旋风除尘-东华大学环境学院大三实验报告

旋风除尘-东华大学环境学院大三实验报告
旋风除尘-东华大学环境学院大三实验报告

路由器配置_实验四

路由器配置实验 专业:信息安全 班级: 姓名: 学号: 指导教师: 日期:

一、实验概述 1.1 实验目的 1. 根据网络拓扑,了解如何设计静态路由表 2. 对CISCO 路由器配置静态路由 1.2 实验内容 1.2.1 实验要求 本实验为个人实验,实现以下目标: 使用5 台电脑,配置在3 个局域网网段中,需要通过路由器的静态路由表配置,使得这5台电脑能相互通信。 5台电脑的网络结构为:

5台电脑模拟:4台电脑在一个单位的局域网内,1 台电脑在外网。4 台局域网中的电脑又被分到了两个子网中。每个子网最多10 台电脑,外网所在的网络最多100 台电脑。 以上所有电脑、路由器的IP 地址均需从一个网段中(比如:10.10.81.0/24)选取,不得使用其他IP 地址。(注意,这里的81需要根据用户自己的机器编号而变,看自己显示器上的编号是多少,这里就配为多少) 1.2.2 实验拓扑 上图中: 路由器R3 的f0/0 接口与PC1、PC2 处于10.10.81.0~10.10.81.15 网段中 路由器R2 的f0/0 接口与PC3、PC4 处于10.10.81.16~10.10.81.31 网段中 路由器R4 的f0/0 接口与PC5 处于10.10.81.128~10.10.81.255 网段中 10.10.81.0/24 网段剩余的IP 地址段为:10.10.81.32~10.10.81.127,请将这些地址合理分配到R1,R2,R3,R4 的串口S0/0,S0/1,S0/2 上,并配置静态路由,使得这5 台电脑能相互通信。

注意: 1)配置路由器串口的IP地址时,不得使用以上提到的地址段以外的地址。 2)上述拓扑中所有电脑均由路由器模拟,因此,需要在它们的f0/0 接口配置IP 地址、子网掩码,还需要配置静态路由。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

微机原理实验报告

西安交通大学实验报告 课程_微机与接口技术第页共页 系别__生物医学工程_________实验日期:年月日 专业班级_____组别_____交报告日期:年月日 姓名__ 学号__报告退发 ( 订正、重做 ) 同组人_教师审批签字 实验一汇编语言程序设计 一、实验目的 1、掌握Lab6000p实验教学系统基本操作; 2、掌握8088/8086汇编语言的基本语法结构; 3、熟悉8088/8086汇编语言程序设计基本方法 二、实验设备 装有emu8086软件的PC机 三、实验内容 1、有一个10字节的数组,其值分别是80H,03H,5AH,FFH,97H,64H,BBH,7FH,0FH,D8H。编程并显示结果: 如果数组是无符号数,求出最大值,并显示; 如果数组是有符号数,求出最大值,并显示。 2、将二进制数500H转换成二-十进制(BCD)码,并显示“500H的BCD是:” 3、将二-十进制码(BCD)7693转换成ASCII码,并显示“BCD码7693的ASCII是:” 4、两个长度均为100的内存块,先将内存块1全部写上88H,再将内存块1的内容移至内存块2。在移动的过程中,显示移动次数1,2 ,3…0AH…64H(16进制-ASCII码并显示子

