(完整版)华南理工大学数值分析试题A

(完整版)华南理工大学数值分析试题A
(完整版)华南理工大学数值分析试题A

华南理工大学研究生课程考试《数值分析》试卷 A 注意事项: 1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请按要求填写在本试卷上; 3. 课程代码:S0003004 4. 考试形式:闭卷 5. 考生类别:硕士研究生 6. 本试卷共八大题,满分100分,考试时间为150分钟。一.选择、判断、填空题(10小题,每小题2分,共20分): *** 第1--2小题: 选择A 、B 、C 、D 四个答案之一, 填在括号内, 使命题成立 ***1.数学模型的数值解与该数学模型的精确解之间的误差称为。A )模型误差B )观测误差C )截断误差D )舍入误差2. 解线性代数方程组的列主元高斯消去法,与顺序高斯消去法相比,其优点是能( )。A )节省存储空间B )提高计算精度C )减少计算量D )提高计算速度*** 第3--6小题: 判断正误, 正确写"√ ", 错误写"× ", 填在括号内 ***3.一般而言,两个相近的数相减会导致有效数字的损失。( )4.通过n+1个点的n 次牛顿插值多项式N n (x)与通过这n+1个点的n 次拉格朗日插值多项式L n (x)是恒等的。( ) 5.两个节点的Newton —Cotes 求积公式就是两点高斯求积公式。( )6.在常微分方程数值解法中,点x n+1处精确解y(x n+1)与对应数值解y n+1之差就称为局部截断误差。()*** 第7--10小题: 填空题,将答案填在横线上 *** 7.设x= 0.012345 是经四舍五入得到的近似数,则它有位有效数字,它的非保守估计的绝对误差限为。8.解线性代数方程组的顺序高斯消去法包括过程和过程。9.一次插值在几何上就是用线近似代替已知曲线。10.设4321A , 则1A ,)(A Cond 。二.( 12分) 依据如下函数值表_____________________姓名学

号学

院专

业任

课教师(密封线内不答题)…

…………………密………………………………………………封………………………………………线……………………………………………

x

0 1 )

(x f 1 2

)('x f 0 (1) 构造插值多项式满足以上插值条件;

(2) 给出插值余项表达式(不必证明)

三.(11分) 设有试验数据如下:x : 1

2 3 4 y : 4

10 18 26 试求其形如2y a bx 的拟合曲线。

四.( 11分) 求积公式

10)(dx x f ≈)1(41)31(43f f 的代数精度是多少?已知其余项1

0)(dx x f )]1(4

1)31(43[f f 的表达式为)(f C ,其中)1,0(,问C 是多少?五.(11分)用顺序Gauss 消去法解线性方程组(用增广矩阵表示求解过程)

:10

52321015102321321

321

x x x x x x x x x 计算过程中遇小数保留小数点后

4位。六.(11 分) 设n n A R

非奇异,n b R ,证明:对于0x (),迭代公式k 1k T k 21

x x A b Ax

()()()产生的近似解序列收敛于方程组

Ax=b 的解,其中2A 。七.(12分)已经知道,求一个数R 的倒数可以不用除法而用下面的迭代公式算出

: x n+1 = x n (2 – x n R),

n = 0,1,2,......试利用求根的牛顿迭代推导出该迭代公式,并利用判据确定该迭代法的收敛阶数。八.( 12分)

(1)试分别运用Taylor 展开的方法、以差商离散导数项的方法和数值积分的方法推导出

求解y ’ = f (x , y), y (x 0) = y 0 的Euler 公式:

