场效应管检测方法与经验.

场效应管检测方法与经验.
场效应管检测方法与经验.

场效应管检测方法与经验

、用指针式万用表对场效应管进行判别

(1用测电阻法判别结型场效应管的电极

根据场效应管的PN 结正、反向电阻值不一样的现象,可以判别出结型场效应管

的三个电极。具体方法:将万用表拨在R X lk档上,任选两个电极,分别测出其正、反

向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分

别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值

均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P 沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

(2用测电阻法判别场效应管的好坏

测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1 与栅极G2 之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R X10或R X100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的,如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无

穷大可能是内部断极。然后把万用表置于RXl0k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。

(3用感应信号输人法估测场效应管的放大能力

具体方法:用万用表电阻的R X100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。然后用手捏住结型场

效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流lb都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。如果手捏栅极表针摆动较小,说明管的放大能力

较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。

根据上述方法,我们用万用表的R X100档,测结型场效应管3DJ2F。先将管的G 极开路,测得漏源电阻RDS为600Q用手捏住G极后,表针向左摆动,指示的电阻

RDS为12k Q表针摆动的幅度较大,说明该管是好的,并有较大的放大能力。

运用这种方法时要说明几点:首先,在测试场效应管用手捏住栅极时,万用表针可能

向右摆动(电阻值减小,也可能向左摆动(电阻值增加。这是由于人体感应的交流电压

较高,而不同的场效应管用电阻档测量时的工作点可能不同(或者工作在饱和区或者在

不饱和区所致,试验表明,多数管的RDS增大,即表针向左摆动;少数管的RDS减小,使表针

向右摆动。但无论表针摆动方向如何,只要表针摆动幅度较大,就说明管有较大的放大能力。第二,此方法对MOS场效应管也适用。但要注意,MOS场效应管的输人电阻高,栅极G允许的感应电压不应过高,所以不要直接用手去捏栅极,必须用于握

螺丝刀的绝缘柄,用金属杆去碰触栅极,以防止人体感应电荷直接加到栅极,引起栅极

击穿。第三,每次测量完毕,应当G-S极间短路一下。这是因为G-S结电容上会充有少量电荷,建立起VGS电压,造成再进行测量时表针可能不动,只有将G-S极间电荷

短路放掉才行。

(4用测电阻法判别无标志的场效应管

首先用测量电阻的方法找出两个有电阻值的管脚,也就是源极S和漏极D,余下两个脚为第一栅极G1和第二栅极G2。把先用两表笔测的源极S与漏极D之间的

电阻值记下来,对调表笔再测量一次,把其测得电阻值记下来,两次测得阻值较大的一

次,黑表笔所接的电极为漏极D;红表笔所接的为源极S。用这种方法判别出来的S、 D 极,还可以用估测其管的放大能力的方法进行验证,即放大能力大的黑表笔所接的是D 极;红表笔所接地是8极,两种方法检测结果均应一样。当确定了漏极D、源

极S的位置后,按D、S的对应位置装人电路,一般G1、G2也会依次对准位置,这就

确定了两个栅极G1、G2的位置,从而就确定了D、S、G1、G2管脚的顺序。

(5用测反向电阻值的变化判断跨导的大小

对VMOS N沟道增强型场效应管测量跨导性能时,可用红表笔接源极S、黑表

笔接漏极D,这就相当于在源、漏极之间加了一个反向电压。此时栅极是开路的,管的反向电阻值是很不稳定的。将万用表的欧姆档选在R X 10k Q的高阻档,此时表内电压较高。当用手接触栅极G时,会发现管的反向电阻值有明显地变化,其变化越大, 说明管的跨导值越高;如果被测管的跨导很小,用此法测时,反向阻值变化不大。

、.场效应管的使用注意事项

(1 为了安全使用场效应管,在线路的设计中不能超过管的耗散功率,最大漏源电压、最大栅源电压和最大电流等参数的极限值。

(2各类型场效应管在使用时,都要严格按要求的偏置接人电路中,要遵守场效应管偏置的极性。如结型场效应管栅源漏之间是PN结,N沟道管栅极不能加正偏压;P

沟道管栅极不能加负偏压,等等。

(3M0S场效应管由于输人阻抗极高,所以在运输、贮藏中必须将引出脚短路,要用金属屏蔽包装,以防止外来感应电势将栅极击穿。尤其要注意,不能将MOS场效应管放人塑料盒子内,保存时最好放在金属盒内,同时也要注意管的防潮。

