低压无功补偿电容器投切方式比较分析

低压无功补偿电容器投切方式比较分析
低压无功补偿电容器投切方式比较分析

电容器投切方式比较分析

近年来,随着对供电质量要求的不断提高和节能降耗的需要,无功补偿装置的使用量快速增长。随后各种不同无功补偿装置不断研发推出应用,如:静止无功补偿装置SVC、静止无功发生器SVG、晶闸管投切电容装置TSC等。但由于技术成熟悸或投入大等各种因素影响,目前使用范围最广,投入成本低,最易普及的仍是低压无功补偿装置。本文仅对目前国内存在的几种类型的低压电容投切装置的性能及优缺点进行分析,供用户和设计人员参考,以达到合理使用、提高企业经济效益、节约资源的效果。

一、性能比较

目前,国内的电容投切装置所采用的开关元件可以分为四大类:

1、机械式接触器投切电容装置(MSC)

接触器投入过程中,电容器的初始电压为零,触点闭合瞬间,绝大多数情况下电压不为零、有时可能处在高峰值(极少为零),因而产生非常大的电流,也就是常说的合闸涌流。实验表明合闸涌流严重时可达电容器额定电流的50倍。这不仅影响电容器和接触器的寿命,而且对电网造成冲击,影响其它设备的正常工作。因此,后来采用串接电抗器和加入限流电阻来抑制涌流,这虽然可以控制合闸涌流在额定电流的20倍以内,但从长期运行情况来看,其故障率仍然非常高,维修费用较高。

总的实践应用反映,其性能如下:优点:价格低,初期投入成本上升少,无漏电流

缺点:涌流大,寿命短,故障多,维修费用高

2、电子式无触点可控硅投切电容器装置(TSC)

可控硅投切电容器,是利用了电子开关反应速度快的特点。采用过零触发电路,检测当施加到可控硅两端电压为零时,发出触发信号,可控硅导通。此时电容器的电压与电网电压相等,因此不会产生合闸涌流,解决了接触器合闸涌流的问题。但是,可控硅在导通运行时,可控硅结间会产生一伏左右的压降,通常15KV AR三角形接法的电容器,额定电流22A,则一个可控硅消耗功率约为22W。如以一个150KV AR电容柜来算,运行时可控硅投切装置消耗的功率可达600W,而且都变成热量,使机柜温度升高。同时可控硅有漏电流存在,当未接电容时,即使可控硅未导通,其输出端也是高电压。

优点:无涌流,无触点,使用寿命长、维修少,投切速度快(5ms内)

缺点:价格高(首期投入为接触器的6倍左右)、发热严重、耗能、有漏电流。

3、复合开关投切电容装置(TSC+MSC)

复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持继电器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行。因而实现了投入无涌流运行不发热的目的。但为了降低成本,通常选用两只小功率,低耐压可控硅串联使用,利用可控硅20ms内电流可过载10倍额定电流的特性,过零投入,再用继电器闭合运行。而磁保持继电器触点偏小,且额定机械寿命一般为5万次,从目前投入市场使用情况看,可控硅时有击穿,磁保持继电器也有卡住不动作现象,工作不够稳定。

总的讲,优点:无涌流,不发热,节能

缺点:价格高为接触器的5倍、寿命短、故障较多、有漏电流、投切速度0.5s左右4、无涌流电容投切器(TSC+MSC)

无涌流电容投切器是深圳友邦怡公司综合以上各种投切装置的优点后所研制的一项专利技术产品。此电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,不发热。其特点是无触点开关的额定电流与电容器额定电流相同,而压为1600V。专用接触器的机械寿命和电寿命为100万次,因而保证了工作的可靠性和稳定性。经现场使用近一年时间,证明其过载能力强、节能效果明显。

优点:无涌流,不发热,节能、安全、寿命长。

缺点:价格高为接触器的3倍、投切速度0.5s左右

二、用户通过对各种电容投切装置性能比较,根据工程上的要求,有目的进行选型。以实现满意的技术经济性能。作者通过实践,从以上分析,提出建议如下:

1、用于无功量比较稳定,不需要频繁投切电容补偿的用户,可选用带带限流电阻的接触器投切电容装置,这种装置比较经济、价格低。由于投切次数少,相应寿命就够长了。

2、对于需要快速频繁投切电容补偿的用户,如电焊、电梯等设备,应选用无触点可控硅投切电容装置,才能达到应有的补偿效果。

3、对于其他一般工厂、小区和普通设备,无功量变化时间大于30s的地区,则考虑选用对电网无冲击、节能、安全、经济、使用寿命长的无涌流电容投切器。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电容器投切开关