y n+1 = y n + h f (x n , y n ),n = 0,1,2

…(2) 若用Euler 公式解初值问题

2(0)1

dy

y dx

y

试推导出该数值方法的绝对稳定条件。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

2016华工计算机计算方法(数值分析)考试试卷

考完试了,顺便把记得的题目背下来,应该都齐全了。我印象中也就只有这些题,题目中的数字应该是对的,我也验证过,不过也不一定保证是对的,也有可能我也算错了。还有就是试卷上面的题目可能没有我说的这么短,但是我也不能全把文字背下来,大概意思就是这样吧。每个部分的题目的顺序可能不是这样,但总体就是这四大块。至于每道题目的分值,我记得的就写出来了,有些题目没注意。我题目后面写的结果都是我考试时算出来的,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考。 华南理工大学2016计算机计算方法(数值分析)考试试卷 一填空题(16分) 1.(6分)X* = 3.14,准确值x = 3.141592,求绝对误差e(x*) =,相对误差e r(x*) =,有效数 位是。 2.(4分)当插值函数的n越大时,会出现龙格现象,为解决这个问题,分段函数不一个 不错的办法,请写出分段线性插值、分段三次Hermite插值和三次样条插值各自的特点。 3.(3分)已知x和y相近,将lgx – lgy变换成可以使其计算结果更准确。 4.(3分)已知2x3– 3x2 +2 = 0,求牛顿迭代法的迭代式子。 解题思路:1. 这里的绝对误差和相对误差是没有加绝对值的,而且要注意是用哪个数减去哪个数得到的值,正负号会不一样;2. 可以从它们函数的连续性方面来说明;3. 只要满足课本所说的那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导,就是用泰勒展开式来近似求值得到的迭代公式。 我最终的结果是: 1.-0.001592 -0.000507 3 2.分段线性插值保证了插值函数的连续性,但是插值函数的一次导数不一定连续; 分段三次Hermite既保证了插值函数的连续性,也保证了其一次导数的连续性; 三次样条插值保证了插值函数及其一次导数和二次导数的连续性 3.lg(x/y) 4.x k+1 = x k– (2x3– 3x2 +2)/(6x2 -6x) 二计算题(64分) 1.已知f(x) = x3–x -1,用对分法求其在[0 , 2]区间内的根,误差要满小于0.2,需要对分多少 次?请写出最后的根结果。 解题思路:每次求区间的中值并计算其对应的函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值的绝对值小于0.2为止。 我最终算得的对分次数是4,根的结果为11/8. 2. (1)请根据以上数据构造Lagrange三次插值函数; (2)请列出差商表并写出Newton三次插值函数。 解题思路:(1) 直接按照书本的定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;(2)差商表就是计算Newton三次插值函数过程中计算到的中间值及结果值,可以先在草稿上按照Newton公式的计算过程把公式写出来,然后把中间用到的值

11:数值分析试题2009~2010

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =0.004532是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746) f x d x f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-=若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________. 8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。

华南理工大学数值分析试题-14年下-A

《数值分析》A 卷 第 1 页 共 2 页 华南理工大学研究生课程考试 《数值分析》试卷A (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一.(12分)解答下列问题 1.欲计算下式: ()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x =+-+------+---- 2.设有递推公式 0161,1,2,n n y y y n -?=??=-=?? *001.732y y = 作实际计算,问计算到10y 时误差为初始误差*00y y -的多少 这个计算过程数值稳定吗 ? . (14分)解答下列问题 1. 若2()63f x x =+,则[1,2,3]f 和[1,2,34]f ,的值分别是多少? 2. 1012 . (10分) 设f 在互易节点i x 上的值()()0,1,....i i f f x i n ==。试证明:f 在节点i x 上n 次最小二乘拟合多项式()n p x 与f 在节点i x 上的n 次Lagrange 插值多项式()n L x 一致,()()=n n p x L x 。 . (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,α): ()()()11f x dx Af Bf αα-≈-+? Gauss 型求积公式。

《数值分析》A 卷 第 2 页 共 2 页 五. (14分) 已知线性代数方程组Ax=b 为: (1) 用顺序高斯消去法求解方程组Ax=b ; (2) 先由(1)的消元过程直接写出A 的LU 分解,再利用该LU 分解求解方程组Ax=b 。 六. (12分) 对方程组323,,121Ax b A b ????===????-???? ,拟用迭代法 (1)()()(),0,1,k k k x x Ax b k α+=+-= 求解,试确定实数α的取值范围,使得该迭代公式收敛。 七. (14分) 欲求方程 ln 2 (1)x x x -=> 的根,试 (1)证明 [3, 4] 为方程的一个有根区间; (2)在区间 [3, 4] 上构造一个收敛的不动点迭代公式; (3)求所构造迭代公式的收敛阶。 八. (12分) 对初值问题 ()()00 y f xy y x y '=???=?? (1)试利用Taylor 展开公式推导下列数值求解公式: ()()()212 n n n n n n n n n n h y y hf x y f x y y x f x y +'=+++???? (2)指出上述公式是几阶公式。 ??????? ?????????=????????????????????????????????-----n n n n n n n n b b b b x x x x d u u u v d v d v d 12112112111221100 0000 . 0)/(,0,1 1,,,≠-≠∑-=n i i i i n i i i i i d v u d d b v u d 已知其中