(4为了防止场效应管栅极感应击穿,要求一切测试仪器、工作台、电烙铁、线路本身都必须有良好的接地;管脚在焊接时,先焊源极;在连入电路之前,管的全部引

线端保持互相短接状态,焊接完后才把短接材料去掉;从元器件架上取下管时,应以适

当的方式确保人体接地如采用接地环等;当然,如果能采用先进的气热型电烙铁,焊接

场效应管是比较方便的,并且确保安全;在未关断电源时,绝对不可以把管插人电路或

从电路中拔出。以上安全措施在使用场效应管时必须注意。

(5在安装场效应管时,注意安装的位置要尽量避免靠近发热元件

为了防管件振动,有必要将管壳体紧固起来;管脚引线在弯曲时,应当

大于根部尺寸5毫米处进行,以防止弯断管脚和引起漏气等。

对于功率型场效应管,要有良好的散热条件。因为功率型场效应管在高负荷条件下运用,必须设计足够的散热器,确保壳体温度不超过额

定值,使器件长期稳定可靠地工作。

总之,确保场效应管安全使用,要注意的事项是多种多样,采取的安全措施也是各种各样,广大的专业技术人员,特别是广大的电子爱好者,都要根据自己的实际情况出发,采取切实可行的办法,安全有效地用好场效应管。

三.VMOS场效应管

VMOS场效应管(VMOSFET简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅

继承了MOS场效应管输入阻抗高(>108W驱动电流小(0.1卩左右,还具有耐压高(最高1200V、工作电流大(1.5A~ 100A、输出功率高(1~250W、跨导的线性好、开

关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在

电压放大器(电压放大倍数可达数千倍、功率放大器、开关电源和逆变器中正获得

广泛应用。

VMOS 场效应功率管具有极高的输入阻抗及较大的线性放大区等优点,尤其是

其具有负的电流温度系数,即在栅-源电压不变的情况下,导通电流会随管温升高而减

小,故不存在由于“二次击穿”现象所引起的管子损坏现象。因此,VMOS 管的并联得到广泛应用。

众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出

其两大结构特点:第一,金属栅极采用V 型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S出发, 经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅

绝缘层,因此它仍属于绝缘栅型MOS

场效应管。

国内生产VMOS 场效应管的主要厂家有877厂、天津半导体器件四厂、杭州

电子管厂等,典型产品有VN401 、VN672 、VMPT2 等。

面介绍检测VMOS 管的方法。

1. 判定栅极G

将万用表拨至R X lk档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G 极,因为它和另外两个管脚是绝缘的。

2. 判定源极S、漏极D

由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。

3. 测量漏-源通态电阻RDS(on

将G-S极短路,选择万用表的R X1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。

由于测试条件不同,测出的RDS(on 值比手册中给出的典型值要高一些。例如用500型万用表R X1档实测一只IRFPC50型VMOS管,RDS(on=3.2W,大于0.58W(典型值。

4. 检查跨导

将万用表置于R X lk(或R X100档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。

注意事项:

(1VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P 沟道管,测量时应交换表笔的位置。

(2有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。

(3目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使

用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。

(4现在市售VNF系列(N沟道产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W, 共源小信号低频跨导

gm=2000u S。适用于高速开关电路和广播、通信设备中。

(5使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装

140X140 >4(mm的散热器后,最大功率才能达到30W。

(6多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。为此,并联复合管管子一般不超过 4 个,而且在每管基极或栅极上串接防寄生振荡电阻。

电阻器的检测方法与经验

电阻器的检测方法与经验 1 固定电阻器的检测。A 将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。B 注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。 2 水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3 熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。 4 电位器的检测。检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时"喀哒"声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有"沙沙"声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。 A 用万用表的欧姆挡测"1"、"2"两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。 B 检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测"1"、"2"(或"2"、"3")两端,将电位器的转轴按逆时针方向旋至接近"关"的位置,这时电阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。当轴柄旋至极端位置"3"时,阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。 5 正温度系数热敏电阻(PTC)的检测。检测时,用万用表R×1挡,具体可分两步操作:A 常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在 ±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。B 加温检测;在常温测试正常的基础上,即可进行第二步测试-加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。 6 负温度系数热敏电阻(NTC)的检测。 (1)、测量标称电阻值Rt 用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:A Rt 是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。B 测量功率不得超过规定值,以免电流热效应引起测量误差。C 注意正确操作。测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响。 (2)、估测温度系数αt 先在室温t1下测得电阻值Rt1,再用电烙铁作热源,靠近热敏电阻Rt,测出电阻值RT2,同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算。 7 压敏电阻的检测。用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。 8 光敏电阻的检测。A 用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大。此值越大说明光敏电阻性能越好。若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用。B 将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减小。此值越小说明光敏电阻性能越好。若此值很大甚至无穷大,表明光敏电阻内部开路损坏,也不能再继续使用。C 将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动。如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏。