电容器投切开关 电容器投入时会产生的涌流,涌流的大小与线路阻抗有关,与电容器投入时电容器与电源间的电压差有关。在极端的情况下,涌流可以超过100倍的电容器额定电流。如此巨大的涌流会对电容器的寿命产生很大的影响,会对电网产生干扰,因此人们总是希望涌流越小越好。 1、专用接触器投切开关:为了减少电容器投入时的涌流,人们发明了CJ19系列投切电容器专用接触器,此类器件的基本原理是利用限流电阻首先接入电路使电容器预充电,从而减小电源与电容器间的电压差,然后主触点将限流电阻短路掉。此类器件通常可以将涌流降低到5倍以下,但切除电容器时的电弧不可避免,因此对接点的要求较高以保证足够的使用寿命。 2、晶闸管电压过零投入技术:由于晶闸管的导通损耗很大,使补偿装置的自耗电增大,不仅需要使用大面积的散热片甚至还要另加风扇。 3、复合开关技术:复合开关技术就是将晶闸管与继电器接点并联使用,由晶闸管实现电压过零投入与电流过零切除,由继电器接点来通过连续电流,这样就避免了晶闸管的导通损耗问题,也避免了电容器投入时的涌流。但是复合开关技术既使用晶闸管又使用继电器,于是结构就变得相当复杂,并且由于晶闸管对dv/dt的敏感性也比较容易损坏。 4、同步开关技术:同步开关是近年来最新发展的技术,顾名思义,就是使机械开关的接点准确地在需要的时刻闭合或断开。对于控制电容器的同步开关,就是要在开关接点两端电压为零的时刻闭合,从而实现电容器的无涌流投入,在电流为零的时刻断开,从而实现开关接点的无电弧分断。 同步开关与常用的复合开关相比较,省略了与磁保持继电器接点并联的晶闸管组件,于是结构简化,成本降低,又避免了晶闸管组件所容易出现的故障,因此可靠性大大提高。 TSC系列晶闸管可控硅功率模块是一种新型的可控硅控制电容投切开关,即TSC 动态投切开关,具有电压过零时刻投入,不产生涌流;电流过零时刻切除,不产生高压;全波导通不产生附加的谐波,无声运行。是替代交流接触器的一种新型开关。TSC系列功率模块集成了晶闸管、触发板、散热器、轴流风机、温度控制、接线端子等,用户使用时只须上端接电源,下端接电容,二次端接控制器输出,接线简洁,安装方便。用于动态补偿的电容投切。 安装简单,接线方便,可控硅采用进口,保证可控硅的使用的寿命和年限。 该产品采用可控硅电容投切智能控制电路。其充分利用软件硬件结合的优势,同步投入,PWM驱动输出,等电位检测技术,脉冲变压器触发,具有电压过零检测及投入准确;电流过零时刻切除;响应速度快、保护功能齐全等特点,保证了电容投切开关及负载电容工作时的长期安全与稳定。适用对电网功率因数的快速动态补偿及谐波治理电容的频繁投切。

等容自动投切电容器技术规范讲解

唐山轨道客车有限责任公司110kV变电站 6kV分组等容自动投切无功补偿成套 装置 技术规范书

一、总则 本技术规范书的使用范围,仅限于唐山轨道客车有限责任公司110kV 变电站6kV母线高压自动投切无功补偿装置技术条件。该成套具有智能控制功能,控制合理、准确和迅速;电容分组合理,能用较少的分组达到较多的容量组合,补偿级差小;电容回路串联一定比例的电抗器,可有效的减小电容器投入时的合闸涌流,增加了设备的使用寿命,同时可抑制对线路谐波电流的放大,减少对电网造成的污染;装置还具有对电网运行数据进行监测、分析、记录等功能,并能在推荐或者规定的使用环境下长期正常运行。 本规范书详细规定了招标设备的供电环境条件,技术参数,质量要求及运行 方式等。 招标方具备生产过三台或以上符合招标文件所规定要求的产品,并已成功地 运行了三年以上。 本次招标设备要求经过权威部门鉴定并达国内先进技术水平。 本招标文件作为订货合同的附件,与合同具有同等的法律效力。 二、执行的标准 设备符合国家、行业等有关标准。 GB 50227-95 GB 50062-92并联电容器装置设计规范 电力装置的继电保护和自动装置设计规范 GB 50060-923-110KV高压配电装置设计规范 GB331.1-97 GB 14808-93 GB/T3983.2-1989 GB1207-1997 GB1208-1997 DL/T 604-1996 DL/462-1992 GB/T11024.1-2001高压输变电设备的绝缘配合 交流高压接触器 高电压并联电容器 电压互感器 电流互感器 高压并联电容器装置订货技术条件 高压并联电容器用串联电抗器定货技术条件 标称电压1kV以上交流电力系统用并联电容器:总则、 性能、试验和定额安全要求、安装和运行导则 GB/T11024.4-2001标称电压1kV以上交流电力系统用并联电容器:内部熔

