(完整版)一元二次方程(知识点考点题型总结)

(完整版)一元二次方程(知识点考点题型总结)
(完整版)一元二次方程(知识点考点题型总结)

一元二次方程专题复习

考点一、概念

(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....

就是一元二次方程。 (2)一般表达式:)0(02

≠=++a c bx ax

⑶难点:如何理解 “未知数的最高次数是2”:

①该项系数不为“0”;

②未知数指数为“2”;

③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:

例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132

+=+x x B 02112=-+x x

C 02=++c bx ax

D 1222+=+x x x

变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132

=+++mx x m m

是关于x 的一元二次方程,则m 的值为 。 针对练习:

★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程,

⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1

考点二、方程的解

⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;

典型例题: 例1、已知322-+y y 的值为2,则1242

++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002

≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,

则m 的值为 。

针对练习:

★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

★2、已知关于x 的方程022=-+kx x 的一个解与方程31

1=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2

。 ★★4、已知a 是0132

=+-x x

的根,则=-a a 622 。

★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( )

A 1-

B 1

C c b -

D a -

★★★6、若=?=-+y x 则y x 324,0352 。 考点三、解法

⑴方法:①直接开方法;②因式分解法;③配方法;④公式法

⑵关键点:降次

类型一、直接开方法:()m x m m x ±=?≥=,02 ※※对于()m a x =+2,()()2

2n bx m ax +=+等形式均适用直接开方法

典型例题:

例1、解方程:();08212=-x ()216252x -=0; ()();09132

=--x

例2、若()()2

221619+=-x x ,则x 的值为 。

针对练习:下列方程无解的是( ) A.12322-=+x x B.()022=-x C.x x -=+132 D.092

=+x

类型二、因式分解法:()()021=--x x x x 21,x x x x ==?或

※方程特点:左边可以分解为两个一次因式的积,右边为“0”,

※方程形式:如()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ ,022

2=++a ax x

典型例题: 例1、()()3532-=-x x x 的根为( )

A 25=

x B 3=x C 3,2521==x x D 5

2=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。 变式1:

()()=+=-+-+2222222,06b 则a b a b a 。

变式2:若()()032=+--+y x y x ,则x+y 的值为 。

变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。 例3、方程062=-+x x 的解为( )

A.2321=-=,x x

B.2321-==,x

x C.3321-==,x x D.2221-==,x x 例4、解方程: ()04321322=++++x x

例5、已知023222=--y xy x ,则y

x y x -+的值为 。 变式:已知023222=--y xy x ,且0,0>>y x ,则y

x y x -+的值为 。 针对练习:

★1、下列说法中:

①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++

② )4)(2(862--=-+-x x x x . ③)3)(2(6522--=+-a a b ab a

④ ))()((22y x y x y x y x -++=-

⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x

正确的有( ) A.1个 B.2个 C.3个 D.4个

★2、以71+与71-为根的一元二次方程是()

A .0622=--x x

B .0622=+-x x

C .0622=-+y y

D .0622=++y y

★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:

⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:

★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )

A 、-1或-2

B 、-1或2

C 、1或-2

D 、1或2

5、方程:2122=+x

x 的解是 。 ★★★6、已知06622=-

-y xy x ,且0>x ,0>y ,求y x y x --362的值。 ★★★7、方程()012000199819992=-?-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r

的值为 。

类型三、配方法()002≠=++a c bx ax 222

442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:

例1、 试用配方法说明322+-x x 的值恒大于0。

例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、 已知,x、y

y x y x 0136422=+-++为实数,求y x 的值。

例4、 分解因式:31242++x x

针对练习:

★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x x

x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。 ★★★4、如果4122411-++-=--+

+b a c b a ,那么c b a 32-+的值为 。 类型四、公式法

⑴条件:()

04,02≥-≠ac b a 且 ⑵公式: a

ac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:

例1、选择适当方法解下列方程:

⑴().6132=+x ⑵()().863-=++x x ⑶0142

=+-x x ⑷01432

=--x x ⑸()()()()5211313+-=+-x x x x

例2、在实数范围内分解因式: (1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --

说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,

一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成

c bx ax ++2=))((21x x x x a --.

②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.