双向可控硅及触发电路

双向可控硅及其触发电路 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路) 双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图: 总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分 再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)

推荐电路: 为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

双向可控硅的工作原理及原理图

双向可控硅得工作原理及原理图 双向可控硅得工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2得集电极直接与BG1得基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于就是BG1得集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2得基极,表成正反馈,使ib2不断增大,如此正向馈循环得结果,两个管子得电流剧增,可控硅使饱与导通.由于BG1与BG2所构成得正反馈作用,所以一旦可控硅导通后,即使控制极G得电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断得。 由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定得条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区得空穴时入N2区,N2区得电子进入P2区,形成触发电流IGT。在可控硅得内部正反馈作用(见图2)得基础上,加上IGT得作用,使可控硅提前导通,导致图3得伏安特性OA 段左移,IGT越大,特性左移越快。 TRIAC得特性?什么就是双向可控硅:IAC(TRI—ELECTRODEACSWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。TRIAC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大得不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。因为它就是双向元件,所以不管T1 ,T2得电压极性如何,若闸极有信号加入时,则T1,T2间呈导通状态;反之,加闸极触发信号,则T1,T2间有极高得阻抗。 ?(a)符号(b)构造 图1TRIAC 二、TRIAC得触发特性: ?由于TRIAC为控制极控制得双向可控硅,控制极电压VG极性与阳极间之电压VT1T2四种组合分别如下:?(1)、VT1T2为正,VG为正。?(2)、VT1T2为正,VG为负。?(3)、VT1T2为负, VG 为正。?(4)、VT1T2为负,VG为负。 一般最好使用在对称情况下(1与4或2与3),以使正负半周能得到对称得结果,最方便得控制方法则为1与4之控制状态,因为控制极信号与VT1T2同极性。

常用场效应管型号全参数管脚识别及检测表

常用场效应管型号参数管脚识别及检测表场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一

只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。 (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

电子元器件检测方法

电子元器件检测方法 元器件的检测是家电维修的一项基本功,如何准确有效地检测元器件的相关参数,判断元器件的是否正常,不是一件千篇一律的事,必须根据不同的元器件采用不同的方法,从而判断元器件的正常与否。特别对初学者来说,熟练掌握常用元器件的检测方法和经验很有必要,以下对常用电子元器件的检测经验和方法进行介绍供对考。 一、电阻器的检测方法与经验: 1固定电阻器的检测。 A将两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。 B注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。 2水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。 3熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。 4电位器的检测。检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

如何测试场效应管

如何测试场效应管 1、结型场效应管的管脚识别: 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1K档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极 用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力 将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。 然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的0Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。 少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。本方法也适用于测MOS管。 为了保护MOS场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。 MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。

可控硅检测方法和经验

可控硅检测方法与经验 可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。 1. 可控硅的特性。 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。2. 单向可控硅的检测。 万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 3. 双向可控硅的检测。 用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。随后断开A2、G间短接线,万用表读数应保持10欧姆左右。互换红、

电容的检测方法

固定电容器的检测 检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。B?检测10PF~0?01μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c 相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。C?对于0?01μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 电解电容器的检测 因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×100挡测量。 将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一

位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。C?对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。D?使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。 可变电容器的检测 用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。B?用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。C?将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

双向可控硅原理与应用整理

双向可控硅MAC97A6的电路应用 家电维修2010-08-22 00:08:15 阅读2916 评论2 字号:大中小订阅 MAC97A6为小功率双向可控硅(双向晶闸管),最多应用于电风扇速度控制或电灯的亮度控制,市场上流行的“电脑风扇”或“电子程控风扇”,不外乎是用集成电路控制器与老式风扇相结合的新一代产品。这里介绍的电路就是利用一块市售的专用集成电路RY901及MAC97A6,将普通电扇改装为具有多功能的高档电扇,很适宜无线电爱好者制作与改 装。 这种新型IC的主要特点是:(1)集开关、定时、调速、模拟自然风为一体,外围元件少、电路简单、易于制作;(2)省掉了体积较大的机械定时器和调速器,采用轻触式开关和电脑控制脉冲触发,因而无机械磨损,使用寿命长;(3)各种动作电脑程序具备相应的发光管指示,耗电量少,体积小,重量轻,显示直观,便于操作;(4)适合开发或改造成多路家电的定时控制等。RY901采用双列直插式16脚塑封结构,为低功耗CMOS集成电路。其外形、引出脚排列及各脚功能如图1所示。工作原理

