富勒烯

富勒烯
富勒烯

富勒烯

富勒烯(Fullerene) 是单质碳被发现的第三种同素异形体。任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质,都可以被叫做富勒烯,富勒烯指的是一类物质。富勒烯与石墨结构类似,但石墨的结构中只有六元环,而富勒烯中可能存在五元环。1985年Robert Curl 等人制备出了C60。1989年,德国科学家Huffman和Kraetschmer的实验证实了C60的笼型结构,从此物理学家所发现的富勒烯被科学界推向一个崭新的研究阶段。富勒烯的结构和建筑师Fuller的代表作相似,所以称为富勒烯。

初步研究表明,富勒烯类化合物在抗HIV、酶活性抑制、切割DNA、光动力学治疗等方面有独特的功效。

最新新闻

中国某材料获突破10亿元/克2015-12-08 22:37

牛津大学实验室正在打造世界上最昂贵的材料,每克价格是惊人的1亿英镑(约人民币9.65亿)。据英国《每日电讯报》12月5日报道,牛津大学去年建立的碳材料设计公司在生产“内嵌富勒烯”(endohedral fullerenes)。这是一种由碳原子组成的笼形结构,笼内装有氮原子。...详情

中文名富勒烯英文名[60]Fullerene 别称足球烯;球碳化学式C60 C70 等水溶性溶于常规溶剂应用工业材料,电化学,催化剂,化妆品,抗癌药物等安全性描述无毒

目录

1 历史沿革

?命名

?发现过程

?进展年谱

?天然存在

?流行文化

2 制备与提纯

?制备

?电弧法

?燃烧法

?提纯

3 结构

?C60

?C70

?低对称性

?手性

4 种类

5 性质

?化学性质

?超分子化学

?安全性和毒性

6 应用

?工业

?电、光、磁

?物理应用

?化学应用

?电化学应用

?护肤品

?多元体研究

?有机太阳能电池

7 研发意义

历史沿革

命名

很像足球的球型富勒烯也叫做足球烯,或音译为巴基球,中国大陆通译为富勒烯,台湾称之为球碳,香港译为布克碳;偶尔也称其为芙等;[1] 管状的叫做碳纳米管或巴基管。富勒烯的中文写法有三种,以C60为例,第一种是标准的写法,即[60]富勒烯,对应英文的[60]fullerene;第二种为碳60,60也不用下标,这是中文专用的写法;第三种为C60,与英文一致。

发现过程

早在1965年,二十面体C60H60被认为是一种可能的拓扑结构。[2] 20世纪60年代科学家们对非平面的芳香结构产生了浓厚的兴趣,很快就合成了碗状分子碗烯(Corannulene)。

[3] 日本科学家大泽映二在与儿子踢足球时想到,也许会有一种分子由sp杂化的碳原子组成,比如将几个碗烯拼起来的共轭球状结构,实现三维芳香性。[4] 他开始研究这种球状分子,不久他得出这种结构可以由截去一个二十面体的顶角得到,并称之为截角二十面体,就像足球的拼皮结构那样;他还预言了CnHn分子的存在。大泽虽然在1970年就预言了C60分子的存在,但遗憾的是,由于语言障碍,他的两篇用日文发表的文章并没有引起人们的普遍重视,而大泽本人也没有继续对这种分子的研究,因而使得C60的发现已经是15年以后的事了。

1970年汉森(R. W. Henson)设计了一个C60的分子结构,并用纸制作了一个模型。然而这种碳的新形式的证据非常弱,包括他的同事都无法接受。因此这个结果并没有发表,不过《碳》期刊在1999年确认了这个结果。富勒烯的第一个光谱证据是在1984年由美国新泽西州的艾克森实验室的罗芬(Rohlfing),考克斯(Cox)和科多(Kldor)发现的,当时他们使用由莱斯大学理查德·斯莫利设计的激光汽化团簇束流发生器,用激光汽化蒸发石墨,用飞行时间质谱发现了一系列Cn(n=3,4,5,6)和C2n(n>=10)的峰,而相距较近的C60和C70的峰是最强的不过很遗憾,他们没有做进一步的研究,也没有探究这个强峰的意义。1985年,英国化学家哈罗德·沃特尔·克罗托博士和美国赖斯大学的科学家理查德·斯莫利、海斯(James R. Heath)、欧布莱恩(Sean O'Brien)和科乐(Robert Curl)等人在氦气流中以激光汽化蒸发石墨实验中首次制得由60个碳组成的碳原子簇结构分子C60。富勒烯的主要发现者们受建筑学家巴克敏斯特·富勒设计的加拿大蒙特利尔世界博览会球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构,因此将其命名为巴克明斯特·富勒烯(buckminster fullerene),简称富勒烯(fullerene)。为此,克罗托、科尔和斯莫利获得了1996年度诺贝尔化学奖。在1990年前,关于富勒烯的研究都集中于理论研究,[5] 因为没有足量的富勒烯用于实验,直到1990后,哈夫曼(Donald Huffman),克拉策门(Wolfgang Kr?tschmer)和福斯迪罗伯劳斯(Konstantinos Fostiropoulos)等人第一次报道了大量合成C60的方法,才使得C60的研究得以大量展开。富勒烯的纯化对于化学家们是一个挑战,同时也在很大程度上决定了富勒烯的价格。内嵌富勒烯是指在生成富勒烯的过程中将离子或小分子包到碳笼

中。富勒烯的化学反应很特别,例如1993年发现的Bingel反应等。碳纳米管在1991被发现。C60在甲苯溶液中的紫外-可见吸收谱。浓度:0.052mmol/L。测试仪器:JASCO V570。

进展年谱

1971年,大泽映二发表《芳香性》一书,其中描述了C60分子的设想。

1980年,饭岛澄男在分析碳膜的透射电子显微镜图时发现同心圆结构,就像切开的洋葱,这是C60的第一个电子显微镜图。1983年,克罗托蒸发石墨棒产生的碳灰的紫外可见光谱中发现215nm和265nm的吸收峰,他们称之为“驼峰”;后来他们推断这是富勒烯产生的。1984年,富勒烯的第一个光谱证据是在1984年由美国新泽西州的艾克森实验室的罗芬等人发现的,但是他们不认为这是C60等团簇产生的。

1985年,英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利等人在氦气流中以激光汽化蒸发石墨实验中首次制得由60个碳组成的碳原子簇结构分子C60,并推测这个团簇是球状结构。

1990年,克利斯莫(Kriischmer)等人第一次报道了大量合成C60的方法,才使得C60的研究得以大量展开。

1991年,加州大学洛杉矶分校的霍金斯(Joel Hawkins)得到了富勒烯衍生物的第一个晶体结构,标志着富勒烯结构被准确测定。

1995年,伍德(Fred Wudl)制备出开孔富勒烯;而PCBM也被他首次制备。

1996年,罗伯特·科尔(美)、哈罗德·沃特尔·克罗托(英)和理查德·斯莫利(美)因富勒烯的发现获诺贝尔奖。

2013年3月,中国科学技术大学化学与材料科学学院及合肥微尺度物质科学国家实验室杨上峰教授课题组与华中科技大学材料科学与工程学院卢兴教授组、美国Univ. of Puerto Rico 陈中方教授组和日本筑波大学Takeshi Akasaka教授组合作,发现并分离表征了一种新结构富勒烯,改变了富勒烯界对于内嵌富勒烯结构已公认20余年的认识。

2015年3月,杨上峰教授课题组又成功地合成并分离表征了一种十余年来一直被认为因稳定性低而“不可被分离”的新结构内嵌富勒烯,这一发现弥补了内嵌富勒烯研究领域的一席空白,实验上证明了分离出低稳定性的新结构富勒烯的可能性。该研究成果发表于国际重要化学期刊《美国化学会志》。审稿人认为,文章在富勒烯化学上取得了重要的进展”;“这项工作标志着在金属富勒烯科学领域取得了巨大的进展……这是一项很棒的工作。”[6]

天然存在

起初人们认为这种高度对称的完美分子只能在实验室的苛刻条件下或者是星际尘埃中存在,然而1992年美国科学家P. R. Buseck在用高分辨透射电镜研究俄罗斯数亿年前的地下的一种名为Shungites的矿石时,发现了C60和C70的存在,飞行时间质谱也证明了他们的结论,产生原因未知。2010年加拿大西安大略大学科学家在6500光年以外的宇宙星云中发现了C60存在的证据,他们通过史匹哲太空望远镜发现了C60特定的信号。克罗托说:“这个最令人兴奋的突破给我们提供了令人信服的证据:正如我们一直期盼的那样,巴基球在宇宙的亘古前就存在了。“!