类型五、 “降次思想”的应用

⑴求代数式的值; ⑵解二元二次方程组。

典型例题:

例1、 已知0232=+-x x

,求代数式()1

1123-+--x x x 的值。

例2、如果012=-+x x ,那么代数式7223-+x x 的值。 例3、已知a 是一元二次方程0132

=+-x x 的一根,求1152223++--a a a a 的值。

例4、用两种不同的方法解方程组

???=+-=-)2(.065)1(,6222y xy x y x

说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再

消元。但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已 知的问题.

考点四、根的判别式ac b 42

-

根的判别式的作用:

①定根的个数;

②求待定系数的值;

③应用于其它。

典型例题:

例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m

例3、已知关于x 的方程()0222

=++-k x k x

(1)求证:无论k 取何值时,方程总有实数根;

(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

例4、已知二次三项式2)6(92

-++-m x m x 是一个完全平方式,试求m 的值.

例5、m 为何值时,方程组???=+=+.

3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?

针对练习:

★1、当k 时,关于x 的二次三项式92

++kx x 是完全平方式。 ★2、当k 取何值时,多项式k x x

2432+-是一个完全平方式?这个完全平方式是什么?

★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .

★★4、k 为何值时,方程组???=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;

(2)有两组不相等的实数解;

(3)没有实数解.

★ ★★5、当k 取何值时,方程0423442

2=+-++-k m m x mx x 的根与m 均为有理数?

考点五、方程类问题中的“分类讨论”

典型例题:

例1、关于x 的方程()03212=-++mx x m

⑴有两个实数根,则m 为 ,

⑵只有一个根,则m 为 。 例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。

例3、如果关于x 的方程022=++kx x 及方程022

=--k x x 均有实数根,问这两方程

是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。

考点六、应用解答题

⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题

典型例题:

1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?

2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?

3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少

31,第三年比第二年减少2

1,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利3

1,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,61.313≈)

4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:

(1)当销售价定为每千克55元时,计算月销售量和月销售利润。

(2)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,

销售单价应定为多少?

5、将一条长20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长作成一个正方形。

(1)要使这两个正方形的面积之和等于17cm 2,那么这两段铁丝的长度分别为多少?

(2)两个正方形的面积之和可能等于12cm 2吗?若能,求出两段铁丝的长度;若不

能,请说明理由。

(3)两个正方形的面积之和最小为多少?

6、A 、B 两地间的路程为36千米.甲从A 地,乙从B 地同时出发相向而行,两人相遇后,甲再走2小时30分到达B 地,乙再走1小时36分到达A 地,求两人的速度.

考点七、根与系数的关系

⑴前提:对于02=++c bx ax 而言,当满足①0≠a

、②0≥?时,才能用韦达定理。 ⑵主要内容:a

c x x a b x x =-=+2121, ⑶应用:整体代入求值。 典型例题: 例1、已知一个直角三角形的两直角边长恰是方程07822=+-x x

的两根,则这个直角三角形的斜边是( ) A.3 B.3 C.6 D.6

例2、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x ,

(1)求k 的取值范围;

(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不存在,请说明理由。

例3、小明和小红一起做作业,在解一道一元二次方程(二次项系数为1)时,小明因看错常数项,而得到解为8和2,小红因看错了一次项系数,而得到解为-9和-1。你知道原来的方程是什么吗?其正确解应该是多少?

例4、已知b a

≠,0122=--a a ,0122=--b b ,求=+b a

变式:若0122=--a a ,0122=--b b ,则a

b b a +的值为 。 例5、已知βα,是方程012=--x x 的两个根,那么=+βα34 . 针对练习:

1、解方程组??

?=+=+)2(5)1(,322y x y x 2.已知472-=-a a ,472-=-b b )(b a ≠,求

b

a a

b +的值。 3、已知21,x x 是方程092

=--x x 的两实数根,求663722231-++x x x 的值。

平方根知识点总结讲义

平方根知识点总结讲义 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

平方根知识点总结 【学习目标】 1.了解平方根、算术平方根的概念,会用根号表示数的平方根. 2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】 要点一、平方根和算术平方根的概念 1.算术平方根的定义 如果一个正数x的平方等于a,即2x a =,那么这个正数x叫做a的算术平方根 (规定0的算术平方根还是0);a,读作“a的算术平方根”,a叫做被开方数. 要点诠释:有意义时,a≥0,a≥0. 2.平方根的定义 =,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方如果2x a a≥a的算与开平方互为逆运算. a(a≥0)的平方根的符号表达为0) 术平方根. 要点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同: 2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数; (3)0的平方根和算术平方根均为0. 要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算 术平方根;负数没有平方根.

