ipv4向ipv6过渡方案

ipv4向ipv6过渡方案
ipv4向ipv6过渡方案

摘要

CERNET2的正式投入运行将使IPv6在CERNET2上由实验阶段转入应用阶段,在国内大多高校校园网也将由逐步完成基于IPv4的CERNET2接入,本文分析比较了IPv4与IPv6网络的各种优缺点;研究了现阶段IPv4向IPv6的过渡技术,在调研考察现阶段高校校园网接入CERNET2的技术和方案的基础上,给出了基于隧道技术的网络中心纯IPv6接入;基于双隧道以及双栈协议的某学院办公室的IPv4与IPv6的同时接入;以及基于ISATAP 模式隧道的校内单点客户的IPv4与IPv6的同时接入三种可行的IPv6网络的接入方案,并搭建了模拟实验环境,完成了一定意义上可用性的测试。

关键词:CERNET2;IPv6;IPv4;隧道;双栈协议;过渡技术。

Abstract

CERNET2 formal operational IPv6 will CERNET2 by the experimental stage in the application stage, most of campus network in the country will also be gradually completed the CERNET2 IPv4-based access, this paper compares IPv4 and IPv6 networks of all kinds of advantages and disadvantages; of the current IPv4 to IPv6 transition technology, at this stage in the research study CERNET2 campus network access technologies and programs based on the tunneling technology is presented based on pure IPv6 network center access, and dual stack based on double tunnel agreement, the office of a college, while IPv4 and IPv6 access, and school-based ISATAP tunnel mode single point of customer access to IPv4 and IPv6, while three possible IPv6 network access solutions, and built a simulation environment, completed a certain sense, usability testing.

Key words: CERNET2; IPv6; IPv4; tunnel; Dual stack; transitional technology.

毕业论文(设计)原创性声明

本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:

毕业论文(设计)授权使用说明

本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:

注意事项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作)

2)原创性声明

3)中文摘要(300字左右)、关键词

4)外文摘要、关键词

5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论

7)参考文献

8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印

4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档

5.装订顺序

1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

3)其它

目录

1 绪论 (1)

1.1选题背景 (1)

1.2研究的主要内容 (3)

1.3研究意义 (4)

2 IPv6协议的基本框架 (6)

2.1 变化概述 (6)

2.2 包头结构 (10)

2.3 流标签 (11)

2.4 业务流类别 (12)

2.5 分段 (13)

2.6 扩展头 (13)

3 IPv6的优势与现状 (16)

3.1 IPv6相对于IPv4的优势 (16)

3.2 IPv6的国内外现状 (17)

4 IPv4到IPv6的过渡技术 (20)

4.1 隧道技术 (21)

4.2 双栈协议 (24)

4.3 网络地址转换-协议转换 (26)

5 不同需求下的三种接入方案 (28)

5.1 网络中心工作小组的接入方案 (28)

5.2 某学院办公室IPv4/IPv6的同时接入 (38)

5.3 校园网内某一用户要IPv4/IPv6网络接入方案 (51)

6 结束语 (56)

致谢辞 (57)

参考文献 (58)

附录一 (59)

外文文献 (59)

附录二 (70)

中文翻译 (70)

1 绪论

1.1选题背景

1.1.1 何时升级IPv4网络

我们都知道岁月的流逝并不会使一些美好的事物消失。但不幸的是,一些现在看来不错的事物并不意味着能够永远使用下去----无论他现在是多么的辉煌,他或者将会过时,或者将被开始殆尽,总会有新鲜的事物遮盖它原有的光芒。IPv4就是这样一种东西,而当这种好的事物已经成为基础设施的一部分的时候,对它的维护变得非常重要,而了解何时对它进行升级以及如何以最少的混乱、最低的代价进行升级则显得尤其重要。

按照目前基于IPv4网络各种业务开展的速度计算,亚太地区的IPv4地址在3年内将会消耗殆尽。由于互联网对IP地址的需求是不断增加的,如果不将IPv4升级到 IPv6,IP地址的耗尽就会导致互联网效率变低,“网络塞车”会在很大程度上限制互联网的发展。网络调查显示,截至2009年6月,中国大陆共分得IPv4地址2.05亿个,仅次于美国,排名世界第二。CNNIC 作为APNIC最大的国家级IP地址注册管理机构(NIR),目前的IPv4地址自主分配能力位居世界第一,能一次分配26万多个IP 地址。到今年6月,CNNIC分配 IPv4地址已经累计达到5395万个,在一定程度上缓解了我国IP地址资源的压力。

然而,尽管如此,中国已获得的IPv4地址数量却还不到全球已分配总量的 4.5%,未来国内的需求量会不断增大,并且增

速会高于全球增速均值。特别是近三年,我国IPv4地址的增长量远远落后于网民的增长量,3G引发的移动互联网热潮对IP地址的海量需求更会让中国IP地址捉襟见肘。据中国移动研究院黄晓庆院长预测,在未来5年中,仅仅是移动互联网的IP地址需求,预计就会达到5-9亿,全球剩余的IPv4地址也不能满足中国的需求,解决IPv4地址的短缺问题已进入倒计时。

1.1.2 现有IPv4的局限性及其缺点

在当前计算机工业飞速发展的步伐下,指出IPv4的局限性和缺点如同指出小汽车和卡车的内燃机是有缺陷的动力源一样。IP的确是一个非常强壮的协议,并已经证明了他能够连接小至几个节点,大至Internet上难以计数的主机。为交通工具选择动力源时,只要能够像汽油机或柴油机一样提供动力,任何人都可以使用包括电能、太阳能或是风能作为上路的动力而不会影响别人,与此不同的是,IP的升级将对所有使用IP的人产生重大影响。TCP/IP的工程师和设计人员早在80年代初期就意识到了升级的需求,因为当时已经发现IP地址空间随着Internet发展只能支持很短的时间,1994年ALEI工作组已经估算出IPv4会在2005到2011的某一时间耗尽,同一时间在多伦多IETF会议上专家组提出了创建Ipv6的建议。

IPv4网络的一些局限性以及缺点主要体现在以下几个方面:

●IP地址空间危机:IP地址空间的危机由来已久,并正式升级

的主要动力。

●IP性能可以进一步提升:尽管IP表现的不错,一些源自20

年甚至更早以前的设计还能够进一步改进。

●IP安全性缺陷:安全性一直被认为是由网络层以上的层来负

责,但它现在已经成为IP的下一个版本可以发挥作用的地方●自动配置:对于IPv4节点的配置一直比较复杂,而网络管

理员与用户则更喜欢“即插即用”,即:将计算机插在网络上然后就可以开始使用。IP主机移动性的增强也要求当主机在不同网络间移动和使用不同的网络接入点是能提供更好的配置支持。

