,气缸运行相对激烈,冲击系数也应相应增大,而不能仅仅根据设备类别,取相对较小的值,这样对主臂、轴等关键部件的计算就会出现较大的误差。即使同类设备,也应该根据设备的级别、运行直径、速度、起升方式选择合理的冲击系数。

因此在游乐设施设计计算过程中,动力学的计算显得尤为重要!

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

连续梁桥汽车冲击系数试验及数值研究

——————————————— 本文为江西省自然科学基金资助。作者简介:张期星(1983-),男,山东人,硕士研究生,从事桥梁结构工程研究(E-mail:zh_q_x123@https://www.360docs.net/doc/f42899124.html,);陈水生 连续梁桥汽车冲击系数试验及数值研究 张期星1 ,陈水生2 (1.2华东交通大学土木建筑学院 江西南昌330013) 摘 要:本文主要分析三跨连续梁桥,应用达朗贝尔原理,推导了三轴半车模型下的车桥耦合振动方程,比较了在不同车速和不同跨径作用下的汽车冲击系数,并且对多个连续梁桥汽车冲击系数的实测结果进行了分析。文中采用有限元法离散,将无限自由度系统转化为有限自由度系统,使用Ansys 软件进行了三跨连续梁桥的模态分析,提取出前10阶模态分量和振型频率,利用模态叠加的方法对车桥耦合振动方程进行解耦,并且利用Matlab 软件编程进行了数值模拟,分析了三跨连续梁桥车桥耦合振动特性。在仅仅考虑竖向位移的情况下,主要采用了Newmark 方法,编程得出了不同车速和不同跨径对三跨连续梁桥汽车冲击系数的影响规律:汽车冲击系数随着车速的提高而增加,车速较低时(一般在20km/h-40km/h)冲击系数变化缓慢,当车速大于50km/h 后,冲击系数变化较大;汽车冲击系数随着跨径的增大而降低,跨径越大,其值越接近于1.0。 关键词:三跨连续梁桥;汽车冲击系数;车桥耦合模型 Experimental and numerical study on Impact coefficient of continuous girder bridge under vehicle Zhang Qixing 1 Chen Shuisheng 2 (Institute of Civil construction,East China Jiaotong University,nanchang,Jiangxi330013,China) Abstract :This paper mainly analyses three-span continuous girder bridge. The coupled vibration functions of vehicle and bridge with five degree of freedom vehicle model are derived using the D’Alembert’s principle. The impact coefficient of vehicle are analysed under condition of various span length and speeds of moving vehicle, and the measured results of several continuous girder bridge are analysed. The studies adopt the method of finite element discrete to turn the system of infinite degree of freedom into the system of finite degree of freedom, and analyse the mode of three-span continuous girder bridge under the use of the Ansys software to exact the mode components and frequencies. Then the coupled vibration functions of vehicle and bridge are decoupled with the method of modal superposition, and the coupled vibration characteristics of vehicle and bridge are analysed by the numerical simulation of Matlab software. On the condition of only considering the vertical displacement, it programs by the method of Newmark to conclude the influence law of impact coefficient of vehicle for three-span continuous girder bridge under condition of various span length and speeds of moving vehicle: impact coefficient of vehicle would rise with the rise of speed of vehicle,when the speed of vehicle is relative lower(approximately 20km/h- 40km/h),the value would change slowly,but the speed surpasses 50km/h,it would change obviously; impact coefficient of vehicle would decrease with the rise of span length,and the more large is the span length,the more close to 1.0 is the value. Key word :three-span continuous girder bridge;impact coefficient of vehicle;vechicle-bridge coupled model 0 引言 目前,车辆对桥梁的冲击作用我们通常采用汽车冲击系数μ或者动力增量φ来描述,即在考虑桥梁静载作用下的响应乘以一个相应的动力系数。由于冲击系数关系到桥梁结构设计的安全与经济性能,所以其取值的大小对于桥梁结构在车辆荷载作用下的安全举足轻重。各国旧规范的冲击系数都是采用跨径或加载长度的递减函数来计算的[1],但是影响车辆与桥梁相互作用的因素很多,比如车辆与桥梁整体系统的刚度、质量、阻尼、桥面的不平整度、加载车辆数目、车辆 间距、加载车道、车辆相向行驶、以及车速与跨径的影响等等[2],它是一个非常复杂的问题,所以单纯的考虑桥梁跨径或者加载长度对于汽车冲击系数来讲是很不严密的。因此04规范给出了与桥梁结构基频的关系。 1 三轴半车模型的建立及求解 如图1所示,为三轴半车模型,假定连续梁桥每跨具有相同的跨长、质量和刚度。由达朗贝尔原理得到车辆振动方程 1f 1f 1f 1f c 11c 111f 1c 11c 111f 111z c z k k l z k z )k k (c l z c z )c c (z m +=+?+++?++θθ (1) 2f 2f 2f 2f c 22c 222f 2c 22c 222f 222z c z k k l z k z )k k (c l z c z )c c (z m +=??+++?++θθ(2)