无功补偿电容器串联电抗器的选用

无功补偿电容器串联电抗器的选用 在高压无功补偿装置中,一般都装有串联电抗器,它的作用主要有两点:1)限制合闸涌流,使其不超过20倍;2)抑制供电系统的高次谐波,用来保护电容器。因此,电抗器在无功补偿装置中的作用非常重要。 然而,串抗与电容器不能随意组合,若不考虑电容装置接入处电网的实际情况,采用“一刀切”的配置方式(如电容器一律配用电抗率为5%~6%的串抗),往往适得其反,招致某次谐波的严重放大甚至发生谐振,危及装置与系统的安全。由于电力谐波存在的普遍性,复杂性和随机性,以及电容装置所在电网结构与特性的差异,使得电容装置的谐波响应及其串抗电抗率的选择成为疑难的问题,也是人们着力研究的课题。电容器组投入串抗后改变了电路的特性,串抗既有其抑制涌流和谐波的优点,又有其额外增加的电能损耗和建设投资与运行费用的缺点。所以对于新扩建的电容装置,或者已经投运的电容装置中的串抗选用方案,进行技术经济比较是很有必要的。虽然现有的成果尚不足为电容装置工程设计中串抗的选用作出量化的规定,但是随着研究工作的深入,实际运行经验的积累,业已提出许多为人共识的见解,或行之有效的措施,或可供借鉴的教训。 下面总结电容器串联电抗器时,电抗率选择的一般规律。 1. 电网谐波中以3次为主 根据《并联电容器装置设计规范》,当电网谐波以3次及以上为主时,一般为12%;也可根据实际情况采用4.5%~6%与12%两种电抗器:(1)3次谐波含量较小,可选择0.5%~1%的串联电抗器,但应验算电容器投入后3次谐波放大量是否超过或接近限值,并有一定裕度。(2)3次谐波含量较大,已经超过或接近限值,可以选用12%或4.5%~6%串联电抗器混合装设。 2. 电网谐波中以3、5次为主 (1)3次谐波含量较小,5次谐波含量较大,选择4.5%~6%的串联电抗器,尽量不使用0.1%~1%的串联电抗器;(2)3次谐波含量略大,5次谐波含量较小,选择0.1%~1%的串联电抗器,但应验算电容器投入后3次谐波放大是否超过或接近限值,并有一定裕度。 3. 电网谐波以5次及以上为主 (1)5次谐波含量较小,应选择4.5%~6%的串联电抗器;(2)5次谐波含量较大,应选择4.5%的串联电抗器。对于采用0.1%~1%的串两电抗器,要防止对5次、7次谐波的严重放大伙谐振。对于采用4.5%~6%的串联电抗器,要防止怼次谐波的严重放大或谐振。当系统中无谐波源时,为防止电容器组投切时产生的过电压和对电容器组正常运行时的静态过电压、无功过补时电容器端的电压升高的情况分析计算,可选用0.5%~1%的电抗器。 根据以上的选择原则,对无功补偿装置中的串联电抗器有以下建议: (1)新建变电所的电容器装置中串联电抗器的选择必须慎重,不能与电容器任意组合,必须考虑电容器装置接入处的谐波背景。 (2)对于已经投运的电容器装置,其串联电抗器选择是否合理须进一步验算,并组织现场实测,了解电网谐波背景的变化。对于电抗率选择合理的电容器装置不得随意增大或减小电容器组的容量。 (3)电容器组容量变化很大时,可选用于电容器同步调整分接头的电抗器或选择电抗