1.2研究的主要内容

基于国内外对现有IPv4网络以及下一代IPv6网络的研究现状,文章总结了IPv4向IPv6网络的过渡的必要性,以及通过何种技术来实现一个完美的衔接,让网络上的每一个用户在不知不觉中完成这次网络的过渡。

具体研究内容如下:

1.IPv6协议的基本框架

这部分内容介绍了IPv4的更新,描述了新的协议头中各个字段及IPv6的地址空间,着重介绍了IPv6中包含的变化和新特性。

2.IPv6网络的现状以及相对于IPv4的优势

这部分主要介绍了目前国内外IPv6网络的发展现状,着重分析了国内IPv6网络的发展情况,同时对比了IPv6相比于IPv4的一些优势。

3.IPv4网络向IPv6网络过渡的技术

总结国内外研究实现IPv4向IPv6过渡的两种主要技术,详细分析了这两种技术的实现原理以及运行部署情况。

4.在不同技术支持下的模拟与测试

通过对以上两种技术的分析总结,再结合现实中遇到的不同情况,借助GNS3软件运行CISCO设备的IOS来完成对不同情况的实验模拟与测试。

1.3研究意义

IPv6作为下一代网络,具有更好的扩展性与安全性,在我国IPv6的发展还属于起步阶段,所以我们要存分利用国外IPv4向IPv6网络过渡的各种技术,积极挖掘适合我国实际情况以及行之有效的过渡方案,为国内各大高校,乃至全国向IPv6网络的过渡提供一个技术支持。本文的研究意义主要有以下几个方面:

(1)通过对IPv6网络的理解与学习,掌握下一代网络的运行机制,以便更好的在基于IPv6的网络上开展业务。

目前国内的很多业务都是基于IPv4来开展的,但是几年来由于受到IPv4网络地址资源枯竭的影响,很多网络业务受到了影响,如果我们能掌握好下一代网络的运行机制,将现在和各种业务需求完美的迁移到IPv6网络上,在将是我们占去IPv6网络优势的一个先机。

(2)通过对IPv4向IPv6网络过渡的研究,可以推动高校尽早的走入下一代网络。

将目前常用的两种过渡技术作为本次研究的主要对象,主要是为了掌握的技术可以带来真正的实用价值,通过对高校现有网

络与下一代网络的对比分析,将大大推动高校IPv6网络的早日接入。

(3)站在个人发展的角度来看,相信本次研究学习将会为我以后的网络人生带来不小的益处。眼看现有网络的寿命即将殆尽,如果自己提前学习并掌握了IPv4到IPv6的改造技术相信不久的将来会有自己的用武之地,毕竟这个改造工程是一个全球性的大蛋糕,只要自己分得一小块足矣。

2 IPv6协议的基本框架

对IPv4的升级最早在两个RFC中进行了定义。 RFC 1883中描述的是协议本身,而 RFC1884介绍的是IPv6的地址结构。现在RFC1884已经被RFC 2373所替代,1998年夏天I E T F批准了一个草案来替换RFC 1883。从3 2位地址到1 2 8位地址的变化代表了一个重大的转变,但如何制定和分配IPv6地址直到1998年秋天也没有定论。

2.1 变化概述

IPv6中的变化体现在以下五个重要方面:

●扩展地址

●简化头格式

●增强对于扩展和选项的支持

●流标记

●身份验证和保密

对于IP的这些改变对IAB于1991年制定的IPv6发展方向中的绝大部分都有所改进。IPv6的扩展地址意味着IP可以继续增长而无需考虑资源的匮乏,该地址结构对于提高路由效率有所帮助;对于包头的简化减少了路由器上所需的处理过程,从而提高了选路的效率;同时,改进对头扩展和选项的支持意味着可以在几乎不影响普通数据包和特殊包选路的前提下适应更多的特殊需求;流标记办法为更加高效地处理包流提供了一种机制,这种办法对于实时应用尤其有用;身份验证和保密方面的改进使得

IPv6更加适用于那些要求对敏感信息和资源特别对待的商业应用。

1. 扩展地址

IPv6的地址结构中除了把32位地址空间扩展到了128位外,还对IP主机可能获得的不同类型地址作了一些调整。例如IPv6中取消了广播地址而代之以任意点播地址。IPv4中用于指定一个网络接口的单播地址和用于指定由一个或多个主机侦听的组播地址基本不变。

2. 简化的包头

IPv6中包括总长为40字节的8个字段(其中两个是源地址和目的地址 )。它与IPv4包头的不同在于,IPv4中包含至少12个不同字段,且长度在没有选项时为20字节,但在包含选项时可达60字节。IPv6使用了固定格式的包头并减少了需要检查和处理的字段的数量,这将使得选路的效率更高。包头的简化使得IP的某些工作方式发生了变化。一方面,所有包头长度统一,因此不再需要包头长度字段。此外,通过修改包分段的规则可以在包头中去掉一些字段。IPv6中的分段只能由源节点进行:该包所经过的中间路由器不能再进行任何分段。最后,去掉IP头校验和不会影响可靠性,这主要是因为头校验和将由更高层协议(UDP和TCP)负责。

3. 对扩展和选项支持的改进

在IPv4中可以在IP头的尾部加入选项,与此不同,IPv6中把选项加在单独的扩展头中。通过这种方法,选项头只有在必要的时候才需要检查和处理。为便于说明,考虑以下两种不同类型的扩展部分:分段头和选路头。 IPv6中的分段只发生在源节

点上,因此需要考虑分段扩展头的节点只有源节点和目的节点。源节点负责分段并创建扩展头,该扩展头将放在 IPv6头和下一个高层协议头之间。目的节点接收该包并使用扩展头进行重装。所有中间节点都可以安全地忽略该分段扩展头,这样就提高了包选路的效率。另一种选择方案中,逐跳( hop-by-hop)选项扩展头要求包的路径上的每一个节点都处理该头字段。这种情况下,每个路由器必须在处理IPv6包头的同时也处理逐跳选项。第一个逐跳选项被定义用于超长IP包(巨型净荷)。包含巨型净荷的包需要受到特别对待,因为并不是所有链路都有能力处理那样长的传输单元,且路由器希望尽量避免把它们发送到不能处理的网络上。因此,这就需要在包经过的每个节点上都对选项进行检查。

4. 流

在IPv4中,对所有包大致同等对待,这意味着每个包都是由中间路由器按照自己的方式来处理的。路由器并不跟踪任意两台主机间发送的包,因此不能“记住”如何对将来的包进行处理。IPv6实现了流概念,其定义如RFC1883中所述:

流指的是从一个特定源发向一个特定(单播或者是组播)目的地的包序列,源点希望中间路由器对这些包进行特殊处理。

路由器需要对流进行跟踪并保持一定的信息,这些信息在流中的每个包中都是不变的。这种方法使路由器可以对流中的包进行高效处理。对流中的包的处理可以与其他包不同,但无论如何,对于它们的处理更快,因为路由器无需对每个包头重新处理。

5. 身份验证和保密

RFC1825(IP的安全性体系结构)描述了IP的安全性体系结构,包括IPv4和IPv6。它发表于在1995年8月,目前正在进

行修改和更新。1998年3月发表了一个更新版Internet草案。IP安全性的基本结构仍然很坚固,且已经进行了一些显著的改变和补充。

IPv6使用了两种安全性扩展:IP身份验证头(AH )首先由RFC1826(IP身份验证头)描述,而IP封装安全性净荷(ESP )首先在RFC1827(IP封装安全性净荷( ESP ) )中描述。

报文摘要功能通过对包的安全可靠性的检查和计算来提供身份验证功能。发送方计算报文摘要并把结果插入到身份验证头中,接收方根据收到的报文摘要重新进行计算,并把计算结果与A H头中的数值进行比较。如果两个数值相等,接收方可以确认数据在传输过程中没有被改变;如果不相等,接受方可以推测出数据或者是在传输过程中遭到了破坏,或者是被某些人进行了故意的修改。

封装安全性提供机制,可以用来加密 IP包的净荷,或者在加密整个IP包后以隧道方式在Internet上传输。其中的区别在于,如果只对包的净荷进行加密的话,包中的其他部分 (包头)将公开传输。这意味着破译者可以由此确定发送主机和接收主机以及其他与该包相关的信息。使用ESP对IP进行隧道传输意味着对整个IP包进行加密,并由作为安全性网关操作的系统将其封装在另一IP包中。通过这种方法,被加密的IP包中的所有细节均被隐藏起来。这种技术是创建虚拟专用网(VPN)的基础,它允许各机构使用Internet作为其专用骨干网络来共享敏感信息。

2.2 包头结构

在IPv4中,所有包头以32位为单位,即基本的长度单位是4个字节。在IPv6中,包头以64位为单位,且包头的总长度是40字节。IPv6协议为对其包头定义了以下字段:

●版本:长度为4位,对于IPv6,该字段必须为6

●类别:长度为8位,指明为该包提供了某种“区分服务”。

RFC1883中最初定义该字段只有4位,并命名为“优先级字段”,后来该字段的名字改为“类别”,在最新的IPv6 Internet 草案中,称之为“业务流类别”。该字段的定义独立于IPv6,目前尚未在任何RFC中定义。该字段的默认值是全0。

●流标签。长度为20位,用于标识属于同一业务流的包。一个

节点可以同时作为多个业务流的发送源。流标签和源节点地址唯一标识了一个业务流。在RFC1883中这个字段最初被设计为24位,但当类别字段的长度增加到8位后,流标签字段被迫减小长度来作补偿。

●净荷长度。长度为16位,其中包括包净荷的字节长度,即

IPv6头后的包中包含的字节数。这意味着在计算净荷长度时包含了IPv6扩展头的长度。

●下一个头。这个字段指出了IPv6头后所跟的头字段中的协议

类型。与IPv6协议字段类似,下一个头字段可以用来指出高层是TCP还是UDP,但它也可以用来指明IPv6扩展头的存在。

●跳极限。长度8位。每当一个节点对包进行一次转发之后,

这个字段就会被减1。如果该字段达到0,这个包就将被丢弃。

IPv4中有一个具有类似功能的生存期字段,但与IPv4不同,人们不愿意在IPv6中由协议定义一个关于包生存时间的上限。这意味着对过期包进行超时判断的功能可以由高层协议完成。

●源地址。长度为128位,指出了IPv6包的发送方地址。

●目的地址。长度为128位,指出了IPv6包的接收方地址。这

个地址可以是一个单播、组播或任意点播地址。如果使用了选路扩展头 (其定义了一个包必须经过的特殊路由 ),其目的地址可以是其中某一个中间节点的地址而不必是最终地址。

2.3 流标签

IPv4通常被描述为无连接协议。就像任何一个包交换网络一样, IPv4设计为让每个包找到自己的路径以到达其目的地。每个包都分别处理,而结果是两个从相同数据源发往相同目的地的包可以采用完全不同的路由来穿越整个网络。这对于适应网络突发事件来说是个好办法,因为突发事件意味着任何一条路由都可能在任何时间出现故障,但只要两主机间存在某些路由则可以

进行数据的交互。

但是,这种方法的效率可能不太高,尤其是当包并不是孤立的,且实际上是两个通信系统间的业务流的一部分时。进一步考虑一个包流从一台主机发往另一主机时在它所经过的路径上将发生的事情:每个中间路由器对每个包的处理将导致在链路上轻微地增加延时。对于类似文件传输或终端仿真之类的大部分传统Internet应用,延时只会带来一点不方便而已,但对于一些提供互操作的音频和视频应用而言,即使只是增加一点点延时也会显著降低服务质量。

对每个IPv4包均进行单独处理带来的另一个问题在于难以把特定的业务流指定到较低代价的链路上。例如,电子邮件的传输优先级不高,并且不是实时应用,但 IPv4网络管理员却没有简单的办法来标识这些包,把它们传输到较低开销的 Internet 链路,并为实时应用保留较高开销的链路。

IPv6中定义的流的概念将有助于解决类似问题。IPv6头字段中的流标签把单个包作为一系列源地址和目的地址相同的包流的一部分。同一个流中的所有包具有相同的流标签。

2.4 业务流类别

最早有关IPv6的RFC1883中定义了4位优先级字段,这意味着每个包可能具备16个优先级中的一个。但是,经过多次讨论后这个字段的名字改为“类别”,且长度也扩大到了1字节。在最新的关于RFC1883的Internet修订草案中,名字又被改为“业务流类别”。