(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 要点三、平方根的性质 要点四、平方根小数点位数移动规律 被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=. 【典型例题】 类型一、平方根和算术平方根的概念 1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值. 【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解. 【答案与解析】 解:依题意得 2m -4=-(3m -1), 解得m =1; ∴m 的值为1. 【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三: 【变式】已知2a -1与-a +2是m 的平方根,求m 的值. 【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22 212111a -=?-= ②当2a -1+(-a +2)=0时,a =-1,

绝对值题型归纳总结

. ... .. . 绝对值题型归纳总结 一、知识梳理 模块一绝对值的基本概念 模块二零点分段法(目的:去无围限定的绝对值题型) 模块三几何意义 . . .z

例题分析 题型一 绝对值代数意义及化简 【例1】 ⑴ 下列各组判断中,正确的是 ( ) A .若a b =,则一定有a b = B .若a b >,则一定有a b > C. 若a b >,则一定有a b > D .若a b =,则一定有()2 2a b =- ⑵ 如果2a >2b ,则 ( ) A .a b > B .a >b C .a b < D a <b ⑶ 下列式子中正确的是 ( ) A .a a >- B .a a <- C .a a ≤- D .a a ≥- ⑷ 对于1m -,下列结论正确的是 ( ) A .1||m m -≥ B .1||m m -≤ C .1||1m m --≥ D .1||1m m --≤ ⑸若220x x -+-=,求x 的取值围. 【解析】 ⑴ 选择D .⑵ 选择B .

. ... .. . . . .z ⑶ 我们可以分类讨论,也可以用特殊值法代入检验,对于绝对值的题目我们一般需要代正数、负数、0,3种数帮助找到准确答案.易得答案为D . ⑷ 我们可以用特殊值法代入检验,正数、负数、0,3种数帮助找到准确答案C . ⑸ ()22x x -=--,所以20x -≤,即2x ≤. 【变1】 已知:⑴52a b ==,,且a b <;⑵()2 120a b ++-=,分别求a b ,的值 【解析】 因为55a a ==±,,因为22b b ==±,,又因为a b <,所以22a b =-=±, 即52a b =-=,或52a b =-=-, ⑵由非负性可知12a b =-=, 【例2】 设a b c ,,为整数,且1a b c a -+-=,求c a a b b c -+-+-的值 【解析】 因为a b c ,,为整数,且1a b c a -+-= 故a b -与c a -一个为0,一个为1,从而()()1b c b a a c -=-+-=,原式2= 【例3】 (1)已知1999x =,则2245942237x x x x x -+-++++= . (2)满足2()()a b b a a b ab -+--=(0ab ≠)有理数a 、b ,一定不满足的关系是( ) A . 0ab < B . 0ab > C . 0a b +> D . 0a b +< (3)已知有理数a 、b 的和a b +及差a b -在数轴上如图所示, 化简227a b a b +---. a-b a+b 【解析】 (1)容易判断出,当1999x =时,24590x x -+>,2220x x ++>, 所以 224594223710819982x x x x x x -+-++++=-+=- 这道题目体现了一种重要的“先估算+后化简+再代入求值”的思想. (2)为研究问题首先要先将题干中条件的绝对值符号通过讨论去掉, 若a b ≥时,222()()()()0a b b a a b a b a b ab -+--=---=≠, 若a b <时,2222()()()()2()a b b a a b a b b a a b ab -+--=-+-=-=,

数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位 置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就 叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211 ,,,,… 数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ① {}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列 实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 (1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1 (1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式

一元二次方程知识点总结与易错题

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(242 2≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于 a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。 考点三、一元二次方程根的判别式 根的判别式: 一元二次方程)0(02≠=++a c bx ax 中, ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?”来表示,即ac b 42-=? I 当△>0时,一元二次方程有2个不相等的实数根; II 当△=0时,一元二次方程有2个相同的实数根; III 当△<0时,一元二次方程没有实数根。 考点四、一元二次方程根与系数的关系 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a c x x =21。也就是 说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 考点五、一元二次方程的二次函数的关系 二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y 的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。也就是该方程的解了 二次函数知识点 一、二次函数概念:

算术平方根、平方根知识点

学科教师辅导讲义

知识点2:估算 估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小. 规律小结 确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分. 例2.如果17-=m ,那么m 的取值范围是( ) A.10<

2. 例2.求下列各数的平方根和算术平方根: (1)0.0009 (2)8125 (3)25-) ( 知识点4:平方根的性质 平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ± ,表示a 的正的平方根和负的平方根,其中正的平方根a 也叫做a 的算术平方根. 注:一个正数的平方根有两个,而它的算术平方根只有一个. 例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( ) A.2 B.-1 C.1 D.0

随堂巩固 一、选择题. 1. 4的算术平方根是( ) A.2 B.-2 C.±2 D.16 2.下列说法正确的是( ) A.5是25的算术平方根 B.16是4的算术平方根 C.-6是()2 6-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( ) A.4 B.5 C.6 D.7 4.一个正方形的面积是15,估计它的边长大小在( ) A.2与3 之间 B.3与4 之间 C.4与5之间 D.5与6之间 5.81的平方根是( ) A.3± B.3 C.9± D.9 6.下列语句正确的是( ) A.-2是-4的平方根 B.2是()22-的算术平方根 C.()22-的平方根是2 D.4的平方根是2或-2 7.252=a ,3=b ,则a+b 的值是( ) A.-8 B.8± C.2± D.8±或2± 二、填空题 1.化简:(1)4 12= ; (2) = . 2.大于2且小于5的整数是 . 3.使式子11=-x 成立的未知数x 的值是 。 4.已知一个正数的平方根是23-x 和65+x ,则这个数是 5.已知m,n 为两个连续的整数,且n m <<11,则n m += . 30 04.0

绝对值考点题型总结

绝对值 1、如果| -a | = -a ,下列成立的是( ) A .a<0 B .a ≦0 C.a>0 D.a ≧0 2、 的绝对值是8。 3、若11=-b ,则b= ,若==+a a 则,06 ,若a a -=,则a 0 4、若5,3==b a ,则b a +等于( ) A 、2 B、8 C 、2或8 D 、81--或 5、已知3a =,且0a a +=,则3 2 1a a a +++=___________. 6、绝对值大于 1 小于 4 的整数的和是( ) A 、0 B 、5 C 、-5 D 、10 7、若2 3(2)0m n -++=,则2m n +的值为( ) A.4-? B.1- ?C.0? D.4 8、在数轴上,距离原点4个单位长度的点所表示的数是 9、如果互为相反数的两个数在数轴上的点相距6个单位长度,这两个数为 10、在数轴上与表示-2的点的距离为3的点所表示的数是 11、已知132x +与1 22 y -互为相反数,求x y +的值。 12、已知()0122 =++-b ab (1) 求a,b 的值,(2)求2008 2008 2?? ? ??-a b 的值 (3)求()()()() ()()2008200812211111--+??+--+--+b a b a b a ab

13、计算: =-+??+-+-+-99 1100131412131121 14、若a<0,且a b<0,化简|b-a+4|-|a-b-7|=___________. 15、若ab <0,-b>0,且b a ,则a+b 0(填“>”“<”) 16、若m>0,n<0,且|m|>|n|,用“>”把m 、m -、n 、n -连接起来。 17、已知│x-1│=3,求 -3│1+x │-│x │+5的值. 18、()() 的值。求且若b a c c b a a -?=-=++-3 2 ,21,0212 19、已知|a |=5,|b |=2,ab <0. 求:3a+2b的值 20、已知a 、b 互为相反数,c 、d互为倒数,x 的绝对值比它的相反数大2, 求式子x3+cdx+a+b+c d的值 21、已知|m|=5,|n|=2,且|m +n|=m +n ,求m-n 的值。 22、已知m 、n互为相反数,p、q 互为倒数,a 的绝对值等于2, 求24 1 20052005a pq a n m +-+的值

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

一元二次方程重点题型(全)