电容器组投切操作步骤

电容器组投切时的操作步骤 1)、全站停电操作时,应先拉电容器组开关,再拉各路的出线开关。 2)、全站恢复送电时,应先合各路出线开关,再合电容器开关。 3)、全站故障失去电源后,没有失压保护的电容器组,必须将电容器组断开,以免电源重新合闸时损坏电容器。 4)、任何额定电压的电容器组,禁止将电容器组带负荷投入电源,以免损坏设备,电容器组每次分闸后,重新合闸时,必须将电容器停电3——5分钟,放电后进行。 电容器自动补偿原理 一、KL-4T 智能无功功率自动补偿控制器 1、补偿原理 JKL-4T 智能无功功率自动补偿控制器采用单片机技术,投入区域、延时时间、过压切除门限等参数已内部设定,利用程序控制固态继电器和交流接触器复合工作方式,投切电容器的瞬间过渡过程由固态继电器执行,正常工作由接触器执行(投入电容时,先触发固态继电器导通,再操作交流接触器上电,然后关断固态继电器;切除电容时先触发固态继电器导通,再操作交流接触器断电,然后关断固态继电器),具有电压过零投入、电流过零切除、无拉弧、低功耗等特点。 2、计算方法及投切依据 以电压为判据进行控制,无需电流互感器,适用于末端补偿,以保证用户电压水平。 1)电压投切门限 投入电压门限范围 175V ~210V 出厂预置 175V 切除电压门限范围 230V ~240V 出厂预置 232V 回差 0V ~ 22V 出厂预置 22V 2)欠压保护门限(电压下限)170V ~175V 出厂预置 170V

3)过压保护门限(电压上限)242V ~ 260V 出厂预置 242V 4)投切延时 1S ~600S 出厂预置 30S 3、常见故障及处理办法 用户端电压过低而电容器不能投入。 1)电压低于欠压保护门限。 2)三相电压严重不平衡。 二、JKL-4C 无功补偿控制器 1、补偿原理 JKL-4C 无功补偿控制器采用单片机技术,投切组数、投切门限、延时时间、过压切除门限等参数可由用户自行整定。取样物理量为无功电流,取样信号相序自动鉴别、转换、无须提供互感器变比及补偿电容容量,自行整定投切门限,满量程跟踪补偿,无投切振荡,适应于谐波含量较大的恶劣现场工作。 2、计算方法及投切依据 依据《DL/T597-1996低压无功补偿器订货技术条件》无功电流投切,目标功率因数为限制条件。 1)当电网功率因数低于COSФ预置且电网无功电流大于1.1Ic时(Ic为电容器所产生无功电流,由控制器自动计算),超过延时时间,补偿电容器自动投入。 2)当相位超前或电压处于过压、欠压状态时,控制器切除电容器。 3、常见故障及处理办法 1)显示 -.50 。取样电压电流线接错,应为线电压和另外一相流。 2)功率因数显示较低而不投入电容。目标功率因数设置过低或负荷过小或者过压保护门限设置过低。 三、PDK2000配电综合测控仪 1、补偿原理

低压无功补偿回路保护熔断器选择

低压无功补偿回路保护熔断器选择 低压无功补偿柜中补偿回路的熔断器作用,是为了保证整个回路安全可靠的运行,以达到无功补偿的目的,那么电容器(和串联电抗器)作为补偿回路的核心元件,熔断器对它提供可靠的保护性能是非常必要的。由于现行相关标准里对补偿回路保护熔断器的选择没有特别详细的要求,所以在实际应用中大家的选择也不尽一致,有时差别甚至相当悬殊。 在低压配电系统中的负载类型变得越来越复杂的情况下,补偿回路熔断器的选择不能一概而论,要视低压无功补偿的具体类型进行科学的分析和选择。 下面我们根据相关的国家标准和低压无功补偿类型两方面来分析如何合理正确的选择补偿回路的熔断器。 一、相关的国家标准 1、在低压并联电容器标准GB/T12747.1-2004中,对有关电容器最大电流和保护的相关要求和说明如下: 21 最大允许电流 电容器单元应适用于在线路电流方均根值为1.3倍该单元在额定正弦电压和额定频率下产

生的电流下连续运行,过渡过程除外。考虑到电容偏差,最大电容可达1.10CN,故其最大电流可达1.43IN。 这些过电流因素是考虑到谐波、过电流和电压偏差共同作用的结果。 33 过电流 电容器决不可在电流超过第21章中规定的最大值下运行。 34 开关、保护装置及连接件 开关、保护装置及连接件均应设计成能连续承受在额定频率和方均根值等于额定电压的正弦电压下得到的电流的1.3倍的电流。因为电容器的电容可能为额定值的 1.10倍,故这一电流最大值为 1.3×1.10倍额定电流,即为1.43IN 2、在中低压电容器及其成套装置标准GB7251中,有关电容保护熔断器的选择要求如下: 5.3.5 b) 熔断器额定工作电流(方均根值)应按2~3倍单组电容器额定电流选取。 3、在并联电容器装置设计规范GB50227-2008中,有关电容保护熔断器是这样要求的: 5.4 熔断器 5.4.2 用于单台电容器保护的外熔断器的熔丝额