数值分析试题

华南理工大学研究生课程考试《数值分析》试卷 A (2015年1月9日)注意事项: 1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请按要求填写在本试卷上; 3. 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 6. 本试卷共八大题,满分100分,考试时间为150分钟。一.(12分)解答下列问题1.欲计算下式:()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x 试给出乘法次数尽可能少的计算形式。2.设有递推公式01361,1,2,n n y y y n 如果取*003 1.732y y 作实际计算,问计算到10y 时误差为初始误差*00y y 的多少倍?这个计算过程数值稳定吗?二. (14分)解答下列问题_____________________姓名学 号学 院专 业任 课教师(密封线内不答题)…… … … … …………密………………………………………………封………………………………………线…………………………………………………

1. 若2() 63f x x +,则[1,2,3]f 和[1,2,34]f ,的值分别是多少?2. 已知100101211114412===,,,试利用二次插值方法求115的近似值,并估计误差。 三. (10分) 设f 在互易节点 i x 上的值0,1,....i i f f x i n 。试证明:f 在节点i x 上

的n 次最小二乘拟合多项式n p x 与f 在节点i x 上的n 次Lagrange 插值多项式n L x 一致,即=n n p x L x 。 四. (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,):

孙志忠北京理工大学偏微分方程数值解上机作业

偏微分方程数值解大作业

目录 第一题 (3) 第二题 (7) 第三题 (16) 第四题 (20) 第五题 (26) 第六题(附加题1) (39) 第七题(附加题2) (45) 第八题(附加题3) (51)

第一题 习题1 3. (1)解曲线图 图1 (2)误差曲线图

图2 (3)表格 表1 部分点处精确解和取不同步长时所得的数值解 表2 取不同步长时部分结点处数值解的误差的绝对值和数值解的最大误差

(4)MATLAB源代码 M=64; a=0; b=pi/2; h=(b-a)/M; x=[a+h:h:b-h]; u=zeros(M-1,M-1); u(1,1)=(2/h^2)+(x(1)-1/2)^2; u(1,2)=-(1/h^2); u(M-1,M-1)=(2/h^2)+(x(M-1)-1/2)^2; u(M-1,M-2)=-(1/h^2); for i=2:M-2 u(i,i-1)=-(1/h^2); u(i,i)=(2/h^2)+(x(i)-1/2)^2; u(i,i+1)=-(1/h^2); end f=zeros(M-1,1) f(1)=(x(1).*x(1)-x(1)+5/4).*sin(x(1)); f(M-1)=(x(M-1).*x(M-1)-x(M-1)+5/4).*sin(x(M-1))+1/h^2; for j=2:M-2 f(j)=(x(j).*x(j)-x(j)+5/4).*sin(x(j)); end

y=inv(u)*f; true=sin(x); plot(x,y'-true)

北京理工大学数学专业数值计算方法Ⅰ期末试题2010级B卷(MTH17170)

一. (10分) 用三角分解(LU 分解)求解下方程组,要求写出L,U 矩阵: 1232644145361182x x x -?????? ? ? ? -= ? ? ? ? ? ?-???? ??. 二. (10分) 已知矩阵6 37398785A -?? ? =- ? ?--?? ,求1cond()A 和cond()A ∞,要求计算过程保留三位 有效数字,并简要分析所得结果. 三. (10分) 设矩阵1001005a A b b a ?? ? = ? ??? ,且0det()A ≠,试求用,a b 表示的求解线性方程组 Ax d =的Jacobi 及Gauss-Seidel 迭代法收敛的充分必要条件. 四. (10分) 试确定下求积公式中的待定参数,使求积公式的代数精确度尽量高,并指明所确定的求积公式具有的代数精确度 []20 002 '' ()()()()()h h f x dx f f h h f f h α??≈ ++-??? . 五. (10分) 已知非线性方程240x x +-=在014.x =附近有根,试构造一种收敛的迭代格式,并说明理由. 六. (10分) 求形如e (,)bx y a a b =为常数的经验公式,使它能和下表给出的数据相拟合 x 1 2 3 4 5 6 7 8 y 15.3 20.5 27.4 36.6 49.1 65.6 87.8 117.6 七. (10分) 分别用Euler 法和改进Euler 法求解下问题的数值解,取01.h =,计算过程保留四位小数. 00201',., (). y x y x y =+≤≤?? =? 八. (15分) 用下数据表构造不超过3次的插值多项式,建立导数型插值误差公式,并证明.