流行文化

在流行文化中的富勒烯元素很多,并且在科学家关注它们之前就出现了。在《新科学家》杂志中,曾经每周有琼斯(David E. H. Jones)写的叫做《地达拉斯》(Daedalus)的专栏来描述各种有趣但很难实现的科学和技术。1966年,他建议可能通过掺杂杂原子来扭曲一个平面的六边形组成的网来得到一个中空的碳球分子。

2010年9月4日,谷歌的首页上用一个旋转的C60富勒烯取代了GOOGLE图案中的第二个"O"来庆祝富勒烯发现25周年。

制备与提纯

制备

大量低成本地制备高纯度的富勒烯是富勒烯研究的基础,自从克罗托发现C60以来,人们发展了许多种富勒烯的制备方法。较为成熟的富勒烯的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。

电弧法

一般将电弧室抽成高真空,然后通入惰性气体如氦气。电弧室中安置有制备富勒烯的阴极和阳极,电极阴极材料通常为光谱级石墨棒,阳极材料一般为石墨棒,通常在阳极电极中添加铢、镍、铜或碳化钨等作为催化剂。当两根高纯石墨电极靠近进行电弧放电时,炭棒气化形成等离子体,在惰性气氛下小碳分子经多次碰撞、合并、闭合而形成稳定的C60及高炭富勒烯分子,它们存在于大量颗粒状烟灰中,沉积在反应器内壁上,收集烟灰提取。电弧法非常耗电、成本高,是实验室中制备空心富勒烯和金属富勒烯常用的方法。

燃烧法

苯、甲苯在氧气作用下不完全燃烧的碳黑中有C60和C70,通过调整压强、气体比例等可以控制C60与C70的比例,这是工业中生产富勒烯的主要方法。

提纯

C60和C70及衍生物的混合物的高效液相色谱图,HPLC: JAI LC-9104,色谱柱: COSMOSIL BUCKYPREP 20 mm (ID)X 250 mm,淋洗剂: 甲苯,流速: 6mL/min

富勒烯的纯化是一个获得无杂质富勒烯化合物的过程。制造富勒烯的粗产品,即烟灰中通常是以C60为主,C70为辅的混合物,还有一些同系物。决定富勒烯的价格和其实际应用的关键就是富勒烯的纯化。实验室常用的富勒烯提纯步骤是:从富含C60和C70的烟尘中先用甲苯索氏提取,然后纸漏斗过滤。蒸发溶剂后,剩下的部分(溶于甲苯的物质)用甲苯再溶解,再用氧化铝和活性碳混合的柱色谱粗提纯,第一个流出组分是紫色的C60溶液,第二个是红褐色的C70,此时粗分得到的C60或C70纯度不高,还需要用高效液相色谱来精分。

永田(Nagata)发明了一项富勒烯的公斤级纯化技术。该方法通过添加二氮杂二环到C60、C70等同系物的1、2、3-三甲基苯溶液中。DBU只会和C70以及更高级的同系物反应,并通过过滤分离反应产物,而富勒烯C60与DBU不反应,因此最后得到C60的纯净物;其他的胺化合物,如DABCO,不具备这种选择性。

C60可以与环糊精以1:2的比例形成配合物,而C70则不行,一种分离富勒烯的方法就是基于这个原理,通过S-S桥固定环糊精到金颗粒胶体,这种水溶性的金/环糊精的复合物[Au/CD]很稳定,与不水溶的烟灰在水中回流几天可以选择性地提取C60,而C70组分可以通过简单的过滤得到。将C60从[Au/CD] 复合物中分离是通过向环糊精水溶液加入对环糊精内腔具有高亲和力的金刚烷醇使得C60与[Au/CD] 复合物分离而实现C60的提纯,分离后通过向[Au/CD/ADA]的复合物中添加乙醇,再蒸馏,实现试剂的循环利用。50毫克[Au/CD]可以提取5毫克富勒烯C60。后两种方法都只停留在实验室阶段,并不实用。

结构

在数学上,富勒烯的结构都是以五边形和六边形面组成的凸多面体。最小的富勒烯是C20,有正十二面体的构造。没有22个顶点的富勒烯,之后都存在C2n的富勒烯,n=12、13、14……

所有富勒烯结构的五边形个数为12个,六边形个数为n-10。

C60

C60和C70的循环伏安曲线测试机器:Chi660d,工作电极:玻碳,对电极:铂丝;参比电极:银丝;支持电解质:六氟磷酸四丁基铵;扫描速度:50mV/s;室温

因为C60是富勒烯家庭中相对最容易得到、最容易提纯和最廉价的各类,因此C60及其衍生物是被研究和应用最多的富勒烯。

通过质谱分析、X射线分析后证明,C60的分子结构为球形32面体,它是由60个碳原子通过20个六元环和12个五元环连接而成的具有30个碳碳双键的足球状空心对称分子,所以,富勒烯也被称为足球烯。C60是高度的Ih对称,高度的离域大π共轭,但不是超芳香体系,他的核磁共振碳谱只有一条谱线,但是它的双键是有两种,它有30个六元环与六元环交界的键,叫[6,6]键,60个五元环与六元环交界的键,叫[5,6]键。[6,6]键相对[5,6]键较短,C60的X射线单晶衍射数据表明,[6,6]键长是135.5皮米,[5,6]长键是146.7皮米,因此[6,6]有更多双键的性质,也更容易被加成,加成产物也更稳定,而且六元环经常被看作是苯环,五元环被看作是环戊二烯或五元轴烯。C60有1812种个异构体。

C60及其相关C70两者都满足这种所谓的孤立五角规则(IPR)。而C84的异构体中有24个满足孤立五角规则的,而其他的51568个异构体则不满足孤立五角规则,这51568 为非五角孤立异构体,而不满足孤立五角规则的富勒烯迄今为止只有几种富勒烯被分离得到,比如分子中两个五边形融合在顶尖的一个蛋形笼状内嵌金属富勒烯Tb3NaC84。或具有球外化学修饰而稳定的富勒烯如C50Cl10,以及C60H8。

理论计算表明C60的最低未占据轨道(LUMO)轨道是一个三重简并轨道,因此它可以得到至少六个电子,常规的循环伏安和差示脉冲伏安法检测只能得到4个还原电势,而在真空条件下使用乙腈和甲苯的1:5的混合溶剂可以得到六个还原电势的谱图。

C70

理论计算表明C70的LUMO轨道是一个二重简并轨道,不过它的LUMO+1轨道与LUMO轨道的能级差很小,因此它可以得到至少六个电子,常规的循环伏安和差示脉冲伏安法检测只能得到4个还原电势,而在真空条件下使用乙腈和甲苯的1:5的混合溶剂可以得到六个还原电势的谱图。

低对称性

低对称性富勒烯的键长是不一样的,虽然也是离域π键,从核磁共振碳谱可以清楚看出来有很多条碳信号。

手性

一些富勒烯是D2对称性的,因此他们是有固有手性的,如C76、C78、C80和C84等,科学家一直致力于发展特别的传感器来识别和分离他们的对映异构体。

种类

自从1985发现富勒烯之后,不断有新结构的富勒烯被预言或发现,并超越了单个团簇本身。巴基球团簇:最小的是C20 (二十烷的不饱和衍生物)和最常见的C60;

碳纳米管:非常小的中空管,有单壁和多壁之分;在电子工业有潜在的应用;

巨碳管:比纳米管大,管壁可制备成不同厚度,在运送大小不同的分子方面有潜在价值;聚合物:在高温高压下形成的链状、二维或三维聚合物。

纳米“洋葱”:多壁碳层包裹在巴基球外部形成球状颗粒,可能用于润滑剂;

球棒相连二聚体:两个巴基球被碳链相连;

富勒烯环。

巴克球

DFT计算得到C60的电子基态在整个球上等值的

2007年科学家们预测了一种的新的硼巴克球,它用硼取代了碳形成巴克球,B80的结构是每个原子都形成五或六个键,它比C60稳定。另外一种常见的富勒烯是C70,72、76、84甚至100个碳组成的巴克球也是很容易得到的。