新规范横向分布系数

关于新规范横向分布系数以及偏载系数的计算 关于横向分布调整系数: 一、进行桥梁的纵向计算时: a) 汽车荷载 ○1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数) x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数) = 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 ○2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 ○1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。

○2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 ○1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 ○2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。 注: 1、由于最终效应: 人群效应= 人群集度x人行道宽度x人群横向分布调整系数。 满人效应= 人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。

如何用SPSS求相关系数

参见: [1] 衷克定数据统计分析与实践—SPSS for Windows[M].北京:高等教育出版社,2005.4:195— [2] 试验设计与SPSS应用[M].北京,化学工业出版社,王颉著,2006.10:141— 多元相关与偏相关 如何用SPSS求相关系数 1 用列联分析中,计算lamabda相关系数,在分析——描述分析——列联分析 2 首先看两个变量是否是正态分布,如果是,则在analyze-correlate-bivariate中选择 pearson相关系数,否则要选spearman相关系数或Kendall相关系数。如果显著相关,输出结果会有*号显示,只要sig的P值大于0.05就是显著相关。如果是负值则是负相关。 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:

附录相关系数r的计算公式的推导.doc

相 关 系 数 r AB 的 计 算 公 式 的 推 导 设 A i 、 B i 分别表示证券 A 、证券 B 历史上各年获得的收益率; A 、 B 分别表示证券 A 、证券 B 各 年获得的收益率的平均数; P i 表示证券 A 和证券 B 构成的投资组合各年获得的收益率,其他符号的含义 同上。 2 = 1A n 1 2 = 1B n 1 2 1 P = 1 n = 1 n 1 = 1 n 1 = 1 n 1 = 1 n 1 =A 2 A × =A 2 2 A A ( A i A) 2 (B i B) 2 (P i 1 P i ) 2 n 1 [( A A A i A B B i ) ( A A A i A B B i )]2 n [( A A A i A B B i ) (A A A A B B)] 2 [ A A ( A i A) A B (B i B)] 2 [ 2 ( A i ) 2 2 ( B i B ) 2 2 A A A B ( A i )( B )] A A A A B A B i ( A i A) 2 A B 2 × ( B i B) 2 2A A A B [( A i A)( B i B)] n 1 n 1 n 1 2 2 2A A A B [( A i A)( B i B)] A B B n 1 对照公式( 1)得: ( A i A) 2 (B i B) 2 = × n × r AB n 1 1 ∴ r AB = [( A i A)( B i B)] ( A i A)2 (B i B) 2 这就是相关系数 r AB 的计算公式。 投资组合风险分散化效应的内在特征 1. 两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式( 1)左右两端对 A A 求一阶导数,并注意到 A B =1—A A : 2 2 2 A B r AB ( P )′=2A A A -2(1 -A A ) B + 2 (1 - A A ) A B r AB -2A A 令 ( P 2 )′=0 并简化,得到使 P 2 取极小值的 A A : 2 B r AB A A = B A ( 3) 2 2 2 A B r AB A B 式中,0 ≤ A A ≤ 1, 否则公式( 3)无意义。

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square

变压器的计算公式

一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs ——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于0.9; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH ——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2:2.62 2.69 3.13 3.20 3.28 3.37 最佳负荷率βm% 61.8 61.0 56.6 55.2 55.2 54.5 技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器 变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。