程序) 5、键盘输入一个小写字母(a~z),转换成大写字母 显示:请输入一个小写字母(a~z): 转换后的大写字母是: 6、实现4字节无符号数加法程序,并显示结果,如99223344H + 99223344H = xxxxxxxxH 四、实验代码及结果 1.1、实验代码: DATA SEGMENT SZ DB 80H,03H,5AH,0FFH,97H,64H,0BBH,7FH,0FH,0D8H;存进数组 SHOW DB 'THE MAX IS: ','$' DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA START: MOV AX,DATA ;把数据的基地址赋给DS MOV DS,AX MOV DX,OFFSET SHOW ;调用DOS显示字符串 MOV AH,09H INT 21H MOV SI ,OFFSET SZ ;数组的偏移地址赋给SI MOV CX,10 ;存进数组的长度给CX MOV DH,80H ;将数组的第一个数写进DH NEXT: MOV BL,[SI] ;将数组的第一个数写进BL CMP DH,BL ;比较DH和BL中数的到校 JAE NEXT1 ;如果DH中的数大于BL中,将跳转到NEXT1 MOV DH,BL ;如果DH中的数小于BL中,将BL中的数赋给DH NEXT1: INC SI ;偏移地址加1 LOOP NEXT;循环,CX自减一直到0,DH中存数组的最大值 ;接下来的程序是将将最大值DH在屏幕上显示输出 MOV BX,02H NEXT2: MOV CL,4 ROL DH,CL ;将DH循环右移四位

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

微机实验报告(1)

《微机实验》报告 实验名称 KeilC的使用与汇编语言上机操作 指导教师刘小英 专业班级中法1201 姓名肖洋学号 U3 联系电话 一、任务要求 1.掌握KeilC环境的使用 1)字节拆分、合并:调试程序,观察相关寄存器和单元的内容。 2)数据块填充:调试程序,观察相关寄存器和单元的内容。 2. 编写两个十六位数的加法程序。 有两个十六位无符号数,分别存放在从20H和30H开始的数据区中,低八位先存,高八 位在后,和存于R3(高八位)和R4(低八位),进位位存于R2。 二、设计思路 1.字节拆分、合并程序:利用汇编语言中的 XCHD 和 SWAP 两个语句来实现将八位二进制 数拆分为两个四位二进制数并分别存储于不同的存储空间的功能,BCD 码与 30H 相或(加 上 30H)得到 ASCII 码。将两个 ASCII 码和 0FH 相与(高四位清零)得到 BCD 码,利 用 SWAP 语句将高位数放至高四位,将高位数和低位数相或可实现字节的合并。 2.数据块填充程序:将 R0 用作计数器,DPTR 用作片外数据指针,A 作为原始数据来源, 依顺序在片外的存储单元内容填充数据。利用循环语句来减少程序长度,并控制填充单 元个数为片外 100H 个。(通过 R0 的进位控制) 3.两个十六位数加法程序:把第一个十六位无符号数的地八位和高八位分别存于 20H 和 21H 中,把第二个十六位无符号数的地八位和高八位分别存于 30H 和 31H 中,对 20H 和 30H 中的两个低八位进行 ADD 加法操作,结果存于 R4 中;然后对 21H 和 31H 中的两 个高八位进行 ADDC 带进位的加法操作,结果存于 R3 中.然后将累加器 A 清零,并和#00H

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

微机实验报告

微机实验报告 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第一次实验 实验01 I/O端口地址译码实验 一、实验目的 掌握I/O地址译码电路的工作原理。 二、实验原理 1、实验电路如原理图所示,其中74LS74为D触发器,可直接使用实验台上数字电路实验区的D触发器,74LS138为地址译码器。译码输出端Y0~Y7在实验台上“I/O地址”输出端引出,每个输出端包含8个地址,Y0:280H~287H,Y1:288H~28FH,…… 当CPU执行I/O指令且地址在280H~2BFH范围内,译码器选中,必有一根译码线输出负脉冲。 例如:执行下面两条指令 MOV DX,290H OUT DX,AL(或IN AL,DX) Y2输出一个负脉冲,执行下面两条指令: MOV DX,2A0H OUT DX,AL(或IN AL,DX) Y4输出一个负脉冲。 (II型机) 2. 接线 II型机: I/O 地址/Y2(290H---297H) 接 D 触发器/CLK I/O 地址/Y4(2A0H---2A7H) 接 D 触发器/CD D 触发器/D 接 D 触发器/SD 接+5V D 触发器/Q 接逻辑笔或L7 I型机: I/O 地址/Y4 接 D 触发器/CLK I/O 地址/Y5 接 D 触发器/CD