一元二次方程重点题型 一.选择题(共7小题) 定义 1.(2016?凉山州模拟)下列方程中,一元二次方程共有()个 ①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2. A.1 B.2 C.3 D.4 一般形式 2.(2016春?荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是 () A.﹣1 B.1 C.3 D.3或﹣1 3.(2016春?宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为() A.6;2; 9 B.2;﹣6;﹣9 C.2;﹣6; 9 D.﹣2; 6;9 一元二次方程的解 4.(2016?山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为() A.0 B.1 C.﹣1 D.2 5.(2016?诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为() A.1 B.﹣1 C.1或﹣1 D. 6.(2016?济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是() A.﹣2 B.C.﹣4 D.2 7.(2015?诏安县校级模拟)方程(x﹣1)2=2的根是() A.﹣1,3 B.1,﹣3 C.,D., 二.填空题(共12小题) 8.(2016春?长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为. 9.(2016?罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程 为. (9题)(10题) 10.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为. 11.(2016?丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是. 11.(2016?松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是.

新人教版第六章实数知识点归纳

实数知识点总结 一、平方根、算术平方根、立方根 1、概念、定义 (1)如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根。 (2)如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。如果,那么x叫做a的平方根。 (3)如果一个数的立方等于a,那么这个数就叫做a的立方根(或a 的三次方根)。如果,那么x叫做a 的立方根。 2、运算名称 (1)求一个正数a的平方根的运算,叫做开平方。平方与开平方互为逆运算。 (2)求一个数的立方根的运算,叫做开立方。开立方和立方互为逆运算。 3、运算符号 (1)正数a的算术平方根,记作“a”。 (2)a(a≥0)的平方根的符号表达为。 (3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。 4、运算公式 4、开方规律小结 ,a的算术平方根a;正数的平方根有两个,它们互为相反数,其中正的那(1)若a≥0,则a的平方根是a 个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。正数的立方根是正数,负数的立方根是负数,0的立方根是0。(2)若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。 (3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。 二、小数点移动规律 平方根(如果被开方数的小数点,向右或向左每移动两位,它的平方根的小数点就相应地向右或向左移动一位)立方根(开立方的小数点移动规律:被开方数的小数点向右或向左每移动三位,则立方根的小数点就向右或向左移动一位) 三、实数的概念及分类 1、实数的分类

绝对值重点题型定稿版

绝对值重点题型精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

绝对值重点题型 例1、已知a0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则 a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 例5、若abc ≠0,则 ||||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc0,求| |||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。 练习: 0 b a c

1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

实际问题及一元二次方程题型知识点归纳总结

实际问题与一元二次方程题型知识点归纳总结 一、列一元二次方程解应用题的一般步骤: 与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。 (1)设:设未知数,有直接和间接两种设法,因题而异; (2)找:找出等量关系; (3)列:列出一元二次方程; (4)解:求出所列方程的解; (5)验:检验方程的解是否正确,是否符合题意; (6)答:作答。 二、典型题型归纳 1、传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传 染轮数,M为最后得病总人数 例、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?

2、相互问题(循环、握手、互赠礼品等)问题 1n(n-1),双循环问题n(n-1) 循环问题:又可分为单循环问题 2 例1、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛? (2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛? 例2、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人? 例3、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是() A.()182 182 x 1? x D.()2 + x x - = x B. ()182 x + 1= 2= 1= 1 - x C.()182 x 练习:1、甲A联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110场,则联赛中共有多少个队参加比赛?

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结 一、知识要点 1、平方根: ⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。 ⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 ⑶、算术平方根:正数a 的正的平方根叫做a ”。 2、立方根: ⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。 ⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。 3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。 二、规律总结: 1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。 2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。 30a ≥0。 4、公式:⑴2=a (a ≥0)(a 取任何数)。 5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0 例1 求下列各数的平方根和算术平方根 (1)64;(2)2)3(-; (3)49151 ; ⑷ 21(3)- 例2 求下列各式的值 (1)81± ; (2)16-; (3)259; (4)2)4(-. (5) 44.1,(6)36-,(7)4925±(8)2)25(-

例3、求下列各数的立方根: ⑴ 343; ⑵ 10227-; ⑶ 0.729 二、巧用被开方数的非负性求值. 当a ≥0时,a 的平方根是± a ,即a 是非负数. 例4、若 ,622=----y x x 求y x 的立方根. 练习:已知 ,21221+-+-=x x y 求y x 的值. 三、巧用正数的两平方根是互为相反数求值. 当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a 例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根. 练习:若32+a 和12-a 是数m 的平方根,求m 的值. 四、巧解方程 例6、解方程(1)(x+1)2 =36 (2)27(x+1)3=64 五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零. 例4、已知:y= )1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根. 23(2)0y z -++=,求xyz 的值。