IPV4过渡到IPV6的几个基本策略

2006年第1期 能源技术与管理 IPV4过渡到IPV6的几个基本策略 张玉学 (苏州职业大学,江苏苏州215004) [摘要]在IPV4网络流行,而IPV6网络崛起的今天,可以采取双协议栈技术、隧道技术、翻译技术等一些策略,使IPV4网络向IPV6网络平稳过渡。 [关键词]IPV4;IPV6;NAT;栈 [中图分类号]TP393.03[文献标识码]B[文章编号]1672!9943(2006)01!0106!02 0引言 目前版本的IP即IPV4自从1981年发布以来,它所取得的成功是不可思议的—— —它容纳了硬件技术、异构网络以及网络规模的极度增长和不断变化。但是随着Internet的发展,IPV4存在的一些不足日益明显,譬如对服务质量(Qos)、安全性、简便配置等的需求不能很好的满足,更重要的是,出现了迫在眉睫的IPV4地址空间的耗尽问题。IPV6应运而生,它弥补了IPV4的不足,并且更多的考虑了网络的长远发展。 目前,世界各国对IPV6的研究和开发蓬勃发展,IPV6在数据通信网络、移动通信、家电方面都取得了进步并逐步投入应用。IPV6已经被认为是下一代互联网络的核心标准之一,但是,协议的过渡的很不容易的,尤其是对于IPV4仍然很好支撑着Internet的今天。那么,在IPV6网络流行于全球之前,需要使用一定的技术,使IPV4和IPV6互通,以保证IPV4能够平稳过渡到IPV6[1]。 IPV4向IPV6过渡可以采取以下几个策略。1双协议栈技术 双协议栈技术是主机和路由器在同一网络接口上运行IPV4栈和IPV6栈。这种运行双协议栈的节点就是IPV6/IPV4节点,当这种节点和IPV6节点进行通信时,它就像一个纯IPV6节点,而当它与一个IPV4节点或者兼容IPV4的IPV6节点通信时,它就像一个纯IPV4节点。这样,双栈节点既可以接收和发送IPV4包,又可以接收和发送IPV6包。因而两个协议可以在同一网络中共存。双协议栈技术的工作原理如图1所示。 实现双协议栈主要要解决两个问题:①双栈节点的地址配置。因为双栈节点同时支持 IPV4和IPV6协议,所以必须同时配置IPV4和IPV6地址。②通过DNS获取通信对方的地址。就像纯IPV4节点通信一样,IPV6/IPV4节点间的通信也需要一个DNS解析器来同时解析两种DNS地址记录,它可以同时返回IPV4、IPV6两种地址,解析器还必须对返回给应用层的地址类型作选择。 对于节点,要求在原有节点上开发IPV6、ICMPV6和邻居发现等程序;上层TCP、UDP对IPV6的处理软件;修改与各种高层应用程序接口的Socket库,以支持IPV6地址的接口扩充等[2]。 双协议栈技术互通性好,容易理解。但是,需要给每个新的运行着IPV6协议的网络设备和终端分配IPV4地址,不能解决IPV4地址短缺问题。另外,相关的主机因为要同时运行IPV4和IPV6协议,而路由器也要同时存储所有的路由表,势必会使用更多的内存和CPU能力。在IPV6网络建设初期,IPV4地址相对充足,双栈技术简单、直观的解决了IPV4与IPV6之间的通信,因此具有一定的可行性。 2隧道技术 隧道技术是指用IPV4报文来封装IPV6数据包,以使IPV6数据包可以穿越IPV4的网络。 图2显示两个纯IPV6网络通过纯IPV4网络实现互联,基于IPV4隧道的IPV6数据包传送分为封装、隧道管理和解封三个阶段:①封装。由隧道起始点创建一个IPV4数据包,把IPV6报文 图1双协议栈的工作原理 106

IPv4IPV6过渡技术

IPv4/IPV6过渡技术 IPv4/IPV6过渡技术是用来在IPv4向IPV6演进的过渡期内,保证业务共存和互操作的。目前的各种IPv4/IPV6过 渡技术,从功能用途上可以分成两类: IPv4/IPV6业务共存技术 IPv4/IPV6互操作技术

IPv4/IPV6业务共存技术 ?IPv4/IPV6业务共存技术用来保证这两种网络协议可以在公共互联网中共同工作,在IPV6发展过程中这些技术可以帮助IPV6业务在现有的IPv4网络基础架构上工作。主要的IPv4/IPV6业务共存技术又可分为 ?双栈技术 ?双栈技术通过节点对IPv4和IPV6双协议栈的支持,支持两种业务的共存。 ?隧道技术 ?隧道技术通过在IPv4网络中部署隧道,实现在IPv4网络上对IPV6业务的承载,保证业务的共存和过渡 ?已定义的隧道技术种类很多,主要包括手工配置隧道、兼容地址自动配置隧道、6over4、6to 4、MPLS隧道、 ISATAP、隧道代理等技术。

双栈技术 ?双栈是指同时支持IPv4协议栈和IPV6协议栈。双栈节点同时支持与IPv4和IPV6节点的通信,当和IPv4节点通信时需要采用IPv4协议栈,当和IPV6节点通信时需要采用IPV6协议栈。双栈节点访问业务时支持通过DNS解析结果选择通信协议栈。即当域名解析结果返回IPv4或IPV6地址时,节点可用相应的协议栈与之通信。 ?双栈方式是一种比较直观的解决IPv4/IPV6共存问题的方式,但只有当通信双方数据包通路上的所有节点设备(路由器等)都支持双栈技术后,这种方式才能充分发挥其作用。

? 1、手工配置隧道?隧道技术是一种利用现有IPv4网络传送IPV6数据包的方法,通过将IPV6数据包封装在IPv4数据包中,实现在IPv4网络中的数据传送。隧道的起点和终点设备都同时支持IPv4和IPV6协议的节点,隧道起点将要经过隧道传送的IPV6数据包封装在IPv4包中发给隧道终点,隧道终点将IPv4封装去掉,取出IPV6数据包。IPv4封装IPV6数据包方式如图1所示。 ? ? 图1 IPv4封装IPV6数据包方式? 在实际实现中,隧道封装时还涉及到对MTU 、TTL 等的处理。?隧道技术在设置IPv4报头的目的IP 地址时分为手动和自动两种方式,不同的目的地址设置方式也成为几种隧道技术的重要区别。这里介绍的手工配置隧道技术,是指通过人工方式预先设置隧道终点IPv4地址的方式。每条隧道的终点IPv4地址都是隧道起点从人工配置信息中获得的。手工配置隧道实现简单,但每条隧道都要人工管理,大量 使用时管理难度很大。

IPV4过渡到IPV6(毕业设计论文)