…… 三、实验内容 利用负脉冲控制L7闪烁发光(亮、灭、亮、灭、……),时间间隔通过软件延时实现。 四、实验内容实现分析 分析实验连接图;说明实现该内容的原理;画出流程图。 五、实验程序 DATA SEGMENT OUTPORT1 EQU 290H OUTPORT2 EQU 2A0H DATA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA

东华大学自动控制原理实验一

各位同学请注意: 1.上机实验为1-8周,每次上机请按照第一次的座位坐。 2.请先自习上机内容,实验内容可参考指导书。 3.9号机房座位安排见后面的名单,请按机位号入座,要点名哦。 实验一典型环节的MATLAB仿真 一、实验目的 1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK的使用 MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入simulink命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。2.选择File菜单下New下的Model命令,新建一个simulink仿真环境常规模板。

3.在simulink仿真环境下,创建所需要的系统。 以图1-2所示的系统为例,说明基本设计步骤如下:

1)进入线性系统模块库,构建传递函数。点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。 2)改变模块参数。在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。 3)建立其它传递函数模块。按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。例:比例环节用“Math ”右边窗口“Gain ”的图标。 4)选取阶跃信号输入函数。用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。 5)选择输出方式。用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。 6)选择反馈形式。为了形成闭环反馈系统,需选择“Math ” 模块库右边窗口“Sum ”图标,并用鼠标双击,将其设置为需要的反馈形式(改变正负号)。 7)连接各元件,用鼠标划线,构成闭环传递函数。 8)运行并观察响应曲线。用鼠标单击工具栏中的“”按钮,便能自动运行仿真环境下的系统框图模型。运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。 三、实验原理 1.比例环节的传递函数为 221211 ()2100,200Z R G s R K R K Z R =- =-=-== 图1-3所示左侧为其对应的模拟电路右侧即为SIMULINK 的图形。

过程控制工程实验报告

成绩________ 过程控制工程 实验报告 班级:自动化10-2 姓名: 曾鑫 学号:10034080239 指导老师:康珏

实验一液位对象特性测试(计算机控制)实验 一、实验目的 通过实验掌握对象特性的曲线的测量的方法,测量时应注意的问题,对象模型参数的求取方法。 二、实验项目 1.认识实验系统,了解本实验系统中的各个对象。 2.测试上水箱的对象特性。 三、实验设备与仪器 1.水泵Ⅰ 2.变频器 3.压力变送器 4.主回路调节阀

m in y ?——被测量的变化量 m ax y ——被测量的上限值 m in y ——被测量的下限值 2) 一阶对象传递函数 s e s T K G τ-+= 1 00 K ——广义对象放大倍数(用前面公式求得) 0T ——广义对象时间常数(为阶跃响应变化到新稳态值的63.2%所需要的时间) τ——广义对象时滞时间(即响应的纯滞后,直接从图测量出) 五、注意事项 1. 测量前要使系统处于平衡状态下,反应曲线的初始点应是输入信号的开始作阶跃信号的 瞬间,这一段时间必须在记录纸上标出,以便推算出纯滞后时间τ。测量与记录工作必须 2. 所加扰动应是额定值的10%左右。 六、实验说明及操作步骤

1.了解本实验系统中各仪表的名称、基本原理以及功能,掌握其正确的接线与使用方法,以便于在实验中正确、熟练地操作仪表读取数据。熟悉实验装置面板图,做到根据面板上仪表的图形、文字符号找到该仪表。熟悉系统构成和管道的结构,认清电磁阀和手动阀的位置及其作用。 2.将上水箱特性测试(计算机控制)所用实验设备,参照流程图和系统框图接好实验线路。 3.确认接线无误后,接通电源。 4.运行组态王,在工程管理器中启动“上水箱液位测试实验” 阶液位对象。 按钮观察输出曲线。 6.在 会影响系统稳定所需的时间)。 7.改变u(k)输出,给系统输入幅值适宜的正向阶跃信号(阶跃信号在5%-15%之间),使系统的输出信号产生变化,上水箱液位将上升到较高的位置逐渐进入稳态。 8.观察计算机中上水箱液位的正向阶跃响应曲线,直至达到新的平衡为止。 9.改变u(k)输出,给系统输入幅值与正向阶跃相等的一个反向阶跃信号,使系统的输出信号产生变化,上水箱液将下降至较低的位置逐渐进入稳态。 10. 为止。 11.曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表格2-1。 七、实验报告