碳纳米管

主条目:碳纳米管

纳米管是中空富勒烯管。这些碳管通常只有几个纳米宽,但是他们的长度可以达到1微米甚至1毫米。碳纳米管通常是终端封闭的,也有终端开口的,还有一些是终端没有完全封口的。碳纳米管的独特的分子结构导致它有奇特的宏观性质,如高抗拉强度、高导电性、高延展性、高导热性和化学惰性(因为它是圆筒状或“平面状”,没有裸露原子被轻易取代)。一个潜在应用是做纸电池,这是2007年伦斯勒理工学院的一个新发现。另外一个可能应用是用做太空电梯的高强度碳缆。通过共价键将富勒烯吸附在碳纳米管外形成的纳米“芽”结构称作纳米芽。

富勒体

C60的晶体形态

富勒体(扫描电子显微镜图)

主条目:聚合钻石纳米棒

富勒体(Fullerites)是富勒烯及其衍生物的固态形态的称呼,中文一般不特别称呼这个形态。超硬富勒体这个词一般被用来表述使用高压高温得到的富勒体,这种条件下普通的富勒烯固体会形成钻石形式的纳米晶体,它有相当高的机械强度和硬度。

内嵌富勒烯

内嵌富勒烯是将一些原子嵌入富勒烯碳笼而形成的一类新型内嵌富勒烯,如氢、碳、钪、氮等,大部分是在电弧法制造富勒烯的过程中形成的,也可以通过化学方法将富勒烯打开孔后装入一些原子或分子。

主条目:金属富勒烯

性质

溶解性

C60溶液

溶剂

C60

C70

1-氯萘

51 mg/mL

*

1-甲基萘

33 mg/mL

*

1,2-二氯苯

24 mg/mL

36.2 mg/mL

1,2,4-三氯苯

18 mg/mL

*

四氢萘

16 mg/mL

*

二硫化碳

8 mg/mL

36.2 mg/mL

1,2,3-三溴丙烷

8 mg/mL

*

氯苯

7 mg/mL

*

二甲苯

5 mg/mL

3.985 mg/mL(间二甲苯)溴仿

5 mg/mL

*

异丙苯

4 mg/mL

*

甲苯

3 mg/mL

1.406 mg/mL

1.5 mg/mL

1.3 mg/mL

四氯化碳

0.4 mg/mL

0.121 mg/mL

氯仿

0.25 mg/mL

*

正己烷

0.046 mg/mL

0.013 mg/mL

环己烷

0.035 mg/mL

0.080 mg/mL

四氢呋喃

0.006 mg/mL

*

乙腈

0.004 mg/mL *

甲醇

0.000 04 mg/mL *

1.3×10 mg/mL *

戊烷

0.004 mg/mL 0.002 mg/mL

庚烷

*

0.047 mg/mL

辛烷

0.025 mg/mL 0.042 mg/mL

异辛烷

0.026 mg/mL *

癸烷

0.070 mg/mL 0.053 mg/mL

十二烷

0.091 mg/mL 0.098 mg/mL

十四烷

0.126 mg/mL *

丙酮

0.001 mg/mL 0.0019 mg/mL 异丙醇

0.002 mg/mL 0.0021 mg/mL 二氧六环

0.0041 mg/mL *

1,3,5-三甲苯

0.997 mg/mL

1.472 mg/mL

二氯甲烷

0.080 mg/mL

* : 没有测试溶解度

富勒烯在大部分溶剂中溶得很差,通常用芳香性溶剂,如甲苯、氯苯,或非芳香性溶剂二硫化碳溶解。纯富勒烯的溶液通常是紫色,浓度大则是紫红色,C70的溶液比C60的稍微红一些,因为其他在500nm处有吸收;其他的富勒烯,如C76、C80等则有不同的紫色。富勒烯是迄今发现的唯一在室温下溶于常规溶剂的碳的同素异性体。

有些富勒烯是不可溶的,因为他们的基态与激发态的带宽很窄,如C28,C36和C50。C72也是几乎不溶的,但是C72的内嵌富勒烯,如La2@C72是可溶的,这是因为金属元素与富勒烯的相互作用。早期的科学科学家对于没有发现C72很是疑惑,但是却有C72的内嵌富勒烯。窄带宽的富勒烯活性很高,经常与其他富勒烯结合。化学修饰后的富勒烯衍生物的溶解性增强很多,如PC61BM室温下在氯苯中的溶解度是50mg/mL。C60和C70在一些溶剂的溶解度列于左表,这里的溶解度通常是饱和浓度的估算值。

水合富勒烯(HyFn)

C60HyFn水溶液,C60的浓度是0.22 mg/mL

水合富勒烯C60HyFn是一个稳定的,高亲水性的超分子化合物。截止2010年以水合富勒烯形式存在的,最大的C60浓度是4mg/mL。

导电性超导

在可以大量生产C60后其很多性质被发现,很快Haddon等人发现碱金属掺杂的C60有金属行为,1991年发现钾掺杂的C60在18K时有超导行为这是迄今最高的分子超导温度,之后大量的金属掺杂富勒烯的超导性质被发现。研究表明超导转化温度随着碱金属掺杂富勒烯的晶胞体积而升高。铯可以形成最大的碱金属离子,因此铯掺杂的富勒烯材料被广泛研究,有报道Cs3C60As在38K时超导性质,不过是在高压下。常压下33K时具有最高超导转化温度的是Cs2RbC60。C60固体超导性的BCS理论认为,超导转变温度随着晶胞体积的增加而升高,因为C60分子间的间隔与费米能级N(εF)的态密度的升高相关,因此科学家们做了大量的工作试图增加富勒烯分子间的距离,尤其是将中性分子插入A3C60晶格中来增加间距同时保持C60的价态不变。不过,这种氨化技术意外地得到了新奇的富勒烯插入复合物的特别的性质:Mott-Hubbard转变以及C60分子的取向/轨道有序和磁结构的关系。C60固体是由弱相互作用力组成的,因此是分子固体,并且保留了分子的性质。一个自由的C60分子的分立能级在固体中只是很弱的弥散,导致固体中非重叠的带间隙很窄,只有0.5eV。未掺杂的C60固体,5倍hu带是其HOMO能级,3倍的t1u带是其空的LUMO能级,这个系统是带禁阻的。但是当C60固体被金属原子掺杂时,金属原子会给t1u带电子或是3倍的t1g带的部分电子占据有时会呈现金属性质。虽然它的t1u带是部分占据的,按照BCS理论A4C60 的t1u带是部分占据的应该有金属性质,但是它是一个绝缘体,这个矛盾可能用Jahn-Teller效应来解释,高对称分子的自发变形导致了它的兼并轨道的分裂从而得到了电子能量。这种Jahn-Teller型的电子-声子作用在C60固体中非常强以致于可以破坏了特定价态的价带图案。窄带隙或强电子相互作用以及简并的基态对于理解并解释富勒烯固体的超导性非常重要。电子相互斥力比带宽大时,简单的Mott-Hubbard模型会产生绝缘的局域电子基态,这就解释了常压时铯掺杂的C60固体是没有超导性的。电子相互作用驱动的t1u电子的局域超过了临界点会生成Mott绝缘体,而使用高压能减小富勒烯相互间的间距,此时铯掺杂的C60固体呈现出金属性和超导性。

关于C60固体的超导性还没有完备的理论,但是BCS理论是一个被广泛接受的理论,因为强电子相互作用和Jahn-Teller电子-声子偶合能产生电子对,从而得到较高的绝缘体-金属转

热力学性质

差示扫描量热法(DSC)表明C60在256K时发生相变,熵为27.3J.K.mol,归因于其玻璃形态-晶体转变,这是典型的导向无序的转变。相似地,C70在275K、321K和338K也发生无序转变,总熵为22.7 J.K.mol。富勒烯的宽的无序转变与从起始较低的温度的类跳跃式旋转向各向同性的旋转渐变有关。

化学性质

C60的网络结构

C60中一个五元环周围有五个六元环

富勒烯是稳定的,但并不是完全没有反应性的。石墨中sp杂化轨道是平面的,而在富勒烯中为了成管或球其是弯曲的,这就形成了较大的键角张力。当它的某些双键通过反应饱和后,键角张力就释放了,如富勒烯的[6,6]键是亲电的,将sp杂化轨道变为sp杂化轨道来减小键张力,原子轨道上的变化使得该键从sp的近似120°成为sp的约109.5°,从而降低了C60球的吉布斯自由能而稳定。富勒烯即可以形成单加成产物,也可以形成多加成产物。富勒烯化学是研究富勒烯的化学性质的科学。功能化富勒烯从而调节其性质的需求促使人们在这个领域展开了大量的研究。例如,富勒烯的溶解度很差,而添加合适的官能团可以提高其溶解度。通过添加一个可以发生聚合的官能团,就可以获得富勒烯聚合物。富勒烯的功能化以分为两类:在富勒烯的笼外进行化学修饰;将分子束缚到富勒烯球内,也就是开孔反应。因为这个分子的球形结构使碳原子高度棱锥体化,这对其反应活性有深远的影响。据估计,其应变能相当于80%反应热能。共轭碳原子平行性影响杂化轨道sp2,一个获得p电子的sp 轨道。p 轨道的互相连结扩大在外球面更胜于其内球(碳原子之间以sp杂化轨道连结,另一个p电子两两形成pi键,还有pi电子形成近似球的复杂pi-pi共轭体系),这是富勒烯是给电体的一个原因;另一个原因是,空的低能级pi轨道上。