本科毕业设计论文 (理工类) 题目:IPV4过渡到IPV6 专业:计算机科学与技术姓名:** 指导教师姓名:** 指导教师职称:副教授 2012年 5 月

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

IPV4向IPV6过渡的解决方案

目前过渡问题成熟的技术方案基本分为三种: [1] 双协议栈( Dual Stack, RFC2893 ):主机同时运行IPv4和IPv6两套协议栈,同时支持两套协议 [2] 隧道技术( Tunnel, RFC2893 ):这种机制用来在IPv4网络之上连接IPv6的站点,站点可以是一台主机,也可以是多个主机。隧道技术将IPv6的分组封装到IPv4的分组中,封装后的IPv4分组将通过IPv4的路由体系传输,分组报头的"协议" 域设置为41,指示这个分组的负载是一个IPv6的分组,以便在适当的地方恢复出被封装的IPv6分组并传送给目的站点。根据封装/解封装操作发生位置的不同,隧道可以分为四种: λ路由器到路由器( Router-to-Router ) λ主机到路由器( Host-to-Router ) λ主机到主机( Host-to-Host ) λ路由器到主机( Router-to-Host ) 根据建立方式的不同,隧道又可以分成两类: λ (手工)配置的隧道( Configured Tunnel ) λ自动配置的隧道( Auto-configured Tunnel ) [3] 翻译技术,最具代表性的是NAT-PT ( Network Address Translation - Protocol Translation,RFC2766 ):利用转换网关来在IPv4和IPv6网络之间转换IP报头的地址,同时根据协议不同对分组做相应的语义翻译,从而使纯IPv4和纯IPv6站点之间能够透明通信。 需要指出的是,这些过渡机制都不是普遍适用的,每一种机制都适用于某种或几种特定的网络情况,而且常常需要和其它的技术组合使用。在实际应用时需要综合考虑各种实际情况来制定合适的过渡策略。 过渡解决方案 【方案简介】 IPv6 虚拟接入解决方案是建立在虚拟网络(VPN)之上的隧道型IPv6过渡综合解决方案。通过使用该方案,在满足IPv4用户的基本IPv6接入需求,提供高可靠的安全性保证;同时利用IPv6的便利性和平坦性,向用户提供更为方便的互联网应用。 目前,IPv6作为下一代网络的主要载体,在核心网络中得到了大规模部署,但是,在用户接入网侧,IPv4仍然是应用的主体。而天地互连IPv6 虚拟接入解决方案通过在客户侧安装客户端软件,不需要用户进行复杂的网络配置,就可以实现在IPv4现有网络中传输IPv6数据的功能。为IPv4用户提供便利,高速的IPv6接入,从而享受到IPv6网络的各种新型应用。 其次,对于IPv6用户,则可以通过在IPv4网络服务端增加相应的IPv6 虚拟接入组件,在不改变服务器网络结构的基础上,实现服务的IPv6化,从而将服务延伸到IPv6网络中,实现IPv6和IPv4网络的无缝对接。 最后,在当前的IPv4网络结构中,由于IPv4地址的稀缺,很多用户网络都以私有网络的形式存在,由于路由器,防火墙等物理性网络壁垒的存在,使得终端机器之间的直接通信无法实现。通过采用IPv6虚拟接入方案,所有用户都可以使用IPv6公有地址进行直接通信,从而实现终端之间的直接通信,使得展开以此为基础的独特服务变得可能。

IPv4向IPv6的升级过渡解决方案

从IPv4到IPv6的升级过渡解决方案 IPv4,国际互联网协议(Internet Protocol,IP)的第四版, 被广泛使用至今,构成现在互联网技术的基础协议,它创造了 Internet历史的辉煌。由于IPv4技术限制,使得目前Internet面 临着地址空间不足、路由表膨胀(路由速度慢)、不支持新业务模式、网络安全性和服务质量的巨大挑战,解决IPv4所面临的问题已是迫 在眉睫,于是国际互联网工程任务组IETF提出了它的下一个版本即 IPv6。IPv6将从根本上解决地址空间不足、提升网络安全和服务质量,提高路由效率等问题,会在不久的将来取代目前广泛使用的 IPv4。但要迅速从IPv4到IPv6的转换是不切实际的,毕竟自1981 年定义IPv4到现在,Ipv4的发展使用已有近40年的历史,几乎目 前的每个网络及其连接设备都是支持Ipv4的,一种新协议的诞生到 广泛应用必将经历一个过程甚至较长时期。本文对于从IPv4到IPv6 的升级过渡技术进行了全面的介绍,并重点分析了目前常用的隧道技术、协议翻译技术和双协议栈技术的优点、缺点,然后提出具体的升 级解决方案。最后做出了归纳总结,说明进一步要做的相关工作。 2017年11月中共中央办公厅、国务院办公厅印发了《推进互联 网协议第六版(IPv6)规模部署行动计划》简称《行动计划》,使得 IPv6正式落地,并强制执行。计划提出要用5到10年时间,形成下 一代互联网自主技术体系和产业生态,建成全球最大规模的IPv6商

业应用网络,实现下一代互联网在经济社会各领域的深度融合应用,成为全球下一代互联网发展的重要主导力量。 1、Ipv4到IPv6常用过渡技术 在Ipv6网络全球普遍部署之前,一些首先运行IPv6的网络希望能够与当前运行IPv4的互联网进行通信,于是IETF专门成立了工作组NGTRANS来研究从IPv4向IPv6过渡的问题,目前已提出了一系列过渡技术和互连方案,这些技术各有特点,用于解决不同过渡时期,不同网络环境中的通信问题,在过渡初期,互联网由运行IPv4的 “海洋”和运行IPv6的“孤岛”组成,随着时间的推移,海洋会逐渐变小,孤岛会越来越多,最终IPv6会完全取代IPv4,过渡初期要 解决的问题可分为两类,第一是解决IPv6孤岛之间互相通信问题, 第二是解决IPv6孤岛与IPv4海洋之间的通信问题,其中最具代表的就是隧道技术、协议翻译技术和双协议栈技术。 隧道技术就是把IPv6分组封装到IPv4分组中,通过IPv4网 络进行转发的技术,这种隧道就像一条虚拟的IPv6链路一样,可以 把IPv6分组从IPv4网络的一端传送到另一端,在隧道两端进行封装和解封的网络节点可以是主机也可以是路由器,IPv4分组的源地址 和目的地址分别是隧道入口和出口的Ipv4地址,在隧道出口再将 IPv6分组取出,在传送期间对原始IPv6分组不做任何改变。 建立隧道可以采用手工配置的方法,也可以采用自动配置的方法。对于小型的网络,人工配置隧道是容易的,但是对于大型网络,这个方法就很困难了,有一种叫做隧道中介(Tunnel Broker)的技术可

