多传感器图像融合综述

多传感器图像融合综述
多传感器图像融合综述

多传感器图像融合综述

吴定兵

(上海大学机电工程与自动化学院,上海200072)

摘要:多传感器图像融合是指针对多个传感器采集的关于同一目标或场景的图像进行适当的处理,产生一幅新的图像,使之更适合人眼感知或计算机后续处理。每一种传感器是为了适

应特定的环境和适用范围设计的,具有不同的特征或不同视点的传感器获取的图像间既存在冗

余性又存在互补性,通过对其融合,能有效提高系统的可靠性和图像信息的利用效率。数据融

合技术是一个多级、多层面的数据处理过程,主要完成对来自多个信息源的数据进行自动检测、

关联、相关、估计及组合等的处理,得出最终结论或决策的技术。多传感器数据融合是一门新

兴的技术,是对数据的综合与处理的过程[1][2]。

关键字:多传感器;图像融合;图像融合算法;评价标准

Summary of multi-sensor image fusion

Dingbing Wu

(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

Abstract:Multi-sensor image fusion is the appropriate image processing on the same target or multiple sensors which capture the scene for generating a new image, making it more suitable for human eye perception or computer for subsequent processing. Each sensor is adapted to specific environments and scope of design between images having different characteristics or different viewpoints acquired by the sensor and there exists both complementary redundancy through their fusion, which can effectively improve the reliability of the system efficiency and image information. Data fusion technology is a multi-level, multi-level data processing, mainly to complete the data from multiple information sources for automatic detection, association, correlation, estimation and combination treatment, etc., get a final conclusion or decision-making techniques.

Multi-sensor data fusion is an emerging technology that is integrated with the data processing process.

Key words: Multi-sensor; Image fusion; Image fusion algorithm; Evaluation criteria

1.引言

多传感器信息融合是指对来自多个传感器的信息进行多级别、多方面、多层次的处理与综合,从而获得更丰富、更精确、更可靠的有用信息。其中Edward和James对信息融合给出了如下定义:信息融合就是一种多层次的、多方面的处理过程,这个过程对多源信息进行检测、结合、相关、估计和组合以达到精确的状态估计和身份估计,以及完整、及时的态势评估。从八十年代初至今,多传感器信息融合特别是多传感器图像融合已引发了世界范围的

广泛兴趣和研究热潮,它在自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域有着广泛的应用前景。多传感器图像融合就是利用各种成像传感器得到的不同图像,综合不同图像的互补信息和冗余信息,以获得更为全面更为准确的图像描述。例如,红外图像和可见光图像的融合可以更好地帮助直升机飞行员进行导航;CT和核磁共振(MPd)图像的融合处理为临床诊断提供可靠的信息[3]。

2. 图像融合技术的发展与现状

多传感器图像融合技术最早被应用于遥感图像的分析和处理中。1979年,Daliy等人首先把雷达图像和Landsat.MSS图像的复合图像应用于地质解释,其处理过程可以看作是最简单的图像融合。

这种技术在20世纪80年代以来逐步发展成为一门新兴的技术,数据(信息)融合(Data(In-formation)Fusion)技术。20世纪90年代以来,数据融合技术在国内得到了迅速的发展和应用,被广泛应用于遥感图象处理、工业应用、数字地球和目标识别等范畴,各种数据融合方法也不断地被开发探索。

近二十年来,国际上在图像融合的不同层次上开展了大量的模型与算法研究,提出了各种形式的系统。美国计划在2010年研制出覆盖射频、可见光、红外波段公用孔径的有源、无源一体化基于图像与数据融合的探测器系统图像融合技术无疑具有良好的发展前景。

近年来,图像融合在应用方面有了一定的发展,2005年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CCD相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围。

3.多传感器图像融合基本概念

3.1 图像融合的定义

图像融合就是指对采用一定算法,把两幅或多幅具有互补信息的源图像融合成一幅新的图像。它可使得新图像更加适合人的视觉感知,或者满足诸如图像处理中的分割、特征提取、目标识别的需要。图1说明了两传感器的互补与冗余信息关系:

图1 多传感器信息互补与冗余

Fig.1 Complementary and redundant of multi-sensor information 由于技术的进步,不断出现了多种新的传感器,将这些成像传感器进行适当的组合,将会改善整个信息处理系统的性能。虽然每一种传感器在特定的工作条件和工作范围内,在每种程度上是最佳的,但是它却不能获得人或者计算机在检测目标时所需要的全部信息。因此,对于这些具有不同特性的传感器进行有效的集合,将会扩展其中任何一个的能力,最终合成

的图像将包含更加完整和详细的内容,这对于图像处理正作将会带来很大的帮助。

3.2 多传感器图像融合系统的一般结构

图像融合需要前期的预处理,它包括几个方面:配准、校正、去噪声等,在完成几何校正、噪声消除及图像配准后是真正的图像融合过程。图像融合一般可以分为像素级融合、特征级融合和决策级融合三个级别,融合的水平依次由低到高。图2给出了图像融合的三个层次示意图[4]。

图2 图像融合的三个层次

Fig.2 Three levels of image fusion

像素级图像融合:是指直接对图像中像素点进行信息综合处理的过程。像素级图像融合的目的是生成一幅包含更多信息、更清晰的图像。像素级图像融合属于较低层次的融合。目前,大部分研究集中在该层次上。像素层图像融合一般要求原始图像在空间上精确配准,如果图像具有不同分辨率,在融合前需作映射处理。

像素级融合是直接在采集到的原始图像数据层上进行的融合,人眼对颜色信息的融合就是典型的像素级融合。像素级图像融合是最低层次的图像融合,该层次的数据融合准确性最高,能够提供其它层次上所不具备的细节信息,但是需要处理的信息量大。像素级融合也称数据级触合,是高层次图像融合的基础[5],也是目前图像融合研究的重点之一。本文所研究的融合方法都是像素级融合方法。