数值分析试题

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 华南理工大学研究生课程考试 《数值分析》试卷A (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一.(12分)解答下列问题 1.欲计算下式: ()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x =+-+------+---- 2.设有递推公式 0161,1,2,n n y y y n -?=??=-=?? *001.732y y ≈= 作实际计算,问计算到10y 时误差为初始误差*00y y -的多少 这个计算过程数值稳定吗 ? . (14分)解答下列问题 1. 若2()63f x x =+,则[1,2,3]f 和[1,2,34]f ,的值分别是多少? 2. 1012 . (10分) 设f 在互易节点i x 上的值()()0,1,....i i f f x i n ==。试证明:f 在节点i x 上n 次最小二乘拟合多项式()n p x 与f 在节点i x 上的n 次Lagrange 插值多项式()n L x 一致,()()=n n p x L x 。 . (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,α): Gauss 型求积公式。 . (14分) 已知线性代数方程组Ax=b 为: (1) 用顺序高斯消去法求解方程组Ax=b ; ????????????????=????????????????????????????????-----n n n n n n n n b b b b x x x x d u u u v d v d v d 121121121112211000000 .0)/(,0,11,,,≠-≠∑-=n i i i i n i i i i i d v u d d b v u d 已知其中

北京理工大学2008级数值分析试题及答案

课程编号:12000044 北京理工大学2009-2010学年第二学期 2008级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 注意:① 答题方式为闭卷。 ② 可以使用计算器。 请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。 一、 填空题(每空2分,共30分) 1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点 弦截法产生的解序列收敛到方程f (x )=0的根。 2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯 求积公式的代数精度为 。 3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ?b 有 位有 效数字,a +b 有 位有效数字。 4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗 日插值多项式是 。 5. 设有矩阵?? ????-=4032A ,则‖A ‖1=_______。 6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。 7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列 {}() k X 收敛的充分必要条件是 。 8. 已知n=3时的牛顿-科特斯系数,8 3,81)3(1) 3(0 ==C C 则=) 4(2C ,=) 3(3C 。 9. 三次样条函数是在各个子区间上的 次多项式。 10. 用松弛法 (9.0=ω)解方程组??? ??=+-=++--=++3 1032202412 25322 321321x x x x x x x x x 的迭代公式是 。

华南理工大学数值分析试题

华南理工大学研究生课程考试 《数值分析》试卷B (2015 年 1 月 9 日) 师教课任 注意事项: 1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请按要求填写在本试卷上; 3. 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 6. 本试卷共八大题,满分 100分,考试时间为150分钟。 线 一?单项选择题(每小题2分,共10分) 1 ?设有某数x,则x的具有四位有效数字且绝对误差限是0. 5 10 5的近似值 应是( )° (A) 0.693 (B) 0.6930 (C) 0.0693 (D) 0.06930 业专 院学 ) 题 答 不 内 线 封 密 { 2 ?选择数值稳定的算法是为了() (A)简化计算步骤 (C)节省存储空间 (B)控制舍入误差的积累 (D)减小截断误差 3.如果对不超过m次的多项式,求积公式 式具有( )次代数精度。 (A)至少 m (B) m b f (x)dx a (C) 不足m A k f (x k)精确成立,则该求积公 k 0 (D)多于m 号学名姓 4.为使两点数值求积公式 1 1 f(x)dx f(X。) f (x1)具有最高次代数精度, 则求积节点应为( )° (A)x°,X1 任意(B) X。1,X1 1 (C) X。- ,x1 3 _3 3 (D) x o 1 1 ,X1 2 2 密 5.在下列求解常微分方程初值问题的数值方法中, (A) Euler 公式(B) (C) 3 阶 Runge— Kutta 公式(D) 4 () 的局部截断误差为 梯形公式 阶 Runge— Kutta 公式 O(h 3)。

数值计算方法期末考精彩试题

1. 已知函数 21 1y x = +的一组数据: 求分段 线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 [] 0,1x ∈, ()1010.510.50110x x L x x --= ?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--% 所以分段线性插值函数为 ()[][]10.50,10.80.31,2x x L x x x ?-∈?=? -∈??% ()1.50.80.3 1.50.35 L =-?=% 4. 写出梯形公式和辛卜生公式,并用来分别计算积分1 01 1dx x +?. 计算题4.答案 4 解 梯形公式 ()()()2b a b a f x dx f a f b -≈ ?+???? 应用梯形公式得 1 01111 []0.75121011dx x ≈+=+++? 辛卜生公式为