用新规范计算预应力混凝土连续梁

用新规范计算预应力混凝土连续梁 谢宝来 【摘要】本文为用新规范进行桥梁结构设计的一个算例,其重点讨论了预应力混凝土构件纵向受力性能的计算方法和计算过程,以及对新规范的一些理解,其中包括汽车冲击系数、上下缘正负温差、翼缘有效宽度、极限承载能力(塑性)和应力(弹性)计算等,同时也说明了一些构造方面的要求。 【关键词】规范预应力混凝土冲击系数有效宽度 一、设计概况 该桥为京津高速公路跨越永定新河的一座特大桥,单幅桥宽16.5米,特大桥是因为长度超过了1000米,以永定新河的交角为45度,跨越河流时采用三联3x55米,用PZ造桥机施工的预应力混凝土连续箱梁,此处平曲线半径为5000米,当然小半径也可以采用此施工工艺。第一阶段施工为简支单悬臂,施工长度为55米简支加11米(悬臂为跨径的五分之一,此处弯矩最小,为施工缝的最加位置)悬臂,平移模板,第二阶段施工长度为44米加11米悬臂,最后施工剩下的44米。主要预应力钢束均为单向张拉,最大单向张拉长度为66米。按预应力砼A 类构件设计。 二、设计参数 (一)桥宽:16.5m(1+0.75+3x3.75+3+0.5); (二)跨径:3x55m; (三)梁高:3.0m; (四)荷载标准:公路-I级;计算车道数:3;横向折减系数:0.78; (五)二期荷载:100mm厚沥青混凝土;80mmC40防水混凝土;两侧栏杆20kN/m。 (六)采用的主要规范: 《公路桥涵设计通用规范》(JTG-D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG-D62-2004); (七)选用材料: ①混凝土C50:f cd =22.4MPa,f td =1.83MPa,E c =3.45x104MPa;

冲击系数

公路桥梁冲击系数随机变量的概率分布及冲击系数谱 李玉良 摘要为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。从现场实测入手,采集桥上汽车荷载流对桥梁结构产生的冲击系数随机样本,采用概率与数理统计的方法研究公路桥梁冲击系数的统计规律,得到公路桥梁冲击系数的概率分布及置信度为0.05的冲击系数谱。对冲击系数谱的适应范围及其与国内、外冲击系数的研究成果进行比较和讨论。关键词公路桥梁冲击系数随机变量概率分布冲击系数谱 l 前言 在移动的汽车荷载作用下,桥梁在空间的竖向、纵向和横向三个方向产生振动、冲击等动力效应。通常把竖向动力效应称为汽车荷载对桥粱结构的冲击力。桥梁结构的总竖向汽车荷载效应(SZ)等于竖向汽车荷载静力效应(SJ)与其动力效应之和。在国内、外的各种桥梁设计规范中,均采用把汽车荷载竖向静力效应乘以一个增大系数(1+μ)作为计入汽车荷载竖向动力效应的总竖向荷载效应。即: SZ=(1+μ)×SJ (1) 根据式(1),将冲击系数定义为:考虑移动的汽车荷载对桥梁结构产生竖向动力效应的增大系数。现今世界各国公路桥梁设计规范中有关冲击系数的规定,大都是在定值设计法概念下制定的。不管是理论计算还是现场实测,都基于移动的汽车荷载与桥梁结构产生“共振”求得,这样得到的冲击系数(1+μ)是极大值。它的不足之处是不能反映该数值在桥上出现的概率。调查得知,这样的极大值在桥上实际发生的机会是极为稀少的。 为适应近似概率设计法的应用,公路桥梁冲击系数研究必然引进概率概念。影响公路桥梁冲击系数的因素,归纳起来大致可分为三类: (1)汽车荷载本身的几何与动力特性; (2)桥梁结构的几何与动力特性; (3)激振及冲击的条件。 公路桥梁上通过的汽车荷载流是一个非列车化的问隙性连续流。它的流量大小、车辆间距、轴重大小、行驶速度、车辆的横向位置、车辆的动力特性都具有明显的不确定性,是无法预知的。这表明汽车荷载流本身具有明显的随机性。 桥梁结构的几何尺寸、材料的容重、弹性模量等也都是随机的。 汽车荷载流通过桥梁时的初始条件(如:路桥连接缝的结构状态、引道路面平整度等)和桥面的平整度等因素,也具有不确定性。这些都是移动的汽车激振和对桥梁结构产生振动、冲击等最重要的随机因素。由此我们可认识到,公路桥梁冲击系数是反映诸多影响因素随机组合产生振动、冲击等效应的一个综合性系数,具有明显的随机性。 另外,公路桥梁冲击系数与时间没有明显的关系。它的取值,充满了某一实数区间,不能用一个有限或无限数列表示。因此,本文把公路桥梁冲击系数用连续随机变量概率模型进行研究。 2 公路桥梁冲击系数的概率分布及统计参数 由于随机模拟汽车流、桥梁激振及冲击条件等非常困难,从公路桥梁随机振动与随机冲击等问题的理论研究人手,来解决公路桥梁冲击系数问题,条件尚不成熟。为此,我们的研究从现场实测入手,采集桥上汽 wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();}); 车荷载流对桥梁结构产生的冲击系数随机样本,用概率与数理统计的方法来研究公路桥梁冲击系数的统计规律。