特征级图像融合:是指从各个传感器图像中提取特征信息,并将其进行综合分析和处理的过程。提取的特征信息应是像素信息的充分表示量或充分统计量,典型的特征信息有边缘、形状、轮廓、角、纹理、相似亮度区域、相似景深区域等。在进行融合处理时,所关心的主要特征信息的具体形式和内容与多传感器图像融合的应用目的、场合密切相关。通过特征级图像融合可以在原始图像中挖掘相关特征信息、增加特征信息的可信度、排除虚假特征、建立新的复合特征等。特征级图像融合是中间层次为决策级融合做准备。特征级融合对传感器对准要求不如信号级和像素级要求严格,因此图像传感器可分布于不同平台上。特征级融合的优点在于实现了可观的信息压缩,便于实时处理。由于所提出的特征直接与决策分析有关,因而融合结果能最大限度地给出决策分析所需要的特征信息。

决策级图像融合:是指对每个图像的特征信息进行分类、识别等处理,形成了相应的结果后,进行进一步的融合过程。最终的决策结果是全局最优决策。决策级融合是一种更高层次的信息融合,其结果将为各种控制或决策提供依据。为此,决策级融合必须结合具体的应用及需求特点,有选择地利用特征级融合所抽取或测量的有关目标的各类特征信息,才能实现决策级融合的目的,其结果将直接影响最后的决策水平。由于输入为各种特征信息,而结果为决策描述,因此决策级融合数据量最小,抗干扰能力强。决策级融合的主要优点可概括为:○1通信及传输要求低,这是由其数据量少决定的。○2容错性高,对于一个或若干个传感器的数据干扰,可以通过适当的融合方法予以消除。○3数据要求低,传感器可以是同质或异质,对传感器的依赖性和要求降低。○4分析能力强,能全方位有效反映目标及环境的信息,

满足不同应用的需要。

决策级融合是在对采集到的数据己独立完成了决策或分类任务的基础上,模仿人的思维借助一定的规则或特定的算法对各个判别结果进行组合判断。在决策级融合中,首先采用局部分类器对目标的各个特征进行分类,得到了各局部分类器对目标的判决,然后采用贝叶斯推理、神经网络法技术等决策融合技术对各局部决策进行融合得到目标的准确判别。

表1给出了不同融合层次其性能特点的比较情况。从表中及前面所介绍的内容可以看出,像素级图像融合是最重要、最根本的多传感器图像融合方法,其获取的信息量最多、融合性能最好[6]。

表1 图像融合层次及其性能比较

图像像素层融合处理与特征级融合、决策级融合最大的区别是:在对两幅图像进行融合处理之前,首先要对其进行严格的配准。图像配准是指同一目标的两幅图像在空间位置上的对准。图像配准的技术过程,称为图像匹配,或者图像相关。图像配准涉及许多相关知识领域,如图像预处理、图像采样、图像分割、特征提取等。常用的基于灰度的图像配准方法有:空间相关法、频域相关法等。基于灰度的图像配准方法具有精度高的优点,但也存在一些缺点:

1)对图像灰度变化比较敏感,在非线性光照变化时,将大大降低算法的性能。计算的复杂度高,运算所花费的时间比较多。

2)对目标的旋转,形变等没有很好的适应性。

基于特征的图像配准方法有两个重要环节:特征提取和特征匹配。可以选取的特征包括:点、线以及区域等。特征匹配一般采用互相关来度量,但互相关对旋转比较困难。最小二乘法匹配算法和全局匹配的松弛算法能够取得比较理想的结果。小波变换、神经网络和遗传算法等新的数学方法的应用,进一步提高了图像配准的精度和运算速度。与基于灰度的图像配准方法相比,基于特征的图像配准方法有以下几优点:

1)特征点的提取过程可以减少噪声的影响,对灰度变化、图像变形等有较好的适应能力。

2)特征点的匹配度量对位置的变化比较敏感,可以提高匹配的精确程度。

3)图像的特征点比图像的像素点要少的多,可以减少匹配的计算时间。

3.3 融合系统中多传感器的特点

现实世界中传感器多种多样,它们有其自身的物理及其成像特点。任何单一传感器成像都可以看成对输入信号的响应,输出图像或信号即是响应结果。常用图像融合传感器及其特点如表2所示。

表2 图像融合传感器以及特点

各种传感器组合及其效果如表3所示:

表3 种传感器组合及效果

4.几种常用多传感器图像融合方法

像素级多传感器图像融合方法是目前研究比较深入的,已有的融合算法种类繁多,主要分为变换域和非变换域的融合方法。

4.1 常用非变换域的图像融合方法

1)平均法或加权平均法:对源图像进行平均计算提高了融合图像的信噪,但降低了对比度。加权平均方法中,加权系数的选择要考虑信息的冗余与互补性,可采用主分量分析法。

2)伪彩色融合方法:在灰度图像中,人眼只能同时区分出由黑到白的十种到二十几种不同的灰度级,而人眼对彩色的分辨率可达到几百种甚至上千种。基于人眼视觉的这一特点,可以将图像中的各种灰度级变成不同的彩色,以便提取更多的信息。A.M. Waxman等人采用伪彩色融合技术对热红外图像和电视图像进行融合,该算法利用了人眼视觉感受野的中心一周边型模型,彩色视觉的单颉颃和双颉颃模型。

4.2 常用变换域图像融合方法

1)图像金字塔(LP)法:依据融合目的,利用特征选择规则和待融合图像金字塔表示,来构建一个融合的金字塔表达式,对融合后的金字塔表达式进行金字塔反变换,得到一个融合后的图像[7][8][9]。

2)小波变换法:小波变换是傅立叶变换发展的新阶段,它具有紧致性、正交性、方向可选择性,这些优良特性是小波变换成为图像融合的一种强有力工具和手段。小波变换的多分辨分解特性符合人类的视觉机制,与计算机视觉中由粗到细的认识过程十分相似,非常适用于图像融合。