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度 ()()()() 1010h h f x dx A f h A f A f h --=-++? 证明题答案

故 ( )()()()40333h h h h f x dx f h f f h -= -++? 具有三次代数精确度。 1.设 3 2 01219 (), , 1, 44f x x x x x ==== (1)试求()f x 在 19,44???? ??上的三次Hermite 插值多项式()x H 使满足''11()(), 0,1,2,... ()()j j H x f x j H x f x === () x H 以升幂形式给出。 (2)写出余项()()()R x f x H x =-的表达式 计算题1.答案 1、(1) ()32142632331 22545045025x x x x H =- ++- (2) ()522191919()(1)(),()(,) 4!164444R x x x x x ξξξ-=---=∈ 3.试确定常数A ,B ,C 和 a ,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的? 计算题3.答案

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

北京理工大学 级数值分析试题及答案

课程编号:12000044 北京理工大学2010-2011学年第一学期 2009级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 注意:① 答题方式为闭卷。 ② 可以使用计算器。 请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。 一、 填空题 (2 0×2′) 1. 设x =0.231是精确值x *=0.229的近似值,则x 有 位有效数字。 2. 设 ?? ????-=? ?????-=32,1223X A ,‖A ‖∞=___ ____,‖X ‖∞=__ _____, ‖AX ‖∞≤____ ___ (注意:不计算‖AX ‖∞的值) 。 3. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 ,则使用该迭代函 数的迭代解法一定是局部收敛的。 4. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= , f [20,21,22,23,24,25,26,27,28]= 。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 (填写前插公式、后插公式或中心差分公式),若 所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 (填写前插公式、后插公式或中心差分公式);如果要估计结果的舍入误差,应该选用插值公式中的 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( ;所以当 系数a i (x )满足 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于0.1%,至少要取 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 。 10. 由下列数据所确定的插值多项式的次数最高是 。

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

华南理工大学数值分析教学内容及复习提纲

全日制硕士生“数值分析”教学内容与基本要求 一、教学重点内容及其要求 (一)引论 1、误差的基本概念 理解截断误差、舍入误差、绝对(相对)误差和误差限、有效数字、算法的数值稳定性等基本概念。 2、数值算法设计若干原则 掌握数值计算中应遵循的几个原则:简化计算步骤以节省计算量(秦九韶算法),减少有效数字的损失选择数值稳定的算(避免相近数相减),法。 重点:算法构造(如多项式计算)、数值稳定性判断(舍入误差的分析) (二)插值方法 1、插值问题的提法 理解插值问题的基本概念、插值多项式的存在唯一性。 2、Lagrange插值 熟悉Lagrange插值公式(线性插值、抛物插值、n次Lagrange插值),掌握其余项表达式(及各种插值余项表达式形式上的规律性)。 3、Newton插值 熟悉Newton插值公式,了解其余项公式,会利用均差表和均差的性质计算均差。 4、Hermite插值 掌握两点三次Hermite插值及其余项表达式,会利用承袭性方法构造非标准Hermite插值。 5、分段线性插值 知道Runge现象,了解分段插值的概念,掌握分段线性插值(分段表达式)。 6、三次样条函数与三次样条插值概念 了解三次样条函数与三次样条插值的定义。 重点:多项式插值问题(唯一性保证、构造、误差余项估计) (三)曲线拟合与函数逼近 1、正交多项式 掌握函数正交和正交多项式的概念(函数内积、2-范数、权函数,正交函数序列,正交多项式),了解Legendre多项式(授课时,将其放在课高斯型数值积分这部分介绍)。 2、曲线拟合的最小二乘法 熟练掌握曲线拟合最小二乘法的原理和解法(只要求线性最小二乘拟合),会求超定方程组的最小二乘解(见教材P103)。 3、连续函数的最佳平方逼近 了解最佳平方逼近函数的概念,掌握最佳平方逼近多项式的求法(从法方程出发)。 重点:最小二乘拟合法方程的推导、求解;拟合与插值问题的异同。

北理工数值分析大作业

数值分析上机作业

第 1 章 1.1计算积分,n=9。(要求计算结果具有6位有效数字) 程序: n=1:19; I=zeros(1,19); I(19)=1/2*((exp(-1)/20)+(1/20)); I(18)=1/2*((exp(-1)/19)+(1/19)); for i=2:10 I(19-i)=1/(20-i)*(1-I(20-i)); end format long disp(I(1:19)) 结果截图及分析:在MATLAB中运行以上代码,得到结果如下图所示:当计算到数列的第10项时,所得的结果即为n=9时的准确积分值。取6位有效数字可得.