电力电容器及无功补偿技术手册

1 电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电力电容器的补偿原理精编版

电力电容器的补偿原理公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容器投切方式比较分析

电容器投切方式比较分析 关键词:静止无功补偿装置静止无功发生器晶闸管开关可控硅开关复合开关 近年来,随着对供电质量要求的不断提高和节能降耗的需要,无功补偿装置的使用量快速增长。随后各种不同无功补偿装置不断研发推出应用,如:静止无功补偿装置SVC、静止无功发生器SVG、晶闸管投切电容装置TSC等。但由于技术成熟悸或投入大等各种因素影响,目前使用范围最广,投入成本低,最易普及的仍是低压无功补偿装置。本文仅对目前国内存在的几种类型的低压电容投切装置的性能及优缺点进行分析,供用户和设计人员参考,以达到合理使用、提高企业经济效益、节约资源的效果。 一、性能比较 目前,国内的电容投切装置所采用的开关元件可以分为三大类: 1、机械式接触器投切电容装置(MSC) 接触器投入过程中,电容器的初始电压为零,触点闭合瞬间,绝大多数情况下电压不为零、有时可能处在高峰值(极少为零),因而产生非常大的电流,也就是常说的合闸涌流。实验表明合闸涌流严重时可达电容器额定电流的50倍。这不仅影响电容器和接触器的寿命,而且对电网造成冲击,影响其它设备的正常工作。因此,后来采用串接电抗器和加入限流电阻来抑制涌流,这虽然可以控制合闸涌流在额定电流的20倍以内,但从长期运行情况来看,其故障率仍然非常高,维修费用较高。 总的实践应用反映,其性能如下:优点:价格低,初期投入成本上升少,无漏电流 缺点:涌流大,寿命短,故障多,维修费用高 2、电子式无触点可控硅投切电容器装置(TSC) 可控硅投切电容器,是利用了电子开关反应速度快的特点。采用过零触发电路,检测当施加到可控硅两端电压为零时,发出触发信号,可控硅导通。此时电容器的电压与电网电压相等,因此不会产生合闸涌流,解决了接触器合闸涌流的问题。但是,可控硅在导通运行时,可控硅结间会产生一伏左右的压降,通常15KV AR三角形接法的电容器,额定电流22A,则一个可控硅消耗功率约为22W。如以一个150KV AR电容柜来算,运行时可控硅投切装置消耗的功率可达600W,而且都变成热量,使机柜温度升高。同时可控硅有漏电流存在,当

电容柜投切操作流程(汇编)

电容柜投切操作流程 一、电容柜在投入时须先投一次部分,再投二次部分;切出反之。 2二、操作电容柜的投切顺序: 1、手动投入:投隔离开关→将二次控制开关至手动位置依次投入各组电容器。 2、手动切除:将二次控制开关至手动位置依次切除各组电容→切出隔离开关。 3、自动投切:投隔离开关→将二次控制开关至自动位置,功补仪将自动投切电容器。 注:电容柜运行时如需退出运行,可在功补仪上按清零键或将二次控制开关调至零位档退出电容器。不可用隔离开关直接退出运行运行中的电容器! 4、手动或自动投切时,应注意电容器组在短时间内反复投切,投切延时时间不少于30秒,最好为60秒以上,让电容器有足够的放电时间。

电容柜的停送电操作 1、电容柜送电前断路器应处于断开位置,操作面板上指令开关置于“停止”位置,无功功率自动补偿控制器开关处于“OFF”位置。 2、应在系统全部供电且运行正常后才能给电容柜送电。 3、电容柜的手动操作:合上电容柜的断路器,将操作面板上的指令开关转到1、2……位置时,将可手动投入1、2……组电容器投入补偿;将指令开关置于“试验”位置时,电容柜将对电容器组进行试验。 4、电容柜的自动操作:合上电容柜的断路器,将操作面板上的指令开关转到“自动”位置,合上无功功率自动补偿控制器开关(ON),将指令开关置于“运行”位置时,电容柜将根据系统设置对系统进行无功功率自动补偿。 5、电容柜仅在自动补偿失去作用时,方可采用手动投入补偿。 6、将电容柜操作面板上的指令开关转到“停止”位置时,电容柜将停止运行。