IPv4向IPv6的过渡策略

IPv4向IPv6的过渡策略 移动网络向移动IPv6的过渡过程中,IPv4的网络和业务将会在一段相当长的时间里与IPv6共存,许多业务仍然要在IPv4网络上运行很长时间,特别是IPv6不可能马上提供全球的连接,很多IPv6的通信不得不在IPv4网路上传输,因此过渡机制非常重要,需要业界的特别关注和重视。 IPv4向IPv6过渡的过程是渐进的,可控制的,过渡时期会相当长,而且网络/终端设备需要同时支持IPv4和IPv6,最终的目标是使所有的业务功能都运行在IPv6的平台上。 1、IPv4到IPv6的过渡方法 从IPv4到IPv6的过渡方法有三种:网络元素/终端的双协议栈、网络中的隧道技术以及翻译机制。其中双协议栈和隧道技术是主要的方法,而翻译机制由于效率比较低,只在不同IP版本的元素之间进行通信时才采用。 (1)网络元素和移动终端上的IPv4/IPv6双协议栈双协议栈是非常重要的过渡机制,从网络方面来看,网络设备(如GGSN)实现双协议栈对于实现IPv4和IPv6的接入点并完成IPv6-in-IPv4的隧道都是至关重要的,另外运营商IP网络和公众因特网边缘的边际路由器也应该是双栈路由器。从移动终端来看,需要通过双协议栈来访问IPv4和IPv6的业

务而不需要网络上的翻译机制。 (2)隧道技术 如将IPv6的数据包封装在IPv4的数据包中并在隧道的另一端解除封装,这也是一种非常重要的过渡方法,隧道技术要求在封装和解除封装的节点上都有IPv4/IPv6双协议栈的功能。隧道技术又分为自动和人工配置两种,人工配置的隧道技术是在隧道的终点人工配置到某个特定的IPv4地址;对于自动隧道技术来说,封装是自动在进行封装的路由器/主机上完成的,隧道终点的IPv4地址被包含在目的地址为IPv6地址的数据包中,如“6to4”隧道技术。 (3)网络上的IPv4-IPv6协议翻译器:翻译器是纯IPv4主机和纯IPv6主机之间的中间件,使两种主机不需要修改任何配置就可以实现彼此之间的直接通信,翻译器的使用对于移动终端来说是透明的,头标转换是一种重要的翻译机制,通过这种方法IPv6数据包的头标被转换为IPv4数据包的头标,或者反过来,IPv4转换为IPv6,有必要的时候对校验进行调整或重新计算,NAT/PT(Network Address Translator/Protoco l Translator)就是采用这种机制的一种方法。

IPv4到IPv6的过渡技术

IPv4到IPv6的过渡技术 由于Internet的规模以及目前网络中数量庞大的IPv4用户和设备,IPv4到v6的过渡不可能一次性实现。而且,目前许多企业和用户的日常工作越来越依赖于Internet,它们无法容忍在协议过渡过程中出现的问题。所以IPv4到v6的过渡必须是一个循序渐进的过程,在体验IPv6带来的好处的同时仍能与网络中其余的IPv4用户通信。能否顺利地实现从IPv4到IPv6的过渡也是IPv6能否取得成功的一个重要因素。 实际上,IPv6在设计的过程中就已经考虑到了IPv4到IPv6的过渡问题,并提供了一些特性使过渡过程简化。例如,IPv6地址可以使用IPv4兼容地址,自动由IPv4地址产生;也可以在IPv4的网络上构建隧道,连接IPv6孤岛。目前针对IPv4-v6过渡问题已经提出了许多机制,它们的实现原理和应用环境各有侧重,这一部分里将对IPv4-v6过渡的基本策略和机制做一个系统性的介绍。 在IPv4-v6过渡的过程中,必须遵循如下的原则和目标: ·保证IPv4和IPv6主机之间的互通; ·在更新过程中避免设备之间的依赖性(即某个设备的更新不依赖于其它设备的更新); ·对于网络管理者和终端用户来说,过渡过程易于理解和实现; ·过渡可以逐个进行; ·用户、运营商可以自己决定何时过渡以及如何过渡。 ??? 本章就支持IPv4向IPv6过渡的主要技术进行讨论,讨论主要分三个方面: 1、IP层的过渡策略与技术 2、链路层对IPv6的支持 3、IPv6对上层的影响 IP层的过渡策略与技术 对于IPV4向IPV6技术的演进策略,业界提出了许多解决方案。特别是IETF组织专门成立了一个研究此演变的研究小组NGTRANS,已提交了各种演进策略草案,并力图使之成为标准。纵观各种演进策略,主流技术大致可分如下几类: 图13 IPV4/IPV6演进策略分类 双栈策略 实现IPv6结点与IPv4结点互通的最直接的方式是在IPv6结点中加入IPv4协议栈。具有双协议栈的结点

ipv4向ipv6过渡方案

摘要 CERNET2的正式投入运行将使IPv6在CERNET2上由实验阶段转入应用阶段,在国内大多高校校园网也将由逐步完成基于IPv4的CERNET2接入,本文分析比较了IPv4与IPv6网络的各种优缺点;研究了现阶段IPv4向IPv6的过渡技术,在调研考察现阶段高校校园网接入CERNET2的技术和方案的基础上,给出了基于隧道技术的网络中心纯IPv6接入;基于双隧道以及双栈协议的某学院办公室的IPv4与IPv6的同时接入;以及基于ISATAP 模式隧道的校内单点客户的IPv4与IPv6的同时接入三种可行的IPv6网络的接入方案,并搭建了模拟实验环境,完成了一定意义上可用性的测试。 关键词:CERNET2;IPv6;IPv4;隧道;双栈协议;过渡技术。

Abstract CERNET2 formal operational IPv6 will CERNET2 by the experimental stage in the application stage, most of campus network in the country will also be gradually completed the CERNET2 IPv4-based access, this paper compares IPv4 and IPv6 networks of all kinds of advantages and disadvantages; of the current IPv4 to IPv6 transition technology, at this stage in the research study CERNET2 campus network access technologies and programs based on the tunneling technology is presented based on pure IPv6 network center access, and dual stack based on double tunnel agreement, the office of a college, while IPv4 and IPv6 access, and school-based ISATAP tunnel mode single point of customer access to IPv4 and IPv6, while three possible IPv6 network access solutions, and built a simulation environment, completed a certain sense, usability testing. Key words: CERNET2; IPv6; IPv4; tunnel; Dual stack; transitional technology.