典型应用电路如图2所示([url=https://www.360docs.net/doc/f718292192.html,/ad/ykkz/fsdlkz.rar]点击下载原理图[/url] )。市电220V由C1、R1降压VD9稳压,经VD10、C2整流滤波后, 提供5V-6V左右的直流电源作为RY901IC组成的控制器电压。在刚接通电源时,电脑控制器暂处于复位(静止)状态,面板上所有发光二极管VD1-VD8均不亮,电风扇不转。若这时每按动一次风速选择键SB3,可依次从IC的11-13脚输出控制电平(脉冲信号),经发光管VDl-VD3和限流电阻R2-R4,分别触发双向晶闸管VS1-VS3的G极,用以控制它的导通与截止,再经电抗器L进行阻抗变换,即可按强风、中风、弱风、强风……的顺序来改变其工作状态,并且风速指示管VD1-VD3(红色)对应点亮或熄灭;当按风型选择键SB4,电风扇即按连续风(常风)、阵风(模拟自然风)、连续风……的方式循环改变其工作状态,在连续风状态下,风型指示管VD4(黄色)熄灭,在阵风状态下,VD4闪光;当按动定时时间选择键SB2,定时指示管VD5-VD8依次对应点亮或熄灭,即每按动一次SB2,可选择其中一种定时时间,共有0.5、l、2、4小时和不定时5种工作方式供选择。当定时时间一到,IC内部的定时电路停止工作,相应的定时指示管熄灭同时IC的11-13脚也无控制信号输出,双向晶闸管VS1-VS3截止,从而导致风扇自动停止运转;在风扇不定时工作时,欲停止风扇转动,只要按动一下复位开关SB1,所有指示灯熄灭,电源被切断,风扇停转;如欲启动风扇,照上述方法操作即可。元器件选择与制作图中除降压电容C1用优质的CBB-400V聚苯电容;泄放保护电阻R1用1W金属膜电阻或线绕电阻外,其余元器件均为普通型。电阻为1/8W;电解电容的耐压值取10V-16V,C1取值范围为0.47u-lu之间;稳压管VD9为5V-6V/1W,可选用ZCW104(旧型号为ZCW21B)硅稳压管;VS1-VS3为1A/400V小型塑封双向晶闸管,可选用MAC94A4型或MAC97A6型;L为电抗器,可以自制,亦可采用原调速器中的电抗器;SB1-SB4为轻触型按键开关(也叫微动或点动开关),有条件的可采用导电橡胶组合按键开关。电路焊接无误,一般不用调试就能工作。改装方法该电路对所有普通风扇都能进行改装。将焊接好的电路板装进合适的塑料肥皂盒或原调速器盒中,将原分线器开关拆除不用,留出空余位置便于安装印制板电路。一般风扇用电抗器均采取5挡。不妨利用其中①、③、⑤挡,将强风(第1挡)、中风(第2挡)弱风(第3挡)分别接到电抗器的各挡中。若有的调速器中无电抗器,风扇电机则是采取抽头方式改变风速的,同样将三种风速分别接至分线器的三极引线中。在改装中特别要注意安全,印制板上220V交流电源接线端及所有导电部位应与调整器盒的金属件严格隔离。改装完毕,可用测电笔碰触调速器有否漏电。否则应进一步采取绝缘措施。通电试验时,用万用表DC10V档测C2两端电压应为5V-6V之间,若不正常,应重点检查整流稳压电路,然后再分别按动SB1-SB4开关,观察各路指示管VD1-VD8应按对应的选择功能发光或熄灭,风扇也应同步工作于不同状态。