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r

Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2 ) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。

线性相关系数的计算

Spss电脑实验-第六节(3)线性相关系数的计算 https://www.360docs.net/doc/f42899124.html,更新时间:2006-1-19 21:11:30 关注指数:7992 Ⅲ.线性相关系数的计算 1. 线性相关的概念 如果各统计指标是定量数据,要了解它们间的关系密切程度,可用线性相关分析。 例如:大家都知道的糖尿病病人,它靠胰岛素来治疗。现测量20 名糖尿病病人(以ID 来编号)血中的血糖值(y)、胰岛素值(x1)和生长激素值(x2)。我们即可分析 y、x1 和x2 间的两两/ 双变量间的线性关系。数据见下面的程序文件CorreRegre2.sps 的例*2。 2. 线性相关计算的所用命令 用SPSS Analyze 菜单中的子菜单Correlate,其中的Bivariate 对话框即可计算两两/ 双变量间的线性相关系数r 及其显著性。这是通常最常见、最常用的情况。 本例所用程序文件名为CorreRegre2.sps 中的例*2。(例*2 中还有用于偏相关系数与距离相关系数的计算命令,详后)。 ---------------------------------------------------------------- *2. Prof. Zhang Weng-Tong: SPSS 11, P.273-277:. DATA LIST FREE /ID y x1 x2. BEGIN DATA. 1 12.21 15.20 9.51 2 14.54 16.70 11.43 3 12.27 11.90 7.53 4 12.04 14.00 12.17 5 7.88 19.80 2.33 6 11.10 16.20 13.52 7 10.43 17.00 10.07 8 13.32 10.30 18.89 9 19.59 5.90 13.14 10 9.05 18.70 9.63 11 6.44 25.10 5.10 12 9.49 16.40 4.53 13 10.16 22.00 2.16 14 8.38 23.10 4.26 15 8.49 23.20 3.42 16 7.71 25.00 7.34 17 11.38 16.80 12.75 18 10.82 11.20 10.88 19 12.49 13.70 11.06 20 9.21 24.40 9.16 END DATA. CORRELATIONS /VARIABLES=y x1 x2 /PRINT=TWOTAIL NOSIG. NONPAR CORR /VARIABLES=y x1 x2 /PRINT=SPEARMAN TWOTAIL NOSIG.

短路电流计算公式

二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV

第三章:相关系数r 的计算公式的推导

设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ= 11 -n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1 122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 2 2 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22 2 2 2---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ =---∑1 )])([(