3)Contourlet变换法:Contourlet变换是基于LP分解和方向滤波组DFB结合的图像变换法,它解决了小波变换只能捕获水平、垂直、对角三个方向信息的问题,是真正意义上的多尺度多方向变换,其反变换也易于实现,在图像融合中有很大的发展前景。

5. 多传感器图像融合方法的性能评价

图像融合效果的评价问题是一项重要而有意义的工作,如何评价融合效果,即如何评价融合图像的质量,是图像融合的一个重要步骤,但目前还缺乏一种对融合效果进行系统,全面的评价方法,国内外对该问题的研究相对较少,目前的融合效果评价中,主要有主观评价法和客观评价法两种。

5.1 融合图像质量的主观评价方法

假若人是图像的观察者,图像质量的含义主要包括两个方面,一是图像的逼真度(Fidelity),另一个是图像的可懂度(Intelligibility)。多少年来,人们总是希望能够给国图像逼真度和可懂度的定量测量方法,以作为评价图像质量和设计图像系统的依据。但是由于目前人们对人的视觉系统还没有充分认识和掌握。对人的心理因素还找不出定量描述的方法,因此这个问题一直没有很好的得到解决。

5.2 融合图像质量的客观评价方法

为了克服主观评价中人眼视觉系统、心理状态、知识背景等因素带来的不确定性,实际融合效果评价多采用客观评价,客观评价通过对各融合图像统计参数的计算来进行判定、比较各种融合方法的优劣[10]。

为了定量评价融合图像的效果和质量,假设参加融合的两个源图像分别为A、B,图像大小为MXN,经融合处理后得到的融合图像为F,特定义了以下几个评价参量。

1) 熵(Entropy)。图像的熵值是衡量图像信息丰富程度的一个重要指标,熵值的大小表示图像平均信息量的多少。如果融合图像的熵越大,可以认为融合图像的信息量增加,融合图像所含的信息越丰富,融合质量越好[11]。

2)互信息量MI(Mutual Information)。评价图像融合效果的一个重要指标是看融合图像从源图像中获得了多少信息。互信息量是信息论中的一个重要指标,可作为两个变量之间相关性的度量,或一个变量包含另一个变量的信息量的量度。互信息量是反映融合效果的一种客观指标,它的值越大表示融合图像从源图像中获褥的信息越丰富,融合效果越好,它可以更准确地评价融合效果的优劣。

3)平均梯度。平均梯度(即图像清晰度)可敏感地反映图像对微小细节反差的表达能力,可用来评价图像的清晰程度,同时还反映图像中微小细节反差和纹理变换特征。

4)标准差d。标准差反映了图像灰度相对于灰度平均值的离散情况,在某种程度上,标准差也可用来评价图像反差的大小。若标准差大,则图像灰度级分布分散,图像的反差大,可以看出更多的信息。标准差小,图像反差小,对比度不大,色调单一均匀,看不出太多的信息。

5)交叉熵(Cross entropy)亦称相对熵(Relative entropy)。交叉熵可用来表示两幅图像之间的差异,交叉熵越小,表示图像差异越小。

6)相关系数C(Correlation coefficient)图像的相关系数,又称为相似性度量,它反映了

两幅图像的相关程度。融合前后的图像相关系数可以反映多光谱图像的光谱信息改变程度,从而判断融合图像的光谱保持能力。

7)偏差D与相对偏差RD。偏差D是指融合图像F像素灰度平均值与源图像A像素灰度平均值之差,也可以说是融合图像与源图像的差值图像的灰度平均值。相对偏差RD是融合图像各个像素灰度值与源图像相应像素灰度值差的绝对值与源图像相应像素灰度值之比的平均值。相对偏差值的大小表示融合图像与源图像平均灰度值的相对差异,用来反映融合图像与源图像在光谱信息上的匹配程度以及将源高空间分辨率全色图像的细节传递给融合图像的能力。

参考文献:

[1] 闫敬文,卓琳,屈小波.图像融合研究最新进展[J].厦门理工学院学报,2007,15(4):44-49.

[2] 王静云,李绍林.医学影像图像融合技术的新进展[J].第四军医大学学报,2004,25(20):1918-1920.

[3] 胡传奇,王檄,侯家槐.多传感器图像融合技术及其进展[J].测绘与空间地理信息,2010,33(2):159-162.

[4] Pohl C, Munro D, Genderen, J. L. Enhanced image analysis through multilevel data fusion techniques[J].

Proceedings of SPIE,1997,3068: 32-39.

[5] 庄晓婵.图像融合算法研究[D].西安:西北工业大学,2007.

[6] 吴仰玉,纪峰.图像融合研究新进展[J]. 创新技术导报,2003,1:49-54.

[7] Li Gui-xi,Yang Wan-hai.A Multiscale Contrast-Pyramid-Based Image Fusion Scheme and Its Performance

Evaluation[J].Acta Optica Sinica,2009, 21(11):1336-1342.

[8] Pan X H, Zhang T. GUP-accelerated image fusion based on gradient pyramid decomposition[J].

Microelectronics&Computer,2011,28(12):54-58.

[9] W.T. Freeman, E.H. Adelson. The design and use of steerable filters[J].IEEE Trans. on Pattern Analysis and

Machine Intelligence,2011,13 (9):891-906.

[10] 王珂,欧阳宁.图像融合技术及评价方法[J].数字电视与数字视频, 2007,31(1):20-23.

[11] ZHANG Z, BLUM R S. A categorization of multiscale-decomposition-based image fusion schemes with a

performance study for a digital camera application[J].Proceeding of the IEEE,1999,87(8):1315-1326.