电容器操作规程 1、目的:所有值班人员能够正确操作电容柜,并保证设备及人身安全。 2、操作程序: (1)正常运行时,由电容器柜上自动投切装置按照运行状况自动循环投切电容组。 (2)正常停电操作时,应先拉开电容器组开关,后拉开各路馈电开关,送电时,操作顺序相反。 (3)事故情况下,如突然停电,必须先将电容器组的开关拉开,以免突然来电时,电压过高超过电容器允许值。 3、注意事项: (1)电容器组开关跳闸后,在未查明原因前不准强行送电。(2)电容器组严禁带电荷合闸,电容器组再次合闸时,必须在断开电源三分钟后进行。 4、巡检制度: (1)电容器的巡查内容如下:

无功补偿电容器运行特性参数选取

无功补偿电容器运行特性参数选取 1 电力电容器及其主要特性参数 电力电容器是无功补偿装置的主要部件。随着技术进步和工艺更新,纸介质电容器已被 自愈式电容器所取代,自愈式电容器采用在电介质中两面蒸镀金属体为电极,其最大的改进是电容器在电介质局部击穿时其绝缘具有自然恢复性能,即电介质局部击穿时,击穿处附近的金属涂层将熔化和气化并形成空洞,由此虽然会造成极板面积减少使电容C 及相应无功功率有所下降,但不影响电容器正常运行。 自愈式电容器主要特性参数有额定电压、电容、无功功率。 1. 1 额定电压 《自愈式低电压并联电容器》第3. 2 条规定“电容器额定电压优先值如 下0. 23 ,0. 4 ,0. 525 及0. 69 kV。”电容器额定电压选取一般比电气设备额定运行电压高5 %。 1. 2 电容 电容器的电容是极板上的电荷相对于极板间电压的比值,该值与极板面积、极板间绝缘 厚度和绝缘介质的介电系数有关, 其计算式为C = 1 4πε× S D 式中ε为极板间绝缘介质的介电系数; S 为电容器极板面积; D 为电容器绝缘层厚度。 在上式中,电容C 数值与电压无直接关系, C 值似乎仅取决于电容器极板面积和绝缘介质,但这只是电容器未接网投运时的静态状况;接网投运后,由于电介质局部击穿造成极板面积减少从而会影响到电容C 数值降低,因此运行过程中, 电容C 是个逐年衰减下降的变量,其衰减速度取决于运行电压状况和自身稳态过电压能力。出厂电容器的电容值定义为静态电 容。一般,投运后第一年电容值下降率应在2 %以内,第二年至第五年电容值下降率应在1 %~ 2 % ,第五年后因电介质老化,电容值将加速下降,当电容值下降至出厂时的85 %以下,可认为该电容器寿命期结束。 1. 3 无功功率 在交流电路中,无功功率QC = UI sinφ由于电容器电介质损耗角极小,φ= 90°,所以sin φ= 1 ,则无功功率QC = UI =ωCU2 ×10 - 3 = 2πf CU2 ×10 - 3 (μF) ,从该式可见,电容器无功功率不仅取决于电容C ,而且还与电源频率f 、端电压U 直接相关,电容器额定无功功率的准确定义应是标准频率下外接额定电压时静态电容C 所对应的无功率。接网投运后电容器所输出实际无功功率能否达到标定容量,则需视运行电压状况。当电网电压低于电容器额定电压时,电容器所输出的无功功率将小于标定值。因此如果电容器额定电压选择偏高,电容器实际运行电压长期低于额定值,很可能因电容器无功出力低于设计值造成电网无功短 缺。 2 无功补偿电容装置参数的选取误区 无功补偿装置在进行设计选型及设备订货时,提供给厂家的参数往往仅是电容补偿柜型 号和无功功率数值,而电容器额定电压及静态电容值这两个重要参数常被忽略。由于电容器 生产厂家对产品安装处电压状况不甚了解,在产品设计时往往侧重于降低产品生产成本和减 少电介质局部击穿,所选取的电容器额定电压往往高于国家标准推荐值,这样做对电网运行的无功补偿效果会造成什么影响对电网建设投资又会引起什么变化呢可通过以下案例进行 分析。 例如某台10 0. 4 kV 变压器,按照功率因数0. 9 的运行要求,需在变压器低压侧进行集中 无功补偿,经计算需补偿无功功率100 kvar ,如果按额定电压U = 450 V 配置电容器,根据QC=ωCU2 ×10 - 3 计算,电容器组的静态电容值C 为1 572μF ,接入电网后在运行电压U =400 V 的状态下,该电容器实际向电网提供的无功功率QC 为79 kvar ,补偿效果仅达预期的79 %。反之,在上述条件下,要想保证实际补偿效果为100 kvar ,则至少需配置电容器无功功率为127 kvar ,也就意味着设备投资需要增加27 %。中山市2004 年变压器增加898 台,合计容量近60 万kvar ,按30 %补偿率计需补偿无功功率近18 万kvar 。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