轮压的计算

一、轮压的计算: 参考同类型规格相近的起重机,估计小车总重为8.5吨,近似认为由四个车轮平均承受。吊钩位于小车轨道的纵向对称轴线上,根据小车架布置图偏离主、从动轮之间的中心线为115毫米。 根据起重小车架的平衡方程式,可分别求出主动轮和从动轮的轮压: 主动轮: 22601130124521?+?=G Q P 式中:P 1——主动轮轮压; K τ——小车轮距,K τ=2260毫米。 公斤92172260 21130 8500124525750max 1=??+?= P (满载) 公斤2331min 1=P (空载) 同理,可得从动轮轮压: 公斤79072260 211308500101525750max 2=??+?=P (满载) 公斤2293min 2=P (空载) 二、电动机的选择: 1.运行阻力的计算: (1)小车满载运行时的最大摩擦阻力: ( )K D G P d K G Q 附 轮 架 摩满*+++=μ2 式中 (Q+G )——额定起重量加吊钩重量,(Q+G )=25750公斤; G 架 ——小车自重,G 架=8500公斤; K ——滚动摩擦力臂,K=0.05厘米; μ——轴承摩擦系数,μ=0.015; K 附 ——附加摩擦阻力系数,K 附=1.5;

D 轮 ——车轮直径,D 轮=40厘米; d ——轴承内径,d=10厘米; ()公斤摩满 3215.140 10 015.005.028********=??+??+=P (2)小车满载运行时的最大坡度阻力: () K G P G Q 坡架摩满 *++= 式中 K 坡 ——坡度阻力系数,K 坡=0.002 ()公斤摩满 5.68002.08500 25750=?+=P (3)小车满载运行时的最大静阻力: 公斤坡满摩满静满 5.3895.68321=+=+=P P P 2.选择电动机,确定减速器: (1)满载运行时电动机的静功率: (千瓦)小车静满静m 6120**= * ηP N V 式中 P 静满 ——小车满载运行时的静阻力,P 静满=389.5公斤; V 小车 ——小车运行时速度,V 小车=32min m ; η——小车运行机构传动效率,η=0.9; m ——电动机个数,m=1. 千瓦静26.219.06120325.389=???=N (2)选择电动机: N K N 静电*= 式中 K 电 ——电动机启动时为克服惯性的功率增大系数,取K 电=1.2; 千瓦7.226.22.1=?=N 选择SBA112B 型电动机。 (3)确定减速器: 减速器的传动比: V n n D n i 小车 轮 **= = π 式中 V 小车 ——小车运行速度,V 小车=32米/分;

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

冲击系数

冲击系数说明书 1、冲击系数原理 桥梁动载实验中,动力荷载作用与桥梁结构上产生的动挠度或动应变,一般较同样的静荷载所产生的相应的静挠度(静应变)要大。以动挠度为例,动挠度与相应的静挠度的比值称为活荷载的冲击系数(1+μ)。由于挠度反映了桥梁结构的整体变形,是衡量结构刚度的主要指标,因此活载冲击系数综合反映了动力荷载对桥梁结构的动力作用。活载冲击系数与桥梁结构的结构形式、车辆行驶速度、桥梁的平整度等因素有关。为了测定桥梁结构的冲击系数,应使车辆以不同的速度驶过桥梁,逐次记录跨中截面的挠度时程曲线,按照冲击系数的定义有: mean Y Y max 1=+μ 式中:max Y ----动载作用下该测点最大动挠度值; mean Y ----相应的静载荷作用下该测点最大挠度值,简称最大静挠度值,其值可由动挠度曲线求得: )(2 1min max Y Y Y mean += 其中min Y 为与mean Y 相应的最小挠度值。如图1所示。 图1 移动荷载作用下桥梁动挠度曲线 同理,在动载实验中测试动应变时,产生的冲击系数(1+μ)的计算公式如下:

mean S S max 1=+μ 式中:max S ----动载作用下该测点最大动应变值; mean S ----相应的静载荷作用下该测点最大应变值,其值可由动应变曲线求得: )(2 1min max S S S mean += 其中min S 为与mean S 相应的最小应变值。 另外,在测试动应变时程曲线时,由于应变片的贴法的正负极性不同,用户实测的动应变曲线的主峰很可能往下(为负值),在这种情况下,冲击系数的计算公式不变,但是max S 、mean S 、min S 都将有所改变,具体如下: max S ----动载作用下该测点最大动应变的绝对值; mean S ----相应的静载荷作用下该测点最大应变的绝对值; min S ----与mean S 相应的最小应变的绝对值。

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

相关文档
最新文档