多传感器信息融合方法综述

万方数据

万方数据

万方数据

万方数据

万方数据

多传感器信息融合方法综述 作者:吴秋轩, 曹广益 作者单位:上海交通大学电子信息与电气工程学院,上海,200030 刊名: 机器人 英文刊名:ROBOT 年,卷(期):2003,25(z1) 被引用次数:2次 参考文献(5条) 1.周锐;申功勋;房建成基于信息融合的目标图像跟踪 1998(12) 2.张尧庭;桂劲松人工智能中的概率统计方法 1998 3.何友;王国宏;彭应宁多传感器信息融合 2000 4.罗志增;叶明Bayes方法的多感觉信息融合算法及其应用[期刊论文]-传感技术学报 2001(03) 5.张文修;吴伟业;梁吉业粗糙集理论与方法 2001 本文读者也读过(8条) 1.臧大进.严宏凤.王跃才.ZANG Da-jin.YAN Hong-feng.WANG Yue-cai多传感器信息融合技术综述[期刊论文]-工矿自动化2005(6) 2.多传感器信息融合及应用[期刊论文]-电子与信息学报2001,23(2) 3.赵小川.罗庆生.韩宝玲.ZHAO Xiao-chuan.LUO Qing-sheng.HAN Bao-ling机器人多传感器信息融合研究综述[期刊论文]-传感器与微系统2008,27(8) 4.范新南.苏丽媛.郭建甲.FAN Xin-nan.SU Li-yuan.GUO Jian-jia多传感器信息融合综述[期刊论文]-河海大学常州分校学报2005,19(1) 5.咸宝金.陈松涛智能移动机器人多传感器信息融合及应用研究[期刊论文]-宇航计测技术2010,30(2) 6.韩增奇.于俊杰.李宁霞.王朝阳信息融合技术综述[期刊论文]-情报杂志2010,29(z1) 7.肖斌多传感器信息融合及其在工业中的应用[学位论文]2008 8.丁伟.孙华.曾建辉.DING Wei.SUN Hua.ZENG Jian-hui基于多传感器信息融合的移动机器人导航综述[期刊论文]-传感器与微系统2006,25(7) 引证文献(2条) 1.武伟.郭三学基于多传感信息融合的轮胎气压监测系统[期刊论文]-轮胎工业 2006(5) 2.魏东.杨洋.李大寨.宗光华基于多传感器融合的机器人微深度环切[期刊论文]-传感器技术 2005(11) 本文链接:https://www.360docs.net/doc/f84838226.html,/Periodical_jqr2003z1037.aspx

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多传感器信息融合

多传感器信息融合

0前言 移动机器人的定位问题是提高移动机器人自主能力的关键问题之一。具体来说,定位是利用先验环境地图信息、机器人位姿的当前估计及传感器的观测值等输入信息,经过一定的处理和变换,产生更加准确地对机器人当前位姿的估计。机器人的定位方式有很多种,如,基于光电寻线的定位、基于声纳的机器人自主定位、基于全景视觉的定位及基于激光测距的定位等。可以看出:机器人的定位方式取决于所采用的传感器。目前,在移动机器人上使用较多的传感器有视觉传感器、里程计和惯导系统、超声传感器、激光测距仪、GPS 定位系统等。其中,视觉传感器具有信息量大、感应时间短的优点,但往往获得的数据噪声大、信息处理时间长;激光传感器在测距范围和方向上具有较高的精度,但价格昂贵;超声波传感器虽然角度分辨力较低,但它处理信息简单、成本低、速度快,因此,在自主移动机器人上得到了广泛的应用;里程计是一种相对定位传感器,它通过累计计算得到定位信息,缺点是存在累计误差问题,因此,可结合绝对定位传感器,如超声传感器等,提供较准确的定位。各传感器都有它自己的局限性,因此,移动机器人往往同时装备多种传感器,各自提供关于机器人定位的消息。目前的趋势是:根据传感器的可靠性。使用不同类型的传感器来测量相关数据。本文采用扩展卡尔曼滤波( EKF) 技术,将里程计和超声波传感器所提供的数据进行融合定位。 1 机器人运动模型的建立 由于移动机器人机构复杂,为了便于构造运动学模型与规划控制机器人的位姿,本文选择两轮驱动小车作为运动平台。将整个机器人本体看作一个刚体,车轮视为刚性轮,并在运动不是太快而转弯半径较大时,不考虑车轮与地面侧向滑动的情况,其简化运动学模型如图1 所示。