富勒烯中的双键不都相同。大致可分为两种:[6,6]键,连接两个六边形的键,[5,6]键连接一个六边形和五边形。两者中[6,6]键比环状六边形聚合物(cyclohexatriene)分子中的[6,6]键和轴烯与二环并戊二烯分子中的双键更短。换句话说,虽然富勒烯分子中的碳原子都是超共轭,但富勒烯却不是一个超大的芳香化合物。C60有60个pi电子,但封闭壳体系结构需要72个电子。富勒烯能够通过与钾的反应获得缺失电子,如首先合成的K6C60 盐和接着合成的K12C60盐;在这种化合物中,分子中键长交替的现象消失了。根据IUPAC的规定,亚甲基富勒烯(也称环丙烷富勒烯,methanofullerene)指闭环(环丙烷)富勒烯衍生物,而fulleroid 指开环富勒烯衍生物(亚甲基桥轮烯,methanoannulene)富勒烯往往可以发生亲电反应,这类反应的关键是功能化单加成反应(monoaddition)或多加成反应(multiple addition)。亲核加成

在亲核加成中富勒烯作为一个亲电试剂与亲核试剂反应,它形成碳负离子被格利雅试剂或有机锂试剂等亲核试剂捕获。例如,氯化甲基镁与C60在定量形成甲基位于的环戊二烯中间的五加成产物后,质子化形成(CH3)5HC60。宾格反应也是重要的富勒烯环加成反应,形成亚甲基富勒烯。富勒烯在氯苯和三氯化铝的作用下可以发生傅氏烷基化反应,该氢化芳化作用的产物是1,2加成的(Ar-CC-H)。

周环反应

富勒烯的[6,6]键可以与双烯体或亲双烯体反应,如D-A反应。[2+2]环加成可以形成四元环,如苯炔。[[[1,3]偶极环加成]]反应可以生成五元环,被称作Prato反应。富勒烯与卡宾反应形成亚甲基富勒烯。

加氢(还原)反应

氢化富勒烯产物如C60H18、C60H36。然而,完全氢化的C60H60仅仅是假设产物,因为分子张力过大。高度氢化后的富勒烯不稳定,而富勒烯与氢气直接在高温条件下反应会导致笼结构崩溃,而形成多环芳烃。

氧化反应

富勒烯及衍生物在空气中会被慢慢的氧化,这也是通常情况下富勒烯需要在避光或低温中保存的原因。富勒烯与三氧化锇和臭氧等反应;与臭氧的反应很快很剧烈,可以生成羟基多加成的富勒醇混合物,因为加成数和加成位置有很宽的分布。

羟基化反应

富勒烯可以通过羟基化反应得到富勒醇,其水溶性取决于分子中羟基数的多少。一种方法是富勒烯与稀硫酸和硝酸钾反应可生成C60(OH)15,另一种方法是在稀氢氧化钠溶液的催化下反应由TBAH增加24到26个羟基。羟基化反应也有过用无溶剂氢氧化钠与过氧化氢和富勒烯反应的报道。用过氧化氢与富勒烯的反应合成C60(OH)8,羟基的最大数量,可以达到36至40个。

亲电加成

富勒烯也可以发生亲电反应,比如在富勒烯球外加成24个溴原子,最多亲电加成纪录保持者是C60F48。

配位反应

富勒烯的五元环和六元环可以作为金属配合物的配体,尤其是五元环,可以形成各种茂配合物。[6,6]双键是缺电子的,通常与金属成键为η= 2(配位化学中的哈普托数)。键合模式如η= 5或η=6与球状富勒烯配体有关。阳光直接照射富勒烯和硫羰基钨W(CO)6的环己烷溶液生成(η2-C60)5 W(CO)6。

开孔反应

开孔反应是指通过化学手段选择性地切断富勒烯骨架上的碳碳键来制备开孔富勒烯的反应,开孔后就可能把一些小分子装到碳球中,如氢分子、氦、锂等。第一个开孔富勒烯是在1995由伍德等报道的。

超分子化学

将富勒烯和其它一些功能基团有效的通过非共价作用联结在一起形成具有特定结构的超分子体系,进而通过调控各个基团之间的电子相互作用实现其功能化的研究引起了研究者们的极大兴趣。

裸C60的主客体化学

由于C60分子独特的刚性球状结构,发展能够与其高效结合的特定主体是一件很有意义的工作,二十多年来科学家们乐此不疲地用新奇的化合物和有趣的方式将其包起来得到包含物和嵌合物,在富勒烯的主客体化学方面进行了大量的研究并取得了长足的进展,发展了一系列主体化合物,大致分为富π电子化合物和大环主体两类;前者有二茂铁、卟啉、酞菁、四硫富瓦烯、苝、碗烯和带状多共轭体系等的衍生物,后者有环糊精、杯芳烃、氮杂杯芳烃,长链烷烃和低聚物等的衍生物。迄今与富勒烯分子超分子结合力最强的是相田卓三教授合成的卟啉笼分子,在邻二氯苯中与C60的结合常数为Log Ka = 8.11。

C60衍生物超分子的自组装

修饰富勒烯可以获得更多的作用位点,因此富勒烯衍生物的超分子自组装的研究一直是个热点,远远多于不修饰的富勒烯的组装,特别是在基于富勒烯的功能材料、光致电子转移、人工光合作用体系、光子器件等诸多的研究领域。

C60及其衍生物的有序聚集态的制备方法

富勒烯功能化后产生的自组装前体,通过超分子作用形成有序聚集态结构,既是提高对富勒

烯本征认识以及单分子器件构筑水平,也是对富勒烯高新技术功能化材料的需要。十多年来,很多研究组已经在获得稳定的C60纳米材料如纳米颗粒、纳米管、纳米线、纳米带和高度有序二维结构等方面进行了大量的研究,发展了经典自组装法、模板法、气相沉积法,化学吸附和LB膜技术等方法来构筑具有特定形貌的有机纳米材料。

安全性和毒性

摩萨(Moussa)等人做了在生物体腹腔内注射大剂量C60后的毒理研究后发现,没有证据表明白鼠在注射5000mg/kg(体重)的C60剂量后有中毒现象。摩利(Mori)等人也没有发现给啮齿动物口服C60和C70混合物2000mg/kg的剂量后有中毒、遗传毒性或诱变性现象,其他人的研究同样证明C60和C70是无毒的,而伽比(Gharbi)等人发现注射C60悬浮液不会导致对啮齿类动物的急性或亚急生毒性,相反一定剂量的C60会保护他们的肝免受自由基伤害。2012年的最新研究表明,口服富勒烯能将小鼠的寿命延长一倍而没有任何副作用。摩萨(Moussa)教授研究C60的性质长达18年,著有《持续喂服小鼠C60使其寿命延长》一文,2012年10月他在一次视频采访中宣称,纯C60没有毒性。

科拉森加(Kolosnjaj)于2007年写了篇复杂且详尽的关于富勒烯的毒性的综述,回顾了上世纪90年代早期至今的所有富勒烯的毒性研究的工作,认为自富勒烯发现以来都没有明显的证据表明C60是有毒性的,而波兰(Poland)等人将碳纳米管注射到小鼠的腹腔中发现了石棉状的病灶。值得注意的是这项研究不是吸入性研究;虽然在这之前有对纳米管的吸入性研究的毒理实验,因此,凭此项研究还不能确认碳纳米管有类似石棉的毒理特性。萨耶等人发现小鼠吸入C60(OH)24或纳米C60并没有毒副作用,而同样情况下将石英颗粒注入小鼠则引起强烈的炎症。如上所述,纳米管在分子量、形状、尺寸等化学和物理性质(溶解度)方面都与C60迥然不同,因此从毒理学的角度来看,C60和碳纳米管的不同毒理学性质的差异性没有关联性。在分析毒性数据时,必须区别富勒烯的不同分子:(C60、C70 ……);富勒烯衍生物:C60或其他化学修饰的富勒烯衍生物;富勒烯复合物(比如,表面活性剂辅助的水溶性富勒烯,如C60-聚乙烯基吡咯烷酮;主客体复合物,如与环糊精或卟啉),这种情况下富勒烯是与其他分子是通过超分子作用与其他分子连接的;C60纳米颗粒。

应用

工业

富勒烯是一种新发现的工业材质,它的特性:1.硬度比钻石还硬2.轫度(延展性)比钢强100倍3.它能导电,导电性比铜强,重量只有铜的六分之一4.它的成分是碳,所以可从废弃物中提炼

可想像我们的未来生活中将有“无金属电线”“富勒烯(非金属)钢筋的建筑物”“富勒烯防弹背心”“富勒烯汽车壳”...