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

东华大学微机实验报告答案(软件)

目录 实验一DEBUG的启动及其基本命令的使用实验二内存操作数及寻址方法 实验三汇编语言程序的调试与运行 实验四查表程序设计 实验五系统功能调用 实验六分支程序设计 实验七循环程序设计 实验八子程序设计 实验九综合程序设计 实验心得体会 参考文献

实验一 DEBUG的启动及其基本命令的使用 源程序:(指导书中给出) DA TA SEGMENT STRING1 DB 'Move the cursor backward' STRING2 DB 'Move the cursor backward' MESS1 DB 'Match.',13,10,'$' MESS2 DB 'No Match.',13,10,'$' DA TA ENDS STACK SEGMENT STACK DB 40 DUP (?) STACK ENDS PROGNAM SEGMENT ASSUME CS:PROGNAM,DS:DA TA,ES:DA TA,SS:STACK MAIN PROC FAR START: PUSH DS XOR AX,AX PUSH AX MOV AX,DATA MOV DS,AX MOV ES,AX MOV AX,STACK MOV SS,AX LEA SI,STRING1 LEA DI,STRING2 CLD MOV CX,25 REPZ CMPSB JZ MA TCH LEA DX,MESS2 JMP SHORT DISP MATCH: LEA DX,MESS1 DISP: MOV AH,09h INT 21H RET MAIN ENDP PROGNAM ENDS END START 运行结果:

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

东华大学微机系统及原理实验报告

微机系统及应用实验 实验报告 实验一DEBUG的启动及其基本命令的使用 实验内容: 6:设堆栈指针SP=2000H,AX=3000H,BX=5000H;请仿照例程的格式编一程序段将AX和BX的内容进行交换。请用堆栈作为两寄存器交换内容的中间存储单元,用DEBUG调试程序进行汇编与调试。 写出在DEBUG状态下编写、运行步骤6所要求的程序过程(要求包含源程序)以及调试所中遇到的问题是如何解决的,并对调试过程中的问题进行分析,对执行结果进行分析。 程序清单: STACK SEGMENT STACK DB 2003H DUP(0) STACK ENDS CODE SEGMENT ASSUME CS:CODE,SS:STACK START: MOV AX,STACK MOV SS,AX MOV SP,2000H

MOV AX,3000H MOV BX,5000H PUSH AX MOV AX,BX POP BX MOV AH,4CH INT 21H CODE ENDS END START 运行及调试: 进入调试后,运行正常。 进行反汇编调试: 通过追踪指令观察SP、AX、BX变化 可知对SP、AX、BX赋值正确。

将AX入栈后 用显示内存单元内容的命令D观察堆栈段中SP为1FFF,2000的内容 [1FFF]=00 ,[2000]=30 说明已经AX=3000已经放入到堆栈段中。 结果可以看出:AX=5000,BX=3000 结果完成正确! 实验二内存操作数及寻址方法 实验内容: 1、设堆栈指针SP=2000H,AX=3000H,BX=5000H;请编一程序段将AX和BX的内容进行交换。请用堆栈作为两寄存器交换内容的中间存储单元,用字处理程序编辑程序,用masm.exe和link.exe对源程序进行汇编程和连接,用DEBUG 调试程序。 2、用masm和link 对以下程序进行汇编和连接,调试程序在DEBUG调试程序状态下进行。用单步执行的方法,分析每条指令源地址的形成过程,当数据传送完毕时,AX中的内容是什么。 程序清单如下: DATA SEGMENT

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

过程控制实验报告8

实验报告 课程名称:过程控制 实验名称:单回路控制系统的参数整定专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