IPv6过渡技术—翻译技术

一、翻译技术 IPv4/IPv6翻译技术能够成功实现IPv4网络与IPv6网络之间互访问题。翻译技术可以分为无状态翻译技术(stateless translation)和有状态翻译技术(stateful translation)两种,其中有状态地址翻译通过存储相应的地址、端口状态映射表来实现IPv4地址的复用,在这种方式中,状态表是基于连接(session)而建立的,因而状态表非常庞大,且动态性显著。而在无状态地址翻译中,IPV4地址和端口范围直接内嵌到IPV6地址中,这样就不需要有状态表来维护地址、端口的对应关系,但这种无状态的方式中IPv6地址格式受限,不能够支持灵活的IPv6地址分配。 1、有状态的翻译技术 (1)NAT-PT技术 为了实现IPv6与IPv4的互访,IETF(互联网工程任务组)在早期设计了NAT-PT(Network Address Translation-Protocol Translation)的解决方案(RFC2766)。NAT-PT是一种有状态的4-6报文翻译,它通过IPv6与IPv4的网络地址与协议转换,实现了IPv6网络与IPv4网络的双向互访。协议转换的目的是实现IPv4和IPv6协议头之间的转换;地址转换则是为了让IPv6和IPv4网络中的主机能够识别对方。 NAT-PT可以实现纯IPv6节点和纯IPv4节点之间通信,如图1所示。NAT-PT 使用网关设备连接IPV6和IPv4网络。当IPv4和IPv6节点互相访问时,NAT-PT 网关实现两种协议的转换翻译和地址的映射。NAT-PT网关在工作时, 将维护一个IPv4地址池。与系统NAT方式一样,NAT-PT网关支持为IPv6网络中的节点动态分配IPv4 地址, 维护地址映射关系, 并且完成IPV4协议和IPV6协议的转换[1]。 图1 NA T-64基本场景 但NAT-PT在实际网络应用中面临各种缺陷,IETF推荐不再使用,在RFC4966中被置为“historic”状态[2],理由如下: ①拓扑限制和扩展性问题; ②记录优选问题:IPv6 Host在和双栈主机通信时,DNS会同时返回两个记

IPv6过渡技术发展历程分析

□TELECOMMUNICATIONS NETWORK TECHNOLOGY No.6FOCUS ON INNOVATION 1引言 而今在Google 中搜索“IPv6”这个关键词,可以找 到1730万条搜索结果。毫无疑问,自2011年2月3日 IANA (互联网号码资源顶级管理机构)宣布其可分配的IPv4地址资源全部耗尽后,全球CT (电信技术)与 IT 信息技术界已掀起了新一轮关于IPv6的建设浪潮,包括试验、试点、试商用甚至面向公众开放的正式商用。尤其在IP 地址资源和需求矛盾最为突出的中国电信集团、中国移动集团和中国联通集团或已完成或已启动和规划在多个省份开展IPv6试点。百度和腾讯公司也已发布了近两年的IPv6迁移计划。作为IPv6端到端解决方案的领导者和最佳践行者,华为公司全程参与了国内三大运营迄今为止所有的IPv6建设项目,在各类IPv6业务商用部署和各类IPv6过渡技术探索上都积累了丰富而深厚的经验。 笔者有幸参与国内运营商多个省份IPv6相关项目的支撑工作,遭遇客户最常见的问题就是“现有IPv4网络和业务向IPv6过渡的方案是否已成熟”。这个问题似乎很难答复,因为的确在今天,在IETF (互联网相关协议&技术方案权威标准组织)仍然还有很多IPv6过渡技术解决方案在排着长队等待多方评审以完成标准化形成正式的RFC 。而IPv6基础协议本身完成标准化(RFC1883-IPv6Specification )已是16年前的事情了,为什么这么长时间过去了,IPv4向IPv6怎么过渡还没想明白呢?哪种方式更适合解决哪些问题?如何取舍、如何组合、如何排序、如何部署等?运营商对此仍然面临艰难选择。 实际上我们仔细回顾一下IPv6过渡技术发展的全景历史,并重点关注具体方案在技术设计与应用场 景上的限制,就可以理清回答上述问题的答案脉络。 2IPv6过渡技术发展的全景历史 从基本的 实现机理视角看,IPv6过渡技术通常被分为双栈(Dual Stack )、隧道(Tunnel )和翻译(Translate )3类。如果将 IPv4比作红色的承载管道, 将IPv6比作蓝色的承载管道,那么3种基本过渡方式的实现原理将如图1所示。 (1)双栈方式 指从用户侧到网络侧同时支持IPv4协议栈和 IPv6协议栈。虽然双栈不能解决IPv4地址短缺的问题,但其毕竟是实施其他两类过渡方式的基础。即无论使用隧道还是翻译,相对的网络设备或终端设备必须支持双栈。在双栈的基础上再考虑如何引入其它技术。 (2)隧道方式 是将一种协议的数据报文(包括报文头部和报文负载)封装在另一种协议的数据报文中(仅作为负载)传输。隧道是连接孤岛的有效方法,类型有很多,包括 6PE/6VPE ,IP-in-IP ,GRE ,L2TP ,6over4,4over6,6to4,ISATAP ,Teredo ,6RD 等。不同类型隧道技术用于不同应用场景。但隧道实施需两端设备良好互通,这是个很 IPv6过渡技术发展历程分析 张伟 华为技术有限公司中国区网络Marketing 部高级营销经理 摘 要回顾了业界既往16年IPv6过渡技术方案的发展历程,对比分析了主流IPv6过渡技 术方案优劣势及商用意义,最后结合国内运营商的实际需求给出了IPv6过渡路线的技术建议。 关键词IPv6IP-in-IP DualStack NAT444DS-Lite NAT64 28··

IPv6几种过渡技术

IPv6过渡技术分析 蒋鹏胡锡梅王福明 (1.中北大学信息与通信工程学院,山西太原 030051;2.) 摘要:随着现代技术的飞速发展,国际互联网已经广泛应用到各个领域。现阶段使用的协议IPv4已不能满足时代的发展,其定义的IPv4地址早在2011年2 月4日分配完毕。新一代地址协议IPv6取代旧地址协议是必然的的趋势,但要完成从IPv4到IPv6的过渡将是一个渐进的长期的过程。在这个过程中出现了许多中过渡技术,本文主要分析并比较双栈技术、隧道技术和转换机制这三种主要技术的优略。 关键字:IPv6;双栈技术;隧道技术;转换机制; Abstract:Along with development of modern technology,Internet has been widely applied to various fields.IPv4 protocol used at the present stage can not satisfaction the development of the times,The definition of IPv4 addresses as early as February 4,2011 allocated. New generation protocol IPv6 address instead of the old address protocol is an inevitable trend. But to complete the transition from IPv4to IPv6 will be a gradual long-term process.In this process produced a number of technical. this article analyzes and compares advantages and shortcomings of three main technical Dual Stack,Technology of Tunneling and Conversion mechanism. Key words:IPv6;Dual Stack;Technology of Tunneling;Conversion mechanism 1.双栈技术 双栈技术是指在一个系统中同时使用IPv4/IPv6两个可以并行工作的协议栈。它的工作原理是:由于IPv6和IPv4都属于TCP/IP体系结构中的网络协议而且都基于相同的物理平台,在其上的传输协议TCP和UDP没有任何区别,只是针对不同的数据包采用不同的协议栈。双IP层结构如图(1),双栈路由器的 图(1):双IP层结构