◎构想中的“东京湾金字塔城”亦将富勒烯列为主要建材,纳米巴克管(富勒烯)分子可无限延伸(巴克管长度越长,其原子数越多,所以巴克管的原子数不一定是C60),且巴克管分子是碳原子自动组合而成。

电、光、磁

C60本身的对称性决定了C60自身有非线性光学性质。作为一种新的化合物,研究其电、磁、光等应用是非常重要的,实际上C60就是因为掺杂碱金属在一定条件下具有超导电性,其电荷转移复合物有铁磁性而引起人们极大兴趣和关注。

1991年北京大学化学系和物理系在国内首次获得了K3C60和Rb3C60超导体,超导转变温度

为18K和28K,其超导相达75%,达到了当时国际先进水平。1993年他们成功制备了K3C60外延超导膜,其Tc=21K,Jc=5×10A / cm。1994年后有关C60超导研究,国内外都处于更深入的艰难阶段。C60的磁学研究实际上从其超导性开始的。

C60家族分子是三维π电子离域的化合物,有良好的非线性光学效应。北京大学测定了C60、C70的非线性光学系数,并利用飞秒技术研究了C60的光克尔效应,证实了C60的非线性效应起源于的π电子,并研究了C60电荷转移复合物的非线性性质。在研究C60甲苯溶液的光限制效应时,他们首先发现了反饱和吸收过程的饱和现象,并给出了理论解释。中科院化学研究所在对C60进行化学修饰后进行PVK掺杂,发现了一全新的光导体体系,此体系暗导小,放电迅速,且完全具有重要的潜在应用价值。另外,他们还发现了一类新的光限幅材料,此材料在线性透过率高达80%的条件下,其限幅幅值为300mJ/cm,具有潜在实用价值。物理应用

润滑剂和研磨剂C60具有特殊的圆球形状,是所有分子中最圆的分子;另外,C60的结构使其具有特殊的稳定性。在分子水平上,单个C60分子是异常坚硬的,这使得C60可能成为高级润滑剂的核心材料。C60分子一出世,就有人提议用它来作“分子滚珠”,制成润滑剂。将C60完全氟化得到的C60F60是一种超级耐高温材料,这种白色粉末状物质是比C60更好的优良润滑剂,可广泛应用于高技术领域。另外,C60分子的特殊形状和极强的抵抗外界压力的能力使其有希望转化成为一类新的超高硬度的研磨材料。一种有希望的方法是将C60直接转化为金刚石,这可通过在室温下加高压来实现。1992年初,法国格雷诺布尔(Grenoble)低温研究中心的雷古埃罗等人在英国《自然》杂志上报道,通过在室温下对C60分子施以压强达200亿帕的快速非静压,可将其瞬间转化为大量人工钻石晶体。雷古埃罗等已为这种由C60快速有效生产金刚石的方法申请了专利,这使得C60可作为一种研磨材料而具有潜在应用价值,人们可以采用爆炸或其他冲击波的方法对富勒烯施加高压,生产出符合工业标准的低成本金刚石。

CVD金刚石膜

富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用。富勒烯材料的独特性质之一是它们在较低温度下升华,对于C60,其升华点大约是600℃,这使得富勒烯在不规则形状表面上的气体沉积覆盖相对来说很容易实现。另外,由于富勒烯易溶于像苯和甲苯这样的极性有机分子溶剂,因而可以在室温下将复杂表面直接浸于制备好的溶液中,待溶剂挥发后就留下一层富勒烯分子薄膜。

1992年,美国西北大学的一个研究小组声称他们发现了一种用富勒烯结晶出金刚石薄膜的简单方法。他们12cr1movg合金管https://www.360docs.net/doc/f88624176.html,使用包含C70分子的富勒烯,先在硅表面形成富勒烯薄层,然后用带电粒子轰击它,导致有利于金刚石形成的分子结构,使用化学气相沉积(CVD)方法,通过天然气与氢气的混合气体,形成许多微小的金刚石。科学家预测,对这种方法加以改进也许能够生长出电子应用中所需要的类似大块单晶的金刚石薄膜,这将使得生长金刚石单晶的梦想成为现实。据说在多晶体生长中,C70的应用使得在硅表面衬底上金刚石的生成提高了10个量级。

金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等。

高强度碳纤维

1991年日本电气公司的饭岛发现了一种管状碳——巴基管,巴基管具有独特的几何结构和奇妙的导电性质,同时具有高抗张强度和高度热稳定性。巴基管的这种特殊的电学和机械性能使其具有巨大的应用价值。高性能纤维对于要求很高的强度-重量比的结构设计产生了革

命性的影响,尤其是在需要耐高温,或者在能控制材料的电磁性能的应用领域。石墨纤维已具有很高的强度、很强的柔韧性以及耐高温性能。巴基管材料具有高度的热稳定性和易变性,而且比碳素纤维具有更大的抗张强度,加之其导电性能可由其结构加以调节,因而巴基管是一种比石墨纤维性能更优越的碳纤维,甚至还可能发展出强度更高、更轻巧的结构,这样使得巴基管可能在电子器件和航空、航天等空间技术领域具有巨大的应用价值。

1993年,日本电气公司基础研究室的艾贾安和饭岛在细微的巴基管中填入了铅,从而制成了迄今世界上最细的丝,这种丝只有两三个原子那么粗,具有纳米尺度。有人推测这种巴基细丝可能在电子器件制造上得到应用。理论计算表明,巴基管可吸附大小适合其内径的任意分子。科学家希望通过改变石墨层片卷曲成管的方式等方法调节巴基管的直径,使其有选择性地吸收分子,从而改变其电子及机械性能。科学家正试图制成单晶巴基管,并用巴基管造出分子水平的微型零件用于医学或其它目的。富勒烯作为一种潜在的新碳素材料已得到普遍重视,其应用领域也将不断开拓。

高能轰击粒子

C60能够得到或失去电子形成离子,带电巴基球可以用作物理碰撞的高能轰击粒子。1992年9月,法国奥塞(Or-say)核物理研究所与厄普撒拉(Uppsala)大学的研究人员用线性加速器将C60离子加速至具有近5000万电子伏的能量。由于C60离子的质量和体积均较大,高能C60离子束轰击固体靶时不能穿透固体,而是停留在表浅的位置,从而将大量的能量施放在固体表面,可以使固体在加速的同时获得巨大的能量,有助于研究高能离子轰击固体靶时产生的物理变化。C60离子轰击实验开创了物理碰撞研究的新领域.另外,C60离子束还有可能在分子束诱发核聚变的研究中得到应用。

富勒烯及其衍生物物理性质的应用是多方面的。早在1991年,阿莱芒等人发现C60络合物可以在没有金属存在的情况下表现出铁磁性特征,从而有希望开拓磁性记忆材料的一个新方向。用C60还能在CaAs晶体基质上制成C60-K3C60异质结膜,并可将其用于微电子器件等方面。随着研究的深入,富勒烯独特的物理性质将为其应用开辟一个广阔的领域。

化学应用

富勒烯电化学

C60具有完美对称的足球结构,反应在其电子能级上具有较高的简并度.理论计算表明,C60分子的电子能级简并度最高可达五重。C60的最低未占据分子轨道(LUMO)是三重简并的tlu态,使得C60具有很高的电负性,它能够接受电子而形成带负电子的阴离子。高度结构对称性与分子轨道简并度结合起来,使得C60分子具有非常丰富的氧化还原性质。