电容器投切对无功补偿的影响

电容器投切对无功补偿的影响 【摘要】电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。因此,电容器作为电力系统的无功补偿势在必行。当前,利用投切并联电容器来调节无功补偿已经非常普遍。 【关键词】电容器;无功补偿;投切 在电路中接入电容可以为设备提供无功功率,提高功率因数。由于我们的设备不可能是纯容性或纯感性的,且设备运行的状态也是不可预知的,如开、关机,或开机时不同工作状态所需要的无功功率都不相同。当补偿器提供的无功功率大于设备所需时,也会对电网造成极大影响。所以我们需要适时的调整无功功率的补偿来匹配设备所需的无功功率,即电容组投切方式。 1 无功在供电系统中的影响 1)接在电网中的许多用电设备是根据电磁感应原理工作的,我们最常见的变压器就是通过磁场才能改变电压并且将能量送出去,电动机才能转动并带动机械负荷。电容器在交流电网中接通时,在一个周期内的,上半周期的充电功率和下半周期的放电功率相等,不消耗能量,这种充放电功率叫做容性无功功率。 2)无功功率增大,即供电系统的功率因数降低将会引起: (1)增加电力网中输电线路上的有功功率损耗和电能损耗。若设备的功率因数降低,在保证输送同样的有功功率时,无功功率就要增加,这样势必就要在输电线路中传输更大的电流,使得此输电线路上有功功率损耗和电能损耗增大。 (2)系统中输送的总电流增加,使得供电系统中的电气元件,如变压器、电气设备、导线等容量增大,从而使用户的起动控制设备、测量仪表等规格尺寸增大,因而增大了初投资费用。 (3)功率因数过低还将使线路的电压损耗增大,结果负荷端的电压就要下降,甚至会低于允许偏移值,从而严重影响异步电动机及其它用电设备的正常运行。特别在用电高峰季节,功率因数太低会出现大面积地区的电压偏低,将给油田的生产造成很大的损失。 (4)使电力系统内的电气设备容量不能充分利用,因为发电机或变压器都有一定的额定电压、额定电流和额定容量,在正常情况下,这些参数是不容许超过的,若功率因数降低,则有功出力也将随之降低,使设备容量不能得到充分利用。 2 减少无功,提高功率因数的方法

如何根据电力变压器容量选择无功补偿电容器的大小

如何根据电力变压器容量选择无功补偿电容器的大小 怎样正确选用电力电容器,如下几点供用户参考: 1、用户购买电力电容器最好直接到生产厂家或由生产厂家授权的代理商处购买,这样防止购买假冒伪劣的产品。 2、用户在选用电力电容器时,应注意电力电容器的产品外观是否完整,有无碰损,及生产厂家的名牌、厂址、质保卡、合格证、说明书等是否齐全。(厂名不全,如“威斯康电气公司”就是厂名不全,齐全的厂名应如“上海威斯康电气有限公司”。通讯地址等不详的产品,用户最好不要购买,以防发生意外事故。)购买前最好与生厂厂家联系证实一下产品售后服务等情况。 3、用户在购买电力电容器时,还应注意标牌上的各种数据:如额定电量KVAR、电容量uf、电流是否对,最好用UF表测量一下,用兆欧表测一下绝缘电阻,生产成套装置的厂家有条件的话可抽查耐压是否符合国家标准。 用户购买电力电容器时,不能只讲究价格便宜,俗话说“便宜没好货、好货不便宜”。一般电容器产品的价格差异是基于其成本的高低。如原材料的优劣:制造电力电容器的电容膜,有铝膜与锌铝膜两种,两者的价格相差很大,用锌铝膜制造的电容器相对成本高,当然质量也不同。此外,电容膜的优质一等品与二等品的价格不同,质量也不同。因此,用户在购买电容器时,价格是次要的,产品的质量才是最重要的。 4、安装使 用电力电容器,安全可靠的方法是:安装之前,将每台电力电容器测量后,将产品序号做好纪录,再依次安装。值得注意的一点,生产成套装置的厂家应考虑到电容补偿柜的运输问题。如果将电容器安装好后运输,很容易造成电容器因运输途中的路面颠簸而碰撞损坏(特别是容量大的电容器因其自身高度和重量,最易因此受到损坏)。方便而有效的解决办法是:在起始点对电容补偿柜装上电容器进行测试后,将电容补偿柜(空柜)和电力电容器分开运输,直到最终目的地(直接用户处)再进行安装。 用户只要对电力电容器选用得当,可为企业提高经济效益,为设备运行与人身财产提供安全的保证。 二、对环境的原因直接影响到电力电容器的寿命。电压过高与冲击电流对电力电容器是致命损害。所以选用电力电容器时,应向生产厂家提供下列几点情况,这样生产厂家可为用户生产专用的电容器。 1、电力电容器设计温度标准45℃,超过45℃对电容器影响很大。(如上海虹桥机场国内候机楼配电房,其里面温度比外界的自然温度高出许多,普通电容器被封闭在柜子里,温度则更高。导致电容器在高温状态下发热过度,引起膨胀、漏液。而