099多传感器航迹融合算法综述

第三届中国信息融合大会 中国 西安 2011.08 ———————————————————— 基金项目:航空基金项目,批准号:20090853013,西北工业大学校翱翔之星计划;西北工业大学基础研究基金:JC201015 多传感器航迹融合算法综述 张 伟,兰 华,杨 峰,梁 彦 (西北工业大学自动化学院,陕西 西安,710072) 摘 要:航迹融合是多传感器融合的一个重要组成部分,也是多传感器融合领域发展最快的方向之一。本文论述了航迹融合理论发展,以局部航迹估计误差的相关性为研究对象,详细讨论了几种主流航迹融合算法,包括简单凸组合、修正互协方差、不带反馈和带反馈的最优分布式融合、协方差交集、最优线性无偏估计以及自适应航迹融合等算法,分析并比较了各算法的特点、性能及应用。 关键词:多传感器;航迹融合;误差相关性 Approaches to Mutisensor Track-to-Track Fusion :A Survey ZHANG Wei, LAN Hua, YANG Feng, LIANG Yan (College of Automation, Northwestern Polytechnical University, Xi’an Shannxi 710072, P .R. China) Abstract : Track-to-track fusion is an important part of multisensor fusion and is also one of the most rapidly developing branches of the multisensor fusion field. Various mainstream track-to-track fusion algorithms, including covariance convex algorithm, Bar Shalom-Campo algorithm, optimal distributed fusion without feedback, optimal distributed fusion with feedback, covariance intersection algorithm, best linear unbiased estimation algorithm and adaptive fusion algorithm, are investigated in detail, according to the correlation between local estimate errors. The performance of various algorithms and the weaknesses and strengths of the approaches in the context of different applications are analyzed and compared in this paper. Keywords :Multisensor ; track-to-track fusion; error correlation 0引 言 在一个分布式多传感器环境中,每个传感器对于目标进行探测和跟踪的过程都是独立的,航迹关联关心的是如何判断从不同传感器获得的两条航迹是否对应于同一个目标。当确认两条航迹来自同一个目标后,接下来的问题是如何将这两条航迹的估计结果融合在一起,这就是航迹融合问题[1] 。 在航迹关联与航迹融合的问题中,由于参与融合的局部航迹之间存在误差相关性,从而使得航迹融合问题变得复杂。航迹融合中的误差相关性可以分为两类,一类是各局部状态估计之间由于共同的过程噪声、相关的量测噪声以及共同的先验估计而产生的 误差相关性;另一类是当融合中心具备记忆能力并存在多条传感器至融合中心的信息传播途径,局部状态(先验)估计与全局状态(先验)估计之间也存在有相关性[2]。因此,对局部航迹之间误差相关性的分析是航迹融合的基础和关键。在航迹融合的发展过程中,对误差相关性不同处理方式一直是航迹融合算法发展的主轴。 早期的航迹融合算法假设局部航迹之间的估计误差是独立的[3][4],文献[5,6]首次考虑了由于相同过程噪声所导致的航迹误差相关性,并且分别给出了两传感器的最优关联和融合算法,文献[7]首次给出了多传感器最优估计的方法。一般的航迹关联和融合算法都需要计算它们之间的互协方差矩阵,

多传感器信息融合技术论文

多传感器信息融合技术论文多传感器信息融合技 术论文阐述了多传感器信息融合的定义、原理、分类和结构,分析了多传感器信息融合的特点及其研究方向多传感器信息融合技术论文【1】关键词:多传感器信息融合研究方向 1 、多传感器信息融合的定义多传感器信息融合也称为信息融合或数据融合,指的是对不同知识源和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补,降低不确定性,以形成对系统环境相对完整一致的理解,从而提高智能系统决策和规划的科学性、反应的快速性和正确性,进而降低决策风险的过程。 由其定义可见,多传感器信息融合避免了单一传感器的局限性,可以获取更多信息,得出更为准确、可靠的结论。 2 、多传感器信息融合的原理多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。如果把单传感器信号处理或低层次的数据处理方式看作是对人脑信息处理的一种低水平模仿,那么多传感器信息融合就是对人脑信息处理的一种高水平模仿。 多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在时间或空间上的冗余或互补信息依据某种准 则来进行组合,以获得被测对象的一致性解释或描述[1] 。 3 、多传感器信息融合的分类 信息的数据融合是对多源数据进行多级处理,每一级处理都代表了

对原始数据的不同程度的抽象化,它包括对数据的检测、关联、估计和组合等处理。信息融合按其在传感器信息处理层次中的抽象程度,可以分为三个层次:像素层融合、特征层融合及决策层融合[2] 。 3.1 像素层融合它是最低层次的融合,是在采集到的传感器的原始信息层次上(未经处理或只做很少的处理)进行融合,在各种传感器的原始测报信息未经预处理之前就进行信息的综合和分析。其优点是保持了尽可能多的战场信息; 其缺点是处理的信息量大,所需时间长,实时性差。 3.2 特征层融合属于融合的中间层次,兼顾了数据层和决策层的优点。它利用从传感器的原始信息中提取的特征信息进行综合分析和处理。也就是说,每种传感器提供从观测数据中提取的有代表性的特征,这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。这种方法对通信带宽的要求较低,但由于数据的丢失使其准确性有所下降。 3.3 决策层融合指在每个传感器对目标做出识别后,将多个传感器的识别结果进行融合。这一层融合是在高层次上进行的,融合的结果为指挥控制决策提供依据。 决策层融合的优点是:具有很高的灵活性,系统对信息传输带宽要求较低; 能有效地融合反映环境或目标各个侧面的不同类型信息,具有很强的容错性;通信容量小,抗干扰能力强; 对传感器的依赖性小,传感器可以是异质的; 融合中心处理代价低。 4 、多传感器信息融合的融合结构多传感器信息融合通常是在一个

多传感器数据融合技术的理论及应用

多传感器数据融合技术的理论及应用 张宁110101256 摘要:多传感器数据融合技术是一门新兴前沿技术。近年来,多传感器数据融合技术已经受到广泛关注,它的理论和方法已经被应用到许多研究领域。本文主要论述了多传感器数据融合的基本概念、工作原理、数据融合特点与结构、数据融合方法及其应用领域,并总结了当前数据融合研究中存在的主要问题及其发展趋势。 关键词:多传感器;数据融合;融合方法 1引言 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。近年来,多传感器数据融合技术无论在军事还是民事领域的应用都极为广泛。多传感器数据融合技术已成为军事、工业和高技术开发等多方面关心的问题。这一技术广泛应用于复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、医疗诊断、模式识别等领域。实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。 2基本概念及融合原理 2.1多传感器数据融合概念 数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。

多传感器数据融合算法汇总

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

基于多传感器信息融合的智能机器人

基于多传感器信息融合的智能机器人 院-系:信息工程与自动化学院 专业:模式识别与智能系统 年级: 2011 级 学生姓名:朱丹 学号: 2011204082 任课教师:黄国勇 2011年11月