IPv4向IPv6过渡中的几个关键技术详解

IPv4向IPv6过渡中的几个关键技术详解 发布单位:现代教育技术与信息中心|发布时间:2010-11-11 9:12:03 由于Internet的规模以及目前网络中数量庞大的IPv4用户和设备,IPv4到v6的过渡不可能一次性实现。而且,目前许多企业和用户的日常工作越来越依赖于Internet,它们无法容忍在协议过渡过程中出现的问题。所以IPv4到v6的过渡必须是一个循序渐进的过程,在体验IPv6带来的好处的同时仍能与网络中其余的IPv4用户通信。能否顺利地实现从IPv4到IPv6的过渡也是IPv6能否取得成功的一个重要因素。 实际上,IPv6在设计的过程中就已经考虑到了IPv4到IPv6的过渡问题,并提供了一些特性使过渡过程简化。例如,IPv6地址可以使用IPv4兼容地址,自动由IPv4地址产生;也可以在IPv4的网络上构建隧道,连接IPv6孤岛。目前针对IPv4-v6过渡问题已经提出了许多机制,它们的实现原理和应用环境各有侧重,这一部分里将对IPv4-v6过渡的基本策略和机制做一个系统性的介绍。 在IPv4-v6过渡的过程中,必须遵循如下的原则和目标: ·保证IPv4和IPv6主机之间的互通; ·在更新过程中避免设备之间的依赖性(即某个设备的更新不依赖于其它设备的更新); ·对于网络管理者和终端用户来说,过渡过程易于理解和实现; ·过渡可以逐个进行; ·用户、运营商可以自己决定何时过渡以及如何过渡。 主要分三个方面:IP层的过渡策略与技术、链路层对IPv6的支持、IPv6对上层的影响

对于IPv4向IPv6技术的演进策略,业界提出了许多解决方案。特别是IETF组织专门成立了一个研究此演变的研究小组NGTRANS,已提交了各种演进策略草案,并力图使之成为标准。纵观各种演进策略,主流技术大致可分如下几类: 双栈策略 实现IPv6结点与IPv4结点互通的最直接的方式是在IPv6结点中加入IPv4协议栈。具有双协议栈的结点称作“IPv6/v4结点”,这些结点既可以收发IPv4分组,也可以收发IPv6分组。它们可以使用IPv4与IPv4结点互通,也可以直接使用IPv6与IPv6结点互通。双栈技术不需要构造隧道,但后文介绍的隧道技术中要用到双栈。IPv6/v4结点可以只支持手工配置隧道,也可以既支持手工配置也支持自动隧道。 隧道技术 在IPv6发展初期,必然有许多局部的纯IPv6网络,这些IPv6网络被IPv4骨干网络隔离开来,为了使这些孤立的“IPv6岛”互通,就采取隧道技术的方式来解决。利用穿越现存IPv4因特网的隧道技术将许多个“IPv6孤岛”连接起来,逐步扩大IPv6的实现范围,这就是目前国际IPv6试验床6Bone的计划。 工作机理:在IPv6网络与IPv4网络间的隧道入口处,路由器将IPv6的数据分组封装入IPv4中,IPv4分组的源地址和目的地址分别是隧道入口和出口的IPv4地址。在隧道的出口处再将IPv6分组取出转发给目的节点。 隧道技术在实践中有四种具体形式:构造隧道、自动配置隧道、组播隧道以及6to4。 TB(Tunnel Broker,隧道代理) 对于独立的v6用户,要通过现有的IPv4网络连接IPv6网络上,必须使用隧道技术。但是手工配置隧道的扩展性很差,TB的主要目的就是简化隧道的配置,提供自动的配置手段。对于已经建立起IPv6的ISP

浅谈IPV6的几种过渡技术

浅谈IPV6的几种过渡技术 摘要:文章分析了Ipv6技术发展所面临的现状。提出Ipv4向IPv6过渡时所采用的几种技术。 关键词:IPv6;过渡技术;双栈协议技术;隧道技术;NAT/PT 1、Ipv6过渡技术 ①双栈协议技术。双栈协议技术是IPv6过渡技术的基础,不仅用于建设双栈网络,也是各种过渡隧道机制的基础,它是指在同一网络节点支持IPv4和IPv6两种协议栈。在这种机制下,Ipv4和Ipv6的数据包的处理是相互独立的。 ②隧道技术。隧道技术允许运行Ipv6的设备使用现有的Ipv4网络设备进行传输。在网络两端都具备双栈的网络节点间,将Ipv6数据包完整的封装在Ipv4数据包内,通过Ipv4网络传输,在到达隧道端点后还原为Ipv6数据包。隧道技术巧妙地利用了现有的IPv4网络,提供了一种使IPv6的节点之间能够在过渡期间通信的方法,但它并不能解决IPv6节点与IPv4节点之间相互通信的问题。 隧道技术分为自动和手工配置两种方式,手工配置主要有v6 over v4、v4 over v6和GRE tunnel等几种方式;自动配置主要有6t04、60ver4、Teredo等几种方式;改进的技术有隧道代理技术(Tunnel Broker,即自动配置加代理)。 ③地址与报头转换技术(NAT/PT)。地址与报头转换技术就是转换两种不同协议的数据包的相应字段,从而达到两种协议相互通信的目的。 除了以上三种过渡技术外,还有利用现有互联网中Ipv4的基础设备和MPLS 技术来实现IPv6域的同学,使用ALG(Application LevelGateway)实现Ipv4与Ipv6应用的互通方案。 2、三种过渡技术的对比 双栈技术是指在网络节点中同时具有IPv4和IPv6两个协议栈,因此它可以同时收发、处理IPv4和IPv6的数据报文。对于主机来讲,“双栈”是指其可以根据需要来对业务产生的数据进行IPv4封装或者IPv6封装;而对于路由器来讲,“双栈”是指在一个路由器设备中维护IPv6和IPv4两套路由协议栈,使得路由器

相关文档
最新文档