实验一单回路控制系统的参数整定 2014年4月28日 一、实验要求 1、了解调节器特性的实验测试方法; 2、掌握依据飞升特性曲线求取对象动态特性参数和调节器参数的方法; 3、熟悉单回路控制系统的工程整定方法。 二、实验内容 测得某工业过程的单位阶跃响应数据,如附表所示;单位阶跃响应曲线,如图1所示: 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 0.2 0.4 0.6 0.8 1 1.2 t/s y ( t ) 图1 单位阶跃响应曲线 1、试用高阶传递函数描述该过程的动态特性; G(s)=K/(Ts+1) 2=1.25/(25.9s+1) 2*e^-10s 2、在Simulink中搭建解算出的被控对象单回路控制系统; 3、采用稳定边界法整定调节器参数,并给出P、PI、PID三种调节器的控制曲线; Kp=5,Pm=1/Kp=0.2时,等幅振荡,Tm80。

P: 2Pm=0.4 PI: 2.2Pm=0.44 0.85Tm=68 PID: 1.7Pm=0.34 0.5Tm=40 0.125Tm=10 三种调节器的控制曲线:

4、比较、分析实验结果 P调节器稳态产生了静差;PI调节器相对P调节器稳态无静差,但是调节时间延长;PID 调节器相对前两者无论上升时间还是调节时间都变短了,稳态也无静差。

实验报告 课程名称:过程控制 实验名称:串级控制系统专业:自动化专业 姓名: 学号: 2013 /2014 学年第 2 学期

微机原理实验指导书-硬件部分(2017)

微机原理实验指导书 硬件实验部分 东华大学信息科学与技术学院信息与控制实验中心 2017.11

关于微机原理硬件部分实验的说明 硬件部分包含5个基本实验和一个综合设计实验。综合设计实验为选作部分。每个实验需完成各自的实验报告。报告内容以每项实验的思考题内容为主,不需要抄录实验指导书提供的范例程序。基本实验的报告内容具体要求为: 1、实验名称、所需设备、实验目的。 2、思考题要求。 3、有提问的思考题分析解答。 4、需要编程的思考题的程序的流程框图 5、思考题的全部源程序代码,源程序需加上必要的注释。 6、思考题的程序在调试中出现的问题及解决过程。 ●实验必须完成基础实验部分,综合设计实验选作。 ●硬件实验成绩按基本实验情况(85%)和选作实验情况(15%)综 合评定。

一、实验设备及软件介绍 第1部分硬件系统介绍 1. CPU单元及外围芯片 1)、微处理器:8086 2)、时钟频率:6MHz 3)、存储器 6264 系统RAM,地址范围 0~3FFFH,奇地址有效 6264 系统RAM,地址范围0~3FFFH,偶地址有效 27C64 系统ROM,地址范围 FC000~FFFFFH,奇地址有效 27C256 系统ROM,地址范围 FC000~FFFFFH,偶地址有效4)、可提供的对8086的基本实验 (1).简单I/O扩展实验 (2).存储器扩展实验 (4).8255可编程并口实验 (5).8253定时/计数器实验 (6).A/D0809实验 (7).D/A0832实验 (8).8250可编程串口实验 (9).8279显示器接口实验 (10).8279键盘扩展实验 (11).8259可编程中断控制器实验 5)、系统资源分配 本系统采用可编程逻辑器件(CPLD)EPM7128做地址的编译码工作,可通过芯片的JTAG接口与PC机相连,对芯片进行编程,可完成系统器件,如监控程序 存储器、用户程序存储器、数据存储器、系统显示控制器、系统串行通讯控制器 等的地址译码功能,同时也由部分地址单元经译码后输出(插孔CS0---CS5)给 用户使用,他们的地址固定,用户不可改变。 2.地址资源分配 本系统采用可编程逻辑器件(CPLD)EPM7128作为地址译码器,完成系统器件如存