摘要 机器人多传感器信息融合是当今科学研究的热点问题。传感器是连接机器人智能处理过程与外界环境的重要纽带,一般智能机器人都配有数个不同种类的传感器。本文主要分析了多传感器系统在机器人当中的重要性和多传感器信息融合的基本原理,并探讨了多传感器信息融合技术在智能机器人中的应用。 关键词:智能机器人、多传感器、信息融合 引言 多传感器、信息融合技术与传统机器人的结合构成了智能机器人。要使机器人拥有智能,对环境变化做出反应,首先必须使机器人具有感知环境的能力。用传感器采集环境信息加以综合处理,控制机器人进行智能作业,更是机器人智能化的重要体现。在以往机器人智能领域的研究中,人们把更多的注意力集中到研究和开发机器人的各种外部传感器上。尽管在现有的智能机器人和自主式系统中,大多数使用了多个不同类型的传感器,但并没有把这些传感器作为—个整体加以分析,更像是—个多传感器的拼合系统。虽然在各自传感器信息处理与分析方面开展了大量富有成效的工作,但由于忽视了多传感器系统的综合分析,对提高智能系统的性能带来了不利影响,效率低下而且速度缓慢。 因此,多传感器信息融合技术较之单一传感器有非常大的数据准确度的优势,已经成为现在机器人研究领域的关键技术。 一、多传感器信息融合的基本原理 多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。人类本能地具有将人体的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物声音、气味和触觉)与先验知识进行综合的能力,以便对周围的环境和正在发生的事件做出估计。这一处理过程是复杂的,也是自适应的,它将各种信息(图像、声音、气味、物理形状、描述)转化成对环境的有价值的解释,这需要大量不同的智能处理,以及适用于解释组合信息含义的知识库。 多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特征:时变的或者非时变的;实时的或者非实时的;快变的或者缓变的;模糊的或者确定的;精确的或者不完整的;可靠的或者非可靠的;相互支持的或互补的;相互矛盾的或冲突的。 多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分地利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。信息融合的目标是基于各传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。

多传感器图像融合技术综述

收稿日期:2002203217 作者简介:毛士艺(1935-),男,浙江黄岩人,教授,100083,北京. 多传感器图像融合技术综述 毛士艺 赵 巍 (北京航空航天大学电子工程系) 摘 要:对国内外多传感器图像融合技术的发展状况进行了介绍,描述了 图像融合的主要步骤,概括了目前主要图像融合方法的基本原理,并对各种方法的性能进行了定性分析.给出了评价图像融合效果的标准和方法,指出了图像融合技术的发展方向. 关 键 词:图像处理;图像合成;传感器;图像融合 中图分类号:T N 911.73文献标识码:A 文章编号:100125965(2002)0520512207 近20年,随着传感器技术和计算机计算能力的提高,多传感器图像融合技术的应用越来越广泛.在军事领域,以多传感器图像融合为核心内容的战场感知技术已成为现代战争中最具影响力的军事高科技.20世纪90年代,美国海军在SS N 2 691(孟菲斯)潜艇上安装了第1套图像融合样机,可使操纵手在最佳位置上直接观察到各传感器的全部图像[1],[2].1998年1月7日《防务系统月刊》电子版报道,美国国防部已授予BTG 公司2项合同,其中一项就是美国空军的图像融合设计合同,此系统能给司令部一级的指挥机构和网络提供比较稳定的战场图像.在遥感领域,大量遥感图像的融合为更方便、更全面地认识环境和自然资源提供了可能[3]~[5],其成果广泛应用于大地测绘、植被分类与农作物生长势态评估、天气预报、自然灾害检测等方面.1999年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CC D 相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围.在医学成像领域,CT 、MR 和PET 图像的融合提高了计算机辅助诊 断能力[6].2001年11月25日~30日在美国芝加哥召开了每年一度的RS NA 北美放射学会年会,在会议上GE 公司医疗系统部展销了其产品Dis 2covery LS.Discovery LS 是GE 公司于2001年6月 刚推出的最新PET/CT ,是世界上最好的PET 与最高档的多排螺旋CT 的一个完美结合,具有单体PET 不能比拟的优势.它可以完成能量衰减校正、 分子代谢影像(PET )与形态解剖影像(CT )的同机 图像融合,使检查时间成倍地降低.在网络安全领域,多尺度图像融合技术可将任意的图像水印添加到载体图像中,以确保信息安全[7]. 在各个应用领域的需求牵引下,各国学者对多传感器图像融合技术的研究也越来越重视.在多传感器信息融合领域中,图像融合是应用最为广泛,发表文献最多的一个方向.从文献[8]可看出,在参与统计的信息融合文章中,信号层的信息融合文章占53%.同时,我们做了这样一个调查,在Ei C om pendexWeb 数据库中用“image fusion ”作为关键词,检索从1980年到2001年摘要中出现这一词组的文章数目.1980年至1984年,这方面的文章只有4篇;1995年至1999年增加到603篇;2000年和2001年两年就有299篇.从中可以看出国际学术界对图像融合技术的重视程度与日俱增. 为了使国内同行对图像融合技术有一个较为全面的了解,本文在参考国内外文献的基础上,对目前常用的图像融合技术进行了概括和评述.文章首先介绍了图像融合研究的基本内容,将图像融合的概念界定到像素级;接着描述了各种图像融合技术的基本原理,对它们的优缺点进行了定性分析,给出了评价图像融合技术的方法. 1 多传感器图像融合技术研究内容 多传感器图像融合属于多传感器信息融合的范畴,是指将不同传感器获得的同一景物的图像   2002年10月第28卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2002V ol.28 N o 15

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

多传感器信息融合技术综述(论文)