完整版绝对值重点题型.doc

绝对值重点题型 例1、已知a 0,化简|2a-|a||。 例2、 已知|a|=5,|b|=3,且|a-b|=b-a ,满足条件的a 有 个,则a+b= 。 例3、已知│a │=2,│b │=3,│c │=6,且│a+b │=a+b ,│a+c │=-(a+c ), 求a-b-c 的值. 例4、 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。 练习:数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a|| 0 b a c a 0 b

例5、若abc ≠0,则 | |||||c c b b a a ++的所有可能值 例6、已知a 、b 、c 是有理数,且a+b+c=0,abc >0,求 ||||||c b a b a c a c b +++++的值。 例7、已知3π -=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。 例8、 已知|x+5|+|x-2|=7,求x 的取值范围。

练习: 1、若3|x-2|+|y+3|=0,则x y 的值是多少? 2、已知a ,b |a|+|c-b|+|a-c|+|b-a|。 3、有理数a ,b ,c ,d ,满足 1||-=abcd abcd ,求d d c c b b a a ||||||||+++的值。 4、如果0

(完整版)一元一次不等式组知识点及题型总结(可编辑修改word版)

x 一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 不等式:用不等号表示不等关系的式子,叫做不等式。不等号包括 . 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x≥5 ② 2x -y <0 ③ 2 + 5 ≥ 3 ④ -3<0 ⑤ x=3 ? x 2 + xy + y 2 ⑦ x≠5 ⑧ x 2 - 3x + 2>0 ⑨x + y ≥ 0 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的 5 倍不大于 3 可表示为 . ③.x 与 17 的和比它的 2 倍小可表示为 . ④.x 和 y 的差是正数可表示为 . ⑤. x 的3 5 与 12 的差最少是 6 可表示为 . 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若 a >b ,ac >bc ,则 c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若 a >b ,ac <bc ,则 c 0. 4、如果不等式两边同乘以 0,那么不等号变成等号,不等式变成等式。 练习:1、指出下列各题中不等式的变形依据 ①.由 3a>2 得 a> 2 理 3 由: . ②. 由 a+7>0 得 a>-7 理 由: -1 . 5 ③.由-5a<1 得 a> 理

由:. ④.由 4a>3a+1 得 a>1 理 由:. 2、若x>y,则下列式子错误的是() A.x-3>y-3 B.x > y 3 3 3、判断正误 ①. 若a>b,b<c 则a>c. () ②.若a>b,则ac>bc. () ③.若ac2>bc2,则a>b. () ④.若a>b,则ac2>bc2. () ⑤.若 a>b,则a(c2+1)>b(c2+1) C. x+3>y+3 D.-3x>-3y () ?. 若a>b,若c 是个自然数,则ac>bc. () 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是() A.x=2 是不等式x+3<2 的解 B.x =3 是不等式3x<7 的解。 C.不等式3x<7 的解是x<2 D.x=3 是不等式3x≥9的解 2.下列说法错误的是() A.不等式 x<2 的正整数解只有一个 B.-2 是不等式 2x-1<0 的一个解 C. 不等式-3x>9 的解集是 x>-3 D.不等式 x<10 的整数解有无数个 2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一会求不等式的解集 练习:1、不等式x-8>3x-5 的解集是. 2、不等式x≤4的非负整数解是. 3、不等式2x-3≤0的解集为. 题型二知道不等式的解集求字母的取值范围 2、如果不等式(a-1)x<(a-1)的解集是x<1,那么a 的取值范围是. x< 1