1.2分别将区间[-10.10]分为100,200,400等份,利用mesh或surf 命令画出二元函数 z= 的三维图形。 程序: >> x = -10:0.1:10; y = -10:0.1:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长0.1') >> x = -10:0.2:10; y = -10:0.2:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长 0.2') >>x = -10:0.05:10; y = -10:0.05:10; [X,Y] = meshgrid(x,y); Z = exp(-abs(X))+cos(X+Y)+1./(X.^2+Y.^2+1); subplot(2,2,1); mesh(X,Y,Z); title('步长0.05')

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

北理工考博数值分析——试卷

一、填空题:(共20分) 1.非奇异矩阵的条件数为,条件数的大小反映了方程组的 。 2.的相对误差和的相对误差之间的关系是。 3.给出一个求解对任意初值都收敛的迭代公式 ,说明如何获得及收敛理由。 4. 设为互异节点,为对应节点上的拉格朗日插值基函数,则, 。 5.设互异,则当时,;。 6.数值积分公式的代数精确度 是,____ Gauss型求积公式。 二、(10分)设阶矩阵对称正定,用迭代公式 求解。问实数取何值时迭代收敛? 三、(13分)设有线性方程组, (1)将系数矩阵A分解为 ,求;(2)求解方程组。

四、(10分)用最小二乘法确定中的参数和,使该函数曲线 拟合于下 列形式的数据(推导满足的正则方程组)。 五、(10分)求四次插值多项式,使其满足条件 ,并写出插值余项。 六、(10分)设,考虑方程,证明求解该方程的牛 顿法产生的序列(其中)是收敛的;并求,使得 。 七、(15分)对于积分,当要求误差小于时,用复化梯 形公式及 复化抛物线公式计算近似值时,所需节点数及步长分别为多少?计算满足精度要求的 近似值。 八、(12分)试求系数,使3步公式 的阶数尽可能高,并写出其局部截断误差的主项。

一、(12分)设有线性方程组, (1)将系数矩阵A分解为L和U的乘积,其中L是单位下三角阵,U是上三角阵; (2)解线性方程组。 二、(18分) (1)已知数据: 试分别用线性及二次插值计算的近似值,并估计误差。 (2)设,试求三次插值多项式使得 , 并对任一写出误差估计式。 三、(20分) (1)设线性方程组的系数矩阵

试写出收敛的迭代计算公式; (2)若线性方程组的系数矩阵,用表示 迭代法和迭代法收敛的充分必要条件。四、(15分) (1)若用复化梯形、复化辛普森公式计算积分的近似值,要求计算结果有5位有效数字,分别应取多大? (2)选一复化求积公式计算积分的近似值,要求截断误差小于。 五、(10)确定,使求积公式 的代数精确度尽可能高,并指出是否是型求积公式。 六、(15分)试用法推导出求近似值的迭代 格式, 并用导出的公式计算的近似值,要求误差不超过。 七、(10分)已有求解常微分方程的二步公式: 欲使此格式的整体截断误差达到最高阶,应取何值,并说明公式是几阶方法。

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值分析

2008级计算机学院《数值分析》期末试卷A 卷 班级 学号 姓名 成绩 一、 填空题(每空2分,共30分) 1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点 弦截法产生的解序列收敛到方程f (x )=0的根。 2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯 求积公式的代数精度为 。 3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ?b 有 位有 效数字,a +b 有 位有效数字。 4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗 日插值多项式是 。 5. 设有矩阵?? ????-=4032A ,则‖A ‖1=_______。 6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。 7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列 {}() k X 收敛的充分必要条件是 。 8. 已知n=3时的牛顿-科特斯系数,8 3,81)3(1) 3(0 ==C C 则=) 4(2 C ,=) 3(3C 。 9. 三次样条函数是在各个子区间上的 次多项式。 10. 用松弛法 (9.0=ω)解方程组??? ??=+-=++--=++3 1032202412 25322 321321x x x x x x x x x 的迭代公式是 。 11. 用牛顿下山法求解方程03 3 =-x x 根的迭代公式是 ,下山条件是 。

数值分析试题及答案汇总

数值分析试题及答案汇 总 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题 一、填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数 的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当系数 a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

相关文档
最新文档