多传感器信息融合技术综述 内容摘要:多传感器信息融合技术是一门新兴学科,它的理论和方法已被应用到许多研究领域。本文主要对多传感器信息融合的模型与结构、信息融合的主要技术和方法、信息融合理论体系以及信息融合技术的应用等内容进行了概要介绍和展开了综述。 关键词:多传感器;信息融合;综述 随着传感器技术、数据处理技术、计算机技术、网络通讯技术、人工智能技术和并行计算的软硬件技术等相关技术的发展,多传感器信息融合技术已受到了广泛关注。多传感器信息融合是20世纪80年代出现的一门新兴学科,它首先广泛地应用于军事领域,如海上监视、空-空和地-空防御、战场情报、监视和获取目标及战略预警等,随着科学技术的进步,多传感器信息融合至今已形成和发展成为一门信息综合处理的专门技术,并很快推广应用到工业机器人、智能检测、自动控制、交通管理和医疗诊断等多种领域。我国从20世纪90年代也开始了多传感器信息融合技术的研究和开发工作,并在工程上开展了多传感器识别、定位等同类信息融合的应用系统的开发,现在多传感器信息融合技术越来越受到人们的普遍关注。1多传感器信息融合的概念 在信息融合领域,人们经常提及“多传感器融合”(multi-sensor fusion)、“数据融合”(data fusion)和“信息融合”(information fusion)。实际上它们是有差别的,现在普遍的看法是,多传感器融合包含的内容比较具体和狭窄,至于信息融合和数据融合,有一些学者认为数据融合包含了信息融合,还有一些学者认为信息融合包含了数据融合,而更多的学者把信息融合与数据融合的当作同一概念看待,在不影响应用的前提下,二种提法都是可以的。因此本文统一使用信息融合这一提法。信息融合有多种定义方式,作者认为比较确切的概念为:充分利用不同时间与空间的多传感器信息资源,采用计算机技术对按时序获得的多传感器观测信息在一定准则下加以自动分析、综合、支配和使用,获得对被测对象的一致性解释与描述,以完成所需的决策和估计任务,使系统获得比它的各组成部分更优越的性能。 2 信息融合的模型和结构 2.1 信息融合的模型 信息融合绝大部分的研究都是根据具体问题及其特定对象建立自己的融合层次,针对其在军事上的应用将信息融合划分为检测层、位置层、属性层、态势评估和威胁估计;根据输入输出数据的特征提出了基于输入/输出特征的融合层次化描述等。可见,信息融合层次的划分没有统一标准,根据信息表征的层次,我们将信息融合划分为像素层、特征层和决策层,分别称为像素级融合、特征级融合和决策级融合[1]。一个给定的信息融合系统,可能涉及多个级别数据的输入。 (1)像素级融合见图1,这是最低层次的信息融合。在这种方法中,匹配的传感器数据直接融合,而后对融合的数据进行特征提取和特征说明。传感器的信息融合之后,没有单个处理的信息损失,识别的处理等价于对单个传感器的处理。该层次的信息融合能够提供其它层次上的融合所不具备的细节信息,因此,像素级多传感器处理提供一种最优决策和识别性能。但是,像素级融合要求精确的传感器配准和宽的传输带宽。 (2)特征级融合见图2,这是中间层次的信息融合。在这种方法中,每个传感器观测目标,并对各传感器的观测进行特征提取(如提取形状、边沿、方位信息等),产生特征矢量,而后融合这些特征矢量,并做出基于联合特征矢量的属性说明。在特征级融合中,各个源提供的特征矢量融合到一个综合的特征矢量中,这种融合是比较简单的,该层次的信息融合是像素级融合和更高一级决策级融合的折衷形式,兼容了两者的优缺点,具有较大的灵活性,在许多情况下是很实用的。

遥感图像融合技术的发展现状

遥感图像融合技术的发展现状及趋势 1 引言 多源图像融合属于多传感器信息融合的范畴, 是指将不同传感器获得的同一景物的图像或同一传感器在不同时刻获得的同一景物的图像, 经过相应处理后, 再运用某种融合技术得到一幅合成图像的过程。多幅图像融合可克服单一传感器图像在几何、光谱和空间分辨率等方面存在的局限性和差异性, 提高图像的质量, 从而有利于对物理现象和事件进行定位、识别和解释。与单源遥感图像相比, 多源遥感图像所提供的信息具有冗余性、互补性和合作性。因此,将多源遥感图像各自的优势结合应用, 获得对环境正确的解译是极为重要的。多源遥感图像融合则是富集这些多种传感器遥感信息的最有效途径之一,是现代多源数据处理和分析中非常重要的一步。本文基于遥感图像融合的研究现状、分析了图像融合研究的困境和不足, 最后提出了未来的发展趋势和热点, 以期达到抛砖引玉的作用。 2 遥感图像融合研究现状 随着信息科学技术的发展, 在20 世纪七八十年代诞生了一个称为数据融合的全新概念。这一概念不断扩展, 处理的对象由一般的数据发展到数字图像。1979 年, Daliy 等人首先将雷达图像和LandsatMSS 图像的复合图像应用于地质解译, 被认为是最早的图像

融合。20 世纪80 年代, 图像融合技术逐渐应用到遥感图像的分析和处理中。90年代以后, 图像融合技术成为研究的热点, 并成为很多遥感图像应用的一个重要预处理环节。目前, 遥感图像融合已经发展为像素级、特征级和决策级3个层次, 如表1。需要指出的是, 融合层次并没有划分融合算法严格的界限, 因为本质上各个融合层次都是信息融合的范畴。像素级图像融合技术已被广泛研究和应用, 并取得了一定的成果。特征级融合是一种中等层次的信息融合, 利用从各个传感器图像的原始信息中提取的特征信息,进行综合分析及融合处理, 不仅增加从图像中提取特征信息的可能性, 还可能获取一些有用的复合特征, 尤其是边缘、角、纹理、相似亮度区域、相似景深区等。在特征级融合中, 对图像配准的要求不如像素级图像融合对配准要求那么严格。决策级图像融合是一种更高层次的信息融合, 其结果将为各种控制或决策提供依据。在进行融合处理前, 先对图像进行预处理、特征提取、识别或判决, 建立对同一目标的初步判决和结论, 然后对各个图像的决策进行相关处理, 最后进行决策级的融合。从特点来看,不同层次的融合各有优缺点, 难以在信息量和算法效率方面都同时满足需求。 表一:遥感图像融合三个层次的对比 融合层次融合算法特点