由于C60分子具有较高的电离势(C60的第一电离能约为7.6eV),因此一般说来,C60的电化氧化是较为困难的,虽然也有人报道C60和C70的电化学不可逆氧化反应,但更常见的是富勒烯的电化还原.豪夫勒(R. E. Haufler)和斯莫利等首先采用循环伏安特性方法在溶液中产生了离子形式的C60。他们在实验中使用了玻璃状碳钮扣电池,并用铂丝作为反电极。C60进行的这个还原反应是可逆的,显示出使用电化学方法生产稳定的“富勒烯化合物(fulleride)”盐的可能性。这可能导致新材料的发现,并可能制成一类新的可充电电池。C70和C60的电化学行为几乎是相同的,在合适的溶剂中C60能够被还原成六价离子,与理论预测的C60能接受6个电子于很困难的匀质大块化合物的还原中。

巴德(A. J. Bard)等首先进行了铂电极上C60膜的电化学研究,这种膜的电化学性质是较为复杂的,并具有不可逆性。查伯(Y. Chabre)等人采用全固态电化学电池和聚合物电解质成功地将锂掺入C60中,实验确定在连续加入电子过程中LixC60中的x值为0,5,2,3,4和12,最后的Li∶C的比例达到相当于Li12C60即LiC5,这是Li嵌入石墨化合物中的饱和值。查伯等还研究了固态C60电极上钠的电化学嵌入过程.C60的固态电化学研究为生产掺杂富

勒烯化合物提供了新的途径。

C60还容易发生电化学加氢反应.C60电极能够通过氢而发生电化学充电反应,而生成的C60Hx可以以很高的效率放电。富勒烯的伯奇(Birch)还原反应和催化氢化反应得到的产物很多,有C60H18、C60H36、C60H56及完全氢化的C60H60等,还有C70的加氢产物C70H46.富勒烯加氢化合物非常稳定,具有广阔的应用前景.利用它们能够安全地大量收集和储存氢的性质,作为储存氢气的材料,这可以应用在氢的纯化、吸收、氢燃烧发动机以及氢—空气燃料电池中。富勒烯对氢气的存储和释放为研究氢的压缩、纯化、热泵以及制冷的新方法打开了大门。

加氢富勒烯是一种碳氢化合物,可作为洁净的燃烧迅速的燃料,有望作为火箭推进剂而用于航空航天领域。另外,利用加氢富勒烯储氢引起的化学及热力学性质,制成可充电电池,用来替代镍-镉(Ni-Cd)电池中的镉电极,也可用来替代镍-金属氢化物电池中的金属氢化物以储存电能。完全氢化的富勒烯能最大限度地存储能量。从实验结果看,一类新的无毒、轻便、高效的富勒烯氢化物电池将很快问世。

催化剂

催化剂有着广泛的应用,如石油精炼和化学过程等方面。富勒烯可以作为一类新的催化剂材料的基础。斯莫利提出可以在富勒烯分子的中心空隙加入一些已知具有催化性能的金属原子,如铂(pt)、钯(pd)等,制成一类新的催化剂,在这种催化剂中,催化性原子被碳笼保护起来。

1992年,日本的研究人员用C60制成了一类含钯的高催化性能复合物,这是在室温下用C60的苯溶液与钯的络合物混合制成的,每个C60分子与6个钯原子配位。这是第一个发现的在分子水平上具有规则形状的催化剂载体,并且已发现它能在正常温度和压强下催化二苯乙炔的加氢反应;这也是第一个发现的由一种材料的数个原子组成的团簇催化化学反应,因为催化剂通常只在很大质量下才起作用。富勒烯还可以作为催化剂载体而与其他催化剂结合,催化其他的反应。假如其他类似以富勒烯为基础的催化剂也具有如此之高的催化活性,那么这些基于富勒烯的催化剂将在那些既需要高效率又要低质量或小体积的方面得到应用。

抗癌药物

美国亚特兰大埃莫里(Emory)大学医学院的病毒药物学家斯辛纳齐(R. F. Schinazi)和他的同事们发现,巴基球对一种关键性的HIV病毒酶有杀伤作用,而不伤害宿生细胞。HIV蛋白酶是一种导致艾滋病的病毒,巴基球能够抑制HIV的生长,使其对人类细胞失去感染作用。科学家认为,巴基球虽然不能用来治疗艾滋病,但它可能具有药用价值。这种富勒烯能够消除HIV病毒,阻止HIV蛋白酶的作用而不损害被感染的细胞本身,它在人类被HIV感染的三种免疫细胞中具有抗病毒能力,而且还对这种病毒的反向转录酶起作用,因此能够抑制HIV 对细胞的感染。虽然巴基球还不能作为一种有用的药物,但这将是巴基球在生物学上的首次应用;而且科学家认为,富勒烯将为研究抗癌药物提供潜在而有趣的线索。

富勒烯具有十分丰富的化学内涵,富勒烯及其衍生物在化学方面的应用是十分广阔的。除作为催化剂载体、制成高能电池及抑制病毒外,还可以利用富勒烯能有选择性地吸收某些种类气体的性质,将其在工业上用作气体杂质的去除剂,此外还可以作为有机溶剂以及在医学上作为影像剂,这方面的前景是广阔的。

电化学应用

非线性光学器件

实验和理论研究表明,C60和C70等富勒烯都是良好的非线性光学材料,C60/C70混合物(C70约占10%)的非线性光学系数约为1.1×10-9esu,C76甚至还具有光偏振性。富勒烯分子中不存在对非线性光学性能有干扰作用的碳—氢键和碳-氧键,与其他非线性光学材料相比,

性能更加优越。美国西北大学的研究者们发现C60薄膜具有很高的二阶非线性光学系数,显示出在非线性光学器件方面的应用价值。C60薄膜具有很高的光学效率,这一性质使得C60在激光光学通信和光学计算机方面有着重要的潜在应用,并有望在短期内付诸实现。科学家还发现,C60和C70溶液可以作为光学限制器,这种溶液只允许低强度的光通过,当光强增强时,溶液很快变得不透光,其饱和阈值与其他任何已知的光学限制材料相比差不多或更好。英国科学家还报道过,富勒烯被多孔矿物质俘获并经蓝色激光照射后,成为一种光致发光材料,尽管这一工作尚没有在其他实验室内重复出来,但揭示出它可能用来制作能发射任何频率光的激光器,已经发现许多大的富勒烯分子具有手性特征,这种手征性预示着非线性光学响应的可能.生产和分离出大量的大富勒烯分子将在高阶非线性光学效应方面取得突破.预计富勒烯作为一种良好的非线性光学材料可能很快投入应用。

光导体

光导材料是复印机、传真机和激光打印机的基本部分,旧的光导材料使用硒作为感光剂,较为先进的有机光导聚合物已经代替了硒材料。美国杜邦公司的研究人员发现用1%的C60(可能是C60和C70的混合物)掺杂的PVK聚合物是一类全新的高性能光导体,类似的产品已经应用于静电复印技术中。这种光导材料具有良好的性质,其图象分辨率相当或优于其他材料,而寿命远远高于含硒材料,其性能实际上已经可以与最好的商用光导体相比拟.这使得掺杂富勒烯材料在印刷及光通信等方面将获得巨大的应用。

超导材料

掺杂C60超导体的发现是超导领域的又一重大成果,这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比炙手可热的氧化物陶瓷超导体低。

如果掺杂C60超导体的临界温度尚不能与高温氧化物超导体相比的话,那么这种超导体在其他方面却具有许多更为优越的性质,而这些性质都直接影响到超导体的实际应用.富勒烯超导体最大的优点在于这种化合物容易加工成所需要的各种形状;同时由于它们是三维分子超导体,各向同性,使得电流可以在各个方向均等地流动。我们知道,氧化物陶瓷超导体是一种层状材料,表现为各向异性,在每层平面内和与平面垂直的方向上导电性质不同,同时这种陶瓷材料难于加工成线形或其他所需要的形状,给实际应用造成困难。同时,富勒烯化合物超导体还具有较高的临界磁场和临界电流密度,理论分析和一些实验结果显示,在更大的富勒烯分子掺杂化合物中可能大幅度提高超导临界温度。良好的性质和潜在的高临界温度为富勒烯超导体的应用创造了条件。

掺杂富勒烯超导体的可能应用包括磁悬浮列车,基于约瑟夫逊结和更新更快设计原理的高速计算机开关器件、长距离电力输送、超导发动机和发电机、作物理研究的大型磁铁(如超导超级对撞机)、超导计算机的电子屏蔽以及基于超导量子干涉器件(SQUID)的电子设备等方面。