可控硅的使用及其方法

可控硅的使用及其方法 可控硅作为一种电子开关,广泛地应用在自动化设备和各种控制电路中,可控硅既有单项也有双向的,在使用中会经常遇到一些问题。文章根据实际工作情况,介绍一些经验以供参考。 标签:自动化设备;控制回路;研究分析 1 选购可控硅 可控硅的电参数很多,在选购时要考虑的是:额定平均电流IT、正反向峰值电压VDRM(VRRM)、控制极触发电压与触发电流IGT这几个参数。由于手册或产品合格证上给定的可控硅的上述参数值都是在规定的条件下测定的,而实际使用环境往往与规定条件不同,并且极有可能发生突发事故超过管子承受能力的现象。所以为了管子在安全的电压下工作,特别是交流220V的情况下,应该按额定为实际电压的2~3倍值来选管子。例如:外加电压为220V,则至少应选择400V以上的管子最好为600V,为了保证管子避免电流过大而烧毁,并考虑到管子的发热情况与电流的有效值,应选择平均电流的有效值的1.2~2倍,需要指出的是。IT对单项可控硅而言是IT(A V)指允许流过SCR的最大有效值电流。例如:8A SCR(单向)的有效值IT(RMS)=12.6A,因此用8A的BCR代替8A的SCR是不允许的,为了使管子的触发电压与触发电流要比实际应用中的数值要小。例如:实际使用的触发电压为3V,则可选触发电压为2V的管子。同样,管子的触发电流亦应选择小些以保证可靠触发,一般常用的集成电路输出电流均很小(除555电路例外,TTL比CMOS要大),所以可在其输出端加一级晶体管放大电路,以提供足够大的驱动电路来保证管子可靠地触发导通。 2 可控硅的具体接法 2.1 直流电路 首先,单向可控硅SCR有三个电极,即阳极A,阴极K,控制极G,SCR 在直流控制电路中使用时,要注意施加工作电压与控制触发电压的极性。A,K 之间是加正向电压但控正向的接法是图1,只有A,K之间接正向电压,控制极G亦接正向电压,SCR才能导通。SCR一旦触发导通后,即使降低控制极电压,甚至撤除控制极电源,SCR亦不阻断而是继续导通。要使SCR阻断,只有降低其阳极电压或将阳极,阴极断开一下,即使阳极与阴极电压为零即可所以有时候可以在SCR的A极与电源之间串了一个常闭开关,按一下即可将SCR阻断。 图1是双向可控硅BCR的接法。BCR是由两个SCR反向并联构成的,共用一个控制极。因此BCR与SCR接法有很大不同,无论在阳、阴两个电极之间接何种极性的电压,只要在其控制极加上一个触发脉冲,而不管这个脉冲是什么极性的,都可以使BCR导通。

双向可控硅的原理,二三极管原理

尽管从形式上可将双向可控硅瞧成两只普通可控硅的组合,但实际上它就是由7只晶体管与多只电阻构成的功率集成器件。小功率双向可控硅一般采用塑料封装,有的还带散热板,外形如图l所示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向可控硅大多采用RD91型封装。双向可控硅的主要参数见附表。 双向可控硅的结构与符号见图2。它属于NPNPN五层器件,三个电极分别就是T1、T2、G。因该器件可以双向导通,故除门极G以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳极或阴极。其特点就是,当G极与T2极相对于T1,的电压均为正时,T2就是阳极,T1就是阴极。反之,当G极与T2 极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向可控硅的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。检测方法 下面介绍利用万用表RXl档判定双向可控硅电极的方法,同时还检查触发能力。 1、判定T2极 由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻都很小。在肦Xl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚与其她两脚都不通,就肯定就是T2极。,另外,采用TO—220封装的双向可控硅,T2极通常与小散热板连通,据此亦可确定T2极。 2.区分G极与T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G 短路,给G极加上负触发信号,电阻值应为十欧左右(参见图4 (a)),证明管子已经导通,导通方向为T1一T2。再将红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。

场效应管检测方法

场效应管检测方法 一、用指针式万用表对场效应管进行 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。 (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值

是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。 根据上述方法,我们用万用表的R×100档,测结型场效应管3DJ2F。先将管的G极开路,测得漏源电阻RDS为600Ω,用手捏住G极后,表

可控硅好坏如何测量修订稿

可控硅好坏如何测量 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、可控硅的特性 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极 A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G 和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极 A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 二、可控硅的管脚判别 晶闸管管脚的判别可用下述方法:先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。再将万用表置于

电容的测量方法与详细单位换算

电容的测量方法与详细单位换算 电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。 ①电容的功能和表示方法。 由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。 ②电容的分类。 电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。 ③电容的容量。 电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。 ④电容的容量单位和耐压。 电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,1μF=1000nF=1000000pF。 每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 ⑤电容的标注方法和容量误差。 电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。 数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。 色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。 电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。 ⑥电容的正负极区分和测量。 电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。 当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。 ⑦电容使用的一些经验及来四个误区。 一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。 四个误区: ●电容容量越大越好。 很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。 ●同样容量的电容,并联越多的小电容越好, 耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡设计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。 ●ESR越低,效果越好。

相关文档
最新文档