像素级图像融合技术在军事领域应用研究

像素级图像融合技术在军事领域应用研究 史玉龙、李林、侯海婷 摘要像素级图像融合是在基础层面上进行的图像融合,它能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理与理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。本文分析了像素级多源图像融合技术的主要研究内容,阐述了像素级多源图像融合方法及其在军事领域的应用,进而对其未来发展方向进行了展望。 关键字像素级图像融合;图像处理;发展与军事应用 1 引言 在现代战争中,信息主导权是影响战略全局的关键因素,现代信息系统通向智能化的重要一环是其感知系统必须包括能够获取足够信息的多种类型的传感器。各种传感器的信息具有不同的特征,每种传感器仅能给出目标和环境的部分或某个侧面的信息。而多传感器数据融合的基本原理就是充分利用各个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得被测对象的一致性解释或描述,使该信息系统由此而获得比它的各组成部分的子集所构成的系统更优越的性能。 图像融合就是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理。 2 像素级图像融合技术概述 2.1 像素级图像融合概念 图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理。图像是二维信号,图像融合技术是多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模

多传感器融合方法

多传感器融合方法 一、 数学知识 1、 期望 定义1设X 是离散型随机变量,它的概率函数是:k k ,1,2,P X X p k === () 如果1k k k x p ∞ =∑有限,定义X 的数学期望 ()1 k k k E X x p +∞ ==∑ 定义2设X 是连续型随机变量,其密度函数为()f x ,如果()x f x ∞ -∞ ?有限,定 义X 的数学期望为 ()()E x xf x dx +∞-∞ =? 2、 条件数学期望 定义X 在Y y =的条件下的条件分布的数学期望称为X 在Y y =的条件下的条件期望。 当(),X Y 为离散随机向量时 ()()||i i i E X Y y x P X x Y y ====∑ 当(),X Y 为连续随机向量时 ()()|y ||x E X Y y xp x y dx +∞-∞ ==? 3、 贝叶斯公式 定义设Ω为试验E 的样本空间,B 为E 的事件,12,,n A A A 为Ω的一个划分,且 ()0P B >,()()01,2,,i P A i n >= ,则

()()() ()() 1 ||,1,2,|i i i n j j j P B A P A P A B i n P B A P A == =∑ 称此为贝叶斯公式。 4、 贝叶斯估计 期望损失:??(|)(,)(|)R x p x d θλθθθθΘ =? 损失函数:?(,)λθ θ,把θ估计为?θ所造成的损失 常用损失函数:2??(,)()λθ θθθ=-,平方误差损失函数 如果采用平方误差损失函数,则θ的贝叶斯估计量?θ是在给定x 时θ的条件期望,即: []?|(|)E x p x d θθθθθΘ ==? 同理可得到,在给定样本集χ下,的贝叶斯估计是: []?|(|)E p d θθχθθχθΘ ==? 求贝叶斯估计的方法:(平方误差损失下) ● 确定θ的先验分布()p θ ● 求样本集的联合分布 1(|)(|)N i i p p x θχθ==∏ ● 求的后验概率分布 (|)() (|)(|)()p p p p p d χθθθχχθθθ Θ = ? ● 求的贝叶斯估计量 ?(|)p d θθθχθΘ =? Gaussian 情况,仅参数θμ=未知 给定样本集χ,已知随机变量()2~,k x N μσ均值未知而方差已知。均值变量

多传感融合技术相关文献综述

机器人多传感器信息融合研究综述 机器人多传感器信息融合的发展趋势 微型化和智能化机器人传感器的研究 传感器是机器人的五官$也是机器人多传感器信息融合技术的硬件基础$一台智能化程度较高的机器人通常配有几十只乃至上百只传感器% 随着/^/V 技术和精加工技术飞速地发展$使得微型传感器的研发和生产成为可能%为进一步减小机器人的体积和提高传感器的性能$机器人传感器将向着信息转换&处理&传输为一体的智能化发展%如德国a0*01) ‘14L1).)3*公司研制的a‘VH‘;#8$智能视觉传感器集图像采集&处理&XbA控制及通信于一体$而体积仅有$#44cQ#44cPR9;44% 该图像传感器采用了当前性能最强大的图像处理专用ZV:$其工作频率高达;##/@O$运算速度高达P"##/X:V $ 智能化程度高$搭建系统成本低%。 多传感器信息融合算法的改进 现有的多传感器信息融合算法有着自身的缺陷和局限性% 目前主要采用几种算法共同使用的方法来对其进行弥补% 如模糊神经网络算法弥补了模糊逻辑自适用能力差的缺点也提高了神经网络算法的鲁棒性% 目前$将模糊逻辑&神经网络&进化计算&小波变换等智能计算方法有机地结合起来$是一个重要的发展趋势(";) % 多种信息融合算法的综合运用虽然能够弥补单一算法的缺陷$但同时增加了系统的计算量$降低了系统的反应速度% 因此$对机器人多信息融合算法的改进和创新是迫切需要的% Z(K0+ D1,’.)-1等人正在尝试用一种在非统计世界中在线学习模型的方法来融合来自于激光探测仪和红外幅度探测器的信息$以提高机器人导航的能力% 文献("R)提出了一种改进的ZCV 论据理论对超声波传感器采集的信息进行融合$在传感器模型中增加一个距离信度因子$减少了超声波传感器采集信息的不确定性% 文献("Q)提出了一种基于任务的神经网络多传感器数据融合新方法% 该方法根据遥控操作机器人过程中的不同任务$利用优化的神经网络算法$对双视觉&六维力U力矩&接近觉!数字U模拟"&指端力&关节角度等多种传感器信息进行融合决策%。 结论 近几十年来,多传感器信息融合技术得到了普遍的关注和广泛的应用,已成为智

相关文档
最新文档