掺杂的C60化合物显示超导电性,理论计算已经证明,不掺杂的C60是一种直接能隙半导体,由于C60分子在其格点位置作高速无序自由转动,使C60固体成为继Si,Ge和GaAs 之后的又一种新型半导体材料。日本三菱电气公司的研究人员已经用C60制成了一种新型富勒烯半导体。随着研究的深入,富勒烯及其衍生的材料走向应用已指日可待。

C60及富勒烯家族的诞生是20世纪80年代的重大发现之一,具有重要意义的是,这些神奇的全碳分子及其衍生的物质显示新颖奇特的物理化学性质,它们首先是作为一种可实用化的新材料而出现的。

护肤品

由于富勒烯能够亲和自由基,具有极强的抗氧化能力,能够起到活化皮肤细胞,预防肌肤衰

亡的作用。关于富勒烯在清除自由基方面的功效目前已有近3万篇论文被发表,近3千个专利获得了认可。正因如此,21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。许多高端护肤品品牌含有富勒烯成分,比如:欧蓓妮诗(obeines)逆时空修复霜、欧蓓妮诗(obeines)魔焕逆时空能量精露等。

[7]

多元体研究

富勒烯衍生物与卟啉、二茂铁等富电子基团共价或非共价形成多元体,用于研究分子内能量、电荷转移、光致能量和电荷转移。

有机太阳能电池

主条目:有机太阳能电池

自1995年俞刚博士将富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyric acid methyl ester,简称PC61BM或PCBM)用于本体异质结有机太阳能电池以来,有机太阳能电池得到了长足的发展,其中有三家公司已经将掺杂PCBM的有机太阳能电池商用,迄今大部分有机太阳能电池以富勒烯做为电子受体材料。

研发意义

富勒烯是于1985年发现的继金刚石、石墨和线性碳(carbyne)之后碳元素的第四种晶体形态。其中柱状或管状的分子又叫做碳纳米管或巴基管。C60分子具有芳香性,溶于苯呈酱红色。可用电阻加热石墨棒或电弧法使石墨蒸发等方法制得。C60有润滑性,可能成为超级润滑剂。金属掺杂的C60有超导性,是有发展前途的超导材料。C60还可能在半导体、催化剂、蓄电池材料和药物等许多领域得20#无缝钢管https://www.360docs.net/doc/f88624176.html,到应用。C60分子可以和金属结合,也可以和非金属负离子结合。当碱金属原子和C60结合时,电子从金属原子转到C60分子上,可形成具有超导性能的MxC60,其中M为K,Rb,Cs;x为掺进碱金属原子的数目。K3C60在18K以下是超导体,在18K以上是导体,掺进原子数可达6个,K6C60是绝缘体。C60是既有科学价值又有应用前景的物质,在生命科学、医学、天体物理等领域也有定的意义。碳60(C60)和碳70(C70)是最常见的,也是能够量产的富勒烯,富勒烯的成员还有C28、C32、C240、C540。C78、C82、C84、C90、C96等也有管状等其他形状。

非常规富勒烯尽管结构上不稳定,但是在富勒烯研究中却非常重要。因为一方面许多非常规富勒烯是合成常规富勒烯的前体和中间产物,研究其结构和性质对于了解富勒烯的形成机理非常重要;另一方面非常规富勒烯的同分异构体数目是常规富勒烯的近100倍,如果能够通过某种方式对富勒烯进行修饰使其稳定下来,则无异于打开了一座新材料宝库的大门。2000年,分子纳米结构与纳米技术院重点实验室的科研人员在日本工作期间,首次发现将两个金属钪置入富勒烯碳笼时,可以有效地稳定非常规富勒烯C66(Nature, 408, 426, 2000)。回到中国后,他们与厦门大学的科学家合作,又合成分离并表征了通过外接Cl原子而稳定下来的非常规富勒烯衍生物C50Cl10(Science 304, 699-699, 2004)。该实验室科研人员又相继合成了通过富勒烯内包金属碳化物的稳定内嵌富勒烯Sc2C2@C68(Angew. Chem. Int. ed. 45, 2107, 2006)和外接氢原子的非常规富勒烯衍生物C64H4(J. Am. Chem. Soc. 128, 6605, 2006)。这些结果说明非常规富勒烯可以通过多种方式稳定下来,为研究富勒烯结构特征和探索更多的富勒烯材料奠定了基础。

富勒烯由于其独特的结构和化学物理性质,已对化学、物理、材料科学产生了深远的影响,在应用方面显示了诱人的前景。随着研究的不断深入,碳原子簇将要给人类带来巨大的财富。

高效非富勒烯聚合物太阳能电池的制备与性能优化

高效非富勒烯聚合物太阳能电池的制备与性能优化近年来,非富勒烯聚合物太阳能电池(NF-PSCs)成为国内外能源科学和材料领域的研究热点,这得益于非富勒烯受体材料尤其是n-型有机半导体材料(n-OS)的飞速的发展。目前,研究的焦点是如何进一步提高NF-PSCs的能量转换效率(PCE),并实现工业化生产。 本论文主要围绕宽带隙氟取代聚合物给体材料(PM6)与窄带隙小分子非富勒烯受体材料共混制备高效率的NF-PSCs,探索器件的各性能参数与活性层材料 的特性和共混薄膜的微观形貌之间的相互关系,以及制备并探究了大面积、柔性NF-PSCs的光伏性能,取得的主要研究成果如下:1.以氟取代的宽带隙聚合物给 体材料PM6和小分子非富勒烯受体ITIC为研究对象,制备有机光伏器件并对器件性能进行研究。其中,PM6作为聚合物给体材料,具有较宽的光学带隙(1.8 eV)和较低的HOMO能级(-5.50 eV),以及较强的结晶性和以Face on取向为主的分子结构。 经过器件优化,在DIO和热退火的协同作用下,基于PM6:ITIC的活性层获得了宽而强的光谱吸收,平衡的空穴/电子迁移率和良好的相分离尺寸,从而光伏器件获得了高达9.7%的能量转化效率;同时获得了高达1.04 V的Voc和16.0 mA cm-2的Jsc。值得注意的是,PM6和ITIC之间的HOMO能级差(ΔEHOMO)仅有0.10 eV,仍然可以获得高效的空穴传输;且能量损失(Eloss)低为0.51 eV。 9.7%的能量转换效率是基于Voc大于1 V且Eloss小于0.55 eV的非富勒烯聚合物太阳能电池中文献报道的最高值。2.为了进一步提高光伏器件的能量转化效率,我们使用结晶性更强的窄带隙非富勒烯受体

富勒烯多少钱一克 富勒烯一克多少钱

富勒烯多少钱一克 富勒烯多少钱一克?富勒烯是一种纳米材料,在能源、化工、医疗和基础材料等各个方面都有非常广阔的前景,是许多高新技术领域潜力巨大的不可替代的材料。诸多不错的性能,使富勒烯对化学、物理、材料、医药、微电子等领域产生了深远影响。那富勒烯多少钱一克?可应用在哪些领域呢?下面就由先丰纳米简单的介绍一番。 富勒烯多少钱一克?在如今的市场上是没有一个准确的价格的,几百元到几千元的都有,如果想要了解详情,请立即咨询南京先丰纳米材料科技有限公司。 1、工业应用: 富勒烯添加剂可以使润滑油寿命延长30%;富勒烯与碱金属形成的复合体系是优良的高温超导材料,其超导临界温度高达46K;基于C60光电导性能的光电开关和光学玻璃已研制成功;以富勒烯为关键材料的有机太阳能电池光电转换效率达到6.5%。此外,C60还能够在半导体、催化剂、蓄电池材料等领域得到深入应用。 2、生命科学方面: 基于富勒烯的磁共振造影剂、治疗癌症的新型药剂正在快速发展。C60是一种很强的抗氧化物质,人们已开发出可以用在保养品中的富勒烯,为人类抗肌肤老化带来福音。王春儒说,富勒烯作为一种新型纳米碳材料,在超导、磁性、光学、催化材料及生物等方面表现出优异的性能,有极为广阔的应用前景。在功能高分子材料领域,已有研究成果表明,将C60、C70的混合物渗入发光高分子材料聚乙烯咔唑中,得到的新型高分子光电导体在静电复印、静电成像以及光探测等技术中可广泛应用。此外,在炭黑中添加少量的富勒烯分子,可以降低胶料的滚动阻力。