《二次函数与一元二次方程》重点题型探究

《二次函数与一元二次方程》重点题型探究 类型一、二次函数图象与坐标轴交点 例1.(1)判断下列二次函数的图象与x轴是否有公共点,若有求出公共点坐标,若没有,说明理由. ①y=-x2-x+1;②;③y=x2+3x+4. 思路点拨:二次函数y=ax2+bx+c与x轴公共点横坐标即方程ax2+bx+c=0的实根. 解: ①有两个公共点 对于方程-x2-x+1=0 ,∴方程有两个不等实根 两根为 ∴两个公共点坐标为; ②只有一个公共点 对于方程 ∴方程有两个相等实根, ∴公共点坐标为(-2,0); ③没有公共点,理由如下: 对于方程x2+3x+4=0 ∵△=32-4×1×4=-7<0,方程没有实数根 ∴二次函数y=x2+3x+4与x轴无公共点. (2)已知函数的图象与x轴有交点,则k的取值范围是()

A. B. C.且 D.且 思路点拨:只要当y=0时,⊿≥0即可,k-3=0时也可以,故选B. 答案:B 总结升华: (1)当,则方程有两个不相等实根,这时二次函数的图象与x轴有两个交点; (2)当,则方程有两个相等实根,这时二次函数的图象与x轴有且只有一个交点; (3)当,则方程没有实根,这时二次函数的图象与x轴没有交点. 举一反三: 【变式1】已知二次函数y=(m-2)x2+2mx+m+1,其中m为常数,且满足-10,抛物线与y轴的交点在x轴上方. Δ=4m2-4(m-2)(m+1) =4m2-4(m2-m-2) =4m+8 =4(m+1)+4>0. ∴抛物线与x轴有两个不同的交点. 总结升华: 此题目也可以用数形结合方法来判断抛物线与x轴有两个不同交点(用抛物线与y轴的交点C在x轴上方,开口向下,必与x轴有两个不同交点). 【变式2】二次函数y=mx2+(2m-1)x+m+1的图象总在x轴的上方,求m的取值范围. 思路点拨:抛物线总在x轴上方表明(1)开口向上;(2)与x轴没有公共点. 解:由题意

平方根知识点汇总讲义

平方根知识点汇总讲义

————————————————————————————————作者:————————————————————————————————日期: 2

平方根 知识点总结 【学习目标】 1.了解平方根、算术平方根的概念,会用根号表示数的平方根. 2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方 根. 【要点梳理】 要点一、平方根和算术平方根的概念 1.算术平方根的定义 如果一个正数x 的平方等于a ,即2 x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a 的算术平方根记作a ,读作“a 的算术平方根”,a 叫做被开方数. 要点诠释:当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 2.平方根的定义 如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ±≥,其中a 是a 的算术平方根. 要点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a ±和a 2.联系:(1)平方根包含算术平方根; (2)被开方数都是非负数; (3)0的平方根和算术平方根均为0. 要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术 平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以 立即写出它的另一个平方根.因此,我们可以利用算术平方 根来研究平方根. 要点三、平方根的性质 2(0)||0 (0)(0) a a a a a a a >??===??-

实数知识点题型归纳

第六章实数 知识讲解+题型归纳 知识讲解 一、实数的组成 1、实数又可分为正实数,零,负实数 2.数轴:数轴的三要素——原点、正方向和单位长度。数轴上的点与实数一一对应 二、相反数、绝对值、倒数 1. 相反数:只有符号不同的两个数互为相反数。数a的相反数是-a。正数的相反数是负数,负数的相反数是正数,零的相反数是零. 性质:互为相反数的两个数之和为0。 2.绝对值:表示点到原点的距离,数a的绝对值为 3.倒数:乘积为1的两个数互为倒数。非0实数a的倒数为 1 a . 0没有倒数。 4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0和正数);倒数是它本身的数是±1. 三、平方根与立方根 1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作(a>=0) 特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。负数没有平方根。 正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。 开平方:求一个数的平方根的运算,叫做开平方。 a | |a

2.立方根:如果一个数的立方等于a,则称这个数为a立方根。数a 的立方根用3a表示。 任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。 开立方:求一个数的立方根(三次方根)的运算,叫做开立方。 四、实数的运算 有理数的加法法则: a)同号两数相加,取相同的符号,并把绝对值相加; b)异号两数相加。绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 任何数与零相加等于原数。2.有理数的减法法则:减去一个数等于加上这个数的相反数。 3.乘法法则: a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零. b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正 c)几个数相乘,只要有一个因数为0,积就为0 4.有理数除法法则: a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。0除以任何非0实数都得0。 b)除以一个数等于乘以这个数的倒数。

相关文档
最新文档