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

微机实验报告

《微机实验》报告 实验名称:keilc的使用与汇编语言上机操作 一、任务要求 实验目的:熟悉keilc环境,通过在keilc环境下调试字节拆分、合并程序、数据块清 零程 序、加法程序,掌握汇编语言程序的调试方法,加深对bcd码、ascii码、堆栈、寄存 器、数据指针、汇编语言指令、机器码等基本概念的理解,为后续程序编制和调试打下基础。 实验内容: 1.掌握keilc环境的使用 1)字节拆分、合并:调试e421.asm程序,观察相关寄存器和单元的内容。 2)数据块填充:调试fill.asm程序,观察相关寄存器和单元的内容。 2. 编写两个十六位数的加法程序。 有两个十六位无符号数,分别存放在从20h和30h开始的数据区中,低八位先存,高八 位在后,和存于r3(高八位)和r4(低八位),进位位存于r2。 二、设计思路 实验1中的两个实验,已经给出了程序代码,,无需再进行设计。下面阐述实验2的设计 思路: 对于该程序,在处理低位相加时,直接采用指令add,然后存数,在处理高位时,考虑 到可能存在进位,所以在相加时,应使用指令addc将被加数、加数以及低位到高位的进位相 加然后存数。 此外,在处理该问题时,还应考虑到两个十六位相加可能会出现第十七位,所以要另外 安排一个地址单元用来存放最高位的数。 三、资源分配 两个十六位无符号数,分别存放在从20h和30h开始的数据区中; 和存于r3(高4八位)和r4(低八位); 进位位存于r2。 四、流程图 四、源代码(含文件头说明、资源使用说明、语句行注释) file name: test2.asm description: 两个十六位数的加法程序 date: 2012/09/26 designed by: zhangbo source used: 20h: 加数a的低位 21h: 加数a的高位 30h: 加数b的低位 31h: 加数b的高位 r4: 和的低位 r3: 和的高位 r2: 和的进位 org 0000h ljmp main org 0000h main: clr c ;将进位位清零 mov 20h,#10h 六、程序测试方法与结果、软件性能分析

微机实验报告一

实验名称Keil的使用与汇编语言上机操作成绩______________ 一、任务要求 1?掌握Keil环境的使用 1)字节拆分、合并:调试e421.asm程序,观察相关寄存器和单元的内容。 2)数据块填充:调试fill.asm程序,观察相关寄存器和单元的内容。 2.编写多个十六位数的加法程序 有4个十六位无符号数,连续存放在20H开始的片上数据区中,低八位先存,高 八位在后。要求:和存于R3 (高八位)和R2 (低八位),进位位存于R4。 二、设计思路 实验一已给出程序代码,不需要设计,下面阐明实验二,编写多个十六位数的加法 程 序的设计思路。 十六位数相加,先是低八位相加,低八位相加不用考虑进位,所以,此时用ADD 指 令,但因为在每次循环时都有CLR C操作,所以也可以用ADDC指令。而且题目中要求将和的低八位存于R2,所以将每次低八位相加的和存于R2,然后从R2中取值求和。 低八位相加后高八位相加,因为必须处理低位相加的进位问题,所以必须用ADDC 指令。而且因为要求高位和存于R3,所以将每次计算的和存于R3,每次从R3中取数跟新 的高八位相加 另外考虑到高位进位的问题,所以必须安排一个地址单元或者寄存器存放最高位

正是因为每次循环中,进位都会被处理,所以每次循环开始要CLR C。 三、资源分配 4个十六位无符号数,连续存放在20H开始的片上数据区中,低八位先存,高八位在后。 和存于R3 (高八位)和R2 (低八位),进位位存于R4。 R0和R1作为数据指针,存放低八位和高八位的地址。 循环次数存于R5。 四、流程图

Cyj ■ ■* YES R4—A 进位存于KH 五、源代码 (含文件头说明、语句行注 四个十六位数的加法程序 File n ame: 3.asm Descriptio n: 四个十六位数的加法程序 Date: 2016/09/23 Desig ned by: 陈钰 軌元初始賦值 RO —20H 指針賦初值 NO R2*-(20H) (2111) R4—QOH 寄存器 赋值

相关文档
最新文档