如果想要了解更多关于富勒烯的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看。

非富勒烯有机太阳能电池能级排布研究

非富勒烯有机太阳能电池能级排布研究 太阳能电池是一种可以吸收太阳光转化成电能的功能器件,因而受到广泛的关注及研究,在传统能源储量日益减少的背景下,太阳能电池有望在将来可以有效的缓解能源危机。近十几年来,有机太阳能电池因其低成本,柔性,可卷对卷大面积生产以及材料容易合成的优点一直受到广大科研工作者的青睐。 尤其是近几年,一种小分子受体,俗称非富勒烯受体,搭配共轭聚合物给体构成的太阳能电池,器件效率提升地十分迅速,目前单节太阳能电池的效率已经达到13.1%,比富勒烯受体搭配聚合物给体的最好的效率值还要高。并且,由于非富勒烯受体的分子能级可以调整,未来有望继续刷新器件的效率值。 界面处能级排布对器件性能起着至关重要的作用,因为有很多研究都表明,给体的最高占据分子轨道(HOMO)和受体的最低未占据分子轨道(LUMO)之间的差值(Egap)决定了开路电压(Voc)的上限值。但是,我们必须意识到,传统的能级排布忽略了界面能的存在,而界面能的存在往往会对界面处能级排布产生影响,所以,准确地表征界面处的能级排布对于理解器件工作中的物理过程是必不可缺的。 在本论文的研究中,我们选取了几种常见的活性层材料,包括常见的三种聚合物给体:PBDB-T,PTB7,P3HT。并且选择了非富勒烯受体ITIC与传统的富勒烯受体PCBM进行对比,搭配这三种聚合物制备了平面型器件,并且制备了体异质结器件对比其开路电压。 由于体异质结太阳能电池中无序的能量会导致开路电压(Voc)的减小,所以,我们选取平面型器件的Voc值作为参考,用以研究开路电压与能级排布之间的联系。对于这几在种活性层材料,我们首先应该掌握它

富勒烯哪个厂家好 哪个富勒烯厂家好

富勒烯哪个厂家好 富勒烯哪个厂家好?富勒烯是一类由12个五元环和若干个六元环组成的中空笼状全碳分子,这种结构类似于日常生活中所见到的足球,因此也被称作“足球烯”。具有特殊的超导、强磁性、耐高压、抗化学腐蚀等优异的性质,在超导材料、光电导材料、化妆品、纳米粒子材料等领域应用前景广阔。那么富勒烯哪个厂家好?南京先丰纳米就是不错的选择。下面就简单的介绍富勒烯的一些合成方法。 1、石墨电阻加热法 电阻加热蒸发石墨的方法虽然首次得到了宏观量的富勒烯C60,但是在富勒烯的合成过程中,随着石墨阳极的消耗,两根石墨棒间的接触将逐渐消失,导致石墨棒间不稳定电弧的产生,最终影响了富勒烯的生成。 2、电弧放电法 在充满惰性气体的电弧反应腔体中,两石墨电极间无需保持真正的接触(存在一狭缝),通过调节弹簧使两电极间产生稳定的电弧,由此产生电弧等离子体。由于两电极靠的如此之近,以至分散在等离子区中的能量并不损失,而是被电极所吸收最终导致石墨电极的蒸发,产生的高温等离子体在氦气氛中碰撞冷却,得到高产率的C60和C70。 目前,电弧放电法己成为富勒烯合成的常用方法之一,特别是对于各种富勒烯新结构的合成,绝大多数是采用该方法实现的。 3、多环芳烃热解法

长时间以来,多环芳烃都被认为是富勒烯形成过程中的中间体,理论和实验都表明了由芳烃组分直接构造C60或C70的可能性。1993年,Taylor等通过萘在1000℃、氢气气氛中的热解反应,在产物中检测到富勒烯C60和C70的存在。尽管这一过程富勒烯的产率很低(<0.5%),但却从实验上证明含10个骨架碳的萘是可以缀合在一起形成C60和C70的。 4、等离子体法 以氯仿为起始反应物,在辉光等离子体反应中合成得到C60和C70。体系的真空度、微波能量、氯仿的进样量以及稀释气体(氢气)的流速直接影响到富勒烯的生成,同时在反应体系的不同温区,C60、C70的产率以及C60/C70的比例也不尽相同。 如果想要了解更多关于富勒烯的内容,欢迎立即咨询先丰纳米。 先丰纳米是江苏先进纳米材料制造商和技术服务商,专注于石墨烯、类石墨烯、碳纳米管、分子筛、黑磷、银纳米线等发展方向,现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线。 自2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米

富勒烯相关知识

富勒烯 制备 目前较为成熟的富勒烯的制备方法主要有电弧法、热蒸发法、燃烧法和化学气相沉积法等。 电弧法 一般将电弧室抽成高真空, 然后通入惰性气体如氦气。电弧室中安置有制备富勒烯的阴极和阳极, 电极阴极材料通常为光谱级石墨棒,阳极材料一般为石墨棒, 通常在阳极电极中添加铁,镍,铜或碳化钨等作为催化剂。当两根高纯石墨电极靠近进行电弧放电时, 炭棒气化形成等离子体,在惰性气氛下碳分子经多次碰撞、合并、闭合而形成稳定的C60及高碳富勒烯分子, 它们存在于大量颗粒状烟灰中, 沉积在反应器内壁上, 收集烟灰提取。电弧法非常耗电,成本高,是实验室中制备空心富勒烯和金属富勒烯常用的方法。 燃烧法 将苯、甲苯在氧气作用下不完全燃烧的碳黑中有C60或C70,通过调整压强、气体比例等可以控制C60与C70的比例,该法设备要求低,产率可达到%-9%,是工业中生产富勒烯的主要方法。 化学气相沉积(CVD) 主要用于制备碳纳米管,合适实验条件可制备出富勒烯。反应过程:有机气体和N2压入石英管,用激光、电阻炉或等离子体加热,气体分子裂解后在催化剂表面生长成富勒烯或碳纳米管。催化剂一般为Fe、Co、Ni、Cu颗粒。CVD设备简单,原料成本低,产率高;并且反应过程易于控制,可大规模生产。 提纯

通常是以C60为主,C70为辅的混合物,还有碳纳米管、无定形碳和碳纳米颗粒。决定富勒烯的价格和其实际应用的关键就是富勒烯的纯化。实验室常用的富勒烯提纯步骤是:从富含C60和C70的烟尘中先用甲苯索氏提取,然后纸漏斗过滤。蒸发溶剂后,剩下的部分(溶于甲苯的物质)用甲苯再溶解,再用氧化铝和活性碳混合的柱色谱粗提纯,第一个流出组分是紫色的C60溶液,第二个是红褐色的C70,此时粗分得到的C60或C70纯度不高,还需要用高效液相色谱(纯度高,设备昂贵,分离量小)来精分。Nagata发明了一项富勒烯的公斤级纯化技术。该方法通过添加二氮杂二环到C60, C70等同系物的1、2、3-三甲基苯溶液中。DBU只会和C70以及更高级的同系物反应,并通过过滤分离反应产物,而富勒烯C60与DBU不反应,因此最后得到C60的纯净物;其它的胺化合物,如DABCO,不具备这种选择性。 C60可以与环糊精以 1:2的比例形成配合物,而C70则不行,一种分离富勒烯的方法就是基于这个原理,通过S-S桥固定环糊精到金颗粒胶体,这种水溶性的金/环糊精的复合物[Au/CD]很稳定,与不水溶的烟灰在水中回流几天可以选择性地提取C60,而C70组分可以通过简单的过滤得到。将C60从[Au/CD] 复合物中分离是通过向环糊精水溶液加入对环糊精内腔具有高亲和力的金刚烷醇使得C60与[Au/CD] 复合物分离而实现C60的提纯,分离后通过向[Au/CD/ADA]的复合物中添加乙醇,再蒸馏,实现试剂的循环利用。50毫克[Au/CD]可以提取5毫克富勒烯C60。后两种方法都只停留在实验室阶段,并不常用。 Coustel重结晶法 Coustel等利用C60和C70在甲苯溶液中溶解度的不同,通过简单的重结晶法得到纯度为95-99%的C60 。本方法第一次重结晶得到C60的纯度约为95%,通过二次重结晶得到的C60 ,纯度达到98%-99%。 Prakash法由于C70等高富勒烯对AlCl3的亲和力大于C60 ,据此,Prakash将C60与C70的混合物溶入CS2中,加入适量AlCl3 ,由于C70等高富勒烯与AlCl3形成络合物,因而从溶液中析出, C60仍留在溶液

富勒烯介绍

富勒烯的发现、特性、结构极其应用 化学与材料科学学院化学专业0501班吴铭 摘要:长期以来,人们只知碳的同素异形体有三种:金刚石,石墨和无定形碳。