TBBZ柱上式自动投切高压并联电容器装置

TBBZ自动投切高压并联电容器装置 安装使用说明书 1 概述 TBBZ柱上式自动投切高压并联电容器装置(以下简称装置)适用于10千伏或6千伏配电线路中,作提高功率因数、降低线路损耗、改善电压质量之用。 本装置可根据线路需要,由用户自行设置,实现并联电容器的自动投切。同时还具有短路、过电流、过电压、欠电压等保护功能。所采用的JCZ1系列真空接触器,具有合闸无弹跳、分闸不重燃、寿命长等特点;高压并联电容器带内熔丝和放电电阻;无功补偿自动控制器抗干扰能力强,性能可靠;装置还配有户外式控制电源变压器。本装置结构紧凑、安装方便。 符合标准JB/T7111-1993《高压并联电容器装置》、DL/T604-1996《高压并联电容器装置订货技术条件》。 2 使用环境条件 2.1 周围空气温度:上限+45℃,下限-40℃。 2.2 海拔高度:不高于1000m。 2.3 风速:不大于35m/s。 2.4 日照:幅度(最大)为0.1W/cm2。 2.5 地震:地震烈度不超过8度。 2.6 化学条件:安装场所无有害气体和蒸气,无导电性或爆炸性尘埃。 3 型号含义及主要技术参数 3.1 型号含义 Y接线方式 装置的额定容量kvar 额定电压kV 柱上式 并联电容器装置 3.2 主要技术参数 主要技术参数见表1。

表1 装置主要技术参数表 4 结构和工作原理 4.1 本装置由全膜高压并联电容器(带放电电阻及内熔丝)、跌落式保险,真空接触器、电压互感器,氧化锌避雷器、电流互感器,放电线圈、高压无功补偿控制器、保护回路及金具组成。 4.2 本装置有双杆安装及单杆安装两种结构型式(详见附图1、2),一次接线见附图3。 4.3 工作原理 4.3.1 关合跌落式熔断器,装置高压电源被接通,电压互感器向高压无功补偿自动控制器(简称自控器)及真空接触器操动机构提供交流100V电源。当线路的电压、或功率因数、或运行时间处于预先设定的投切范围时,自控器接通操动机构电源,使真空接触器合闸,将电容器组投入线路运行。当线路的电压、或功率因数、或运行时间处于切除范围时,自控器接通分励脱扣器电源,使真空接触器分闸,将电容器组退出运行。从而实现电容器的自动投切,达到提高功率因数、降低线损、改善电压质量的目的,同时防止无功倒送。

怎样正确选用电力电容器

怎样正确选用电力电容器,如下几点供用户参考: 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。无功补偿的合理配置原则,从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。 (1 ) 总体平衡与局部平衡相结合,以局部为主。 (2) 电力部门补偿与用户补偿相结合。 在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此, 为了减少无功功率在网络中的输送, 要尽可能地实现就地补偿, 就地平衡,所以必须由电力部门和用户共同进行补偿。 (3) 分散补偿与集中补偿相结合,以分散为主。 集中补偿, 是在变电所集中装设较大容量的补偿电容器。 分散补偿, 指在配电网 络中分散的负荷区, 如配电线路,

配电变压器和用户的用电设备等进行的无功补 偿。 集中补偿, 主要是补偿主变压器本身的无功损耗, 以及减少变电所以上输电 线路的无功电力, 从而降低供电网络的无功损耗。 但不能降低配电网络的无功损 耗。 因为用户需要的无功通过变电所以下的配电线路向负荷端输送。 所以为了有 效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。 (4) 降损与调压相结合,以降损为主。 2、影响功率因数的主要因素 功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外, 还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。 2. 1 、异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 2. 2 供电电压超出规定范围也会对功率因数造成很大的影响当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的 110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。 所以,应当采取措施使

相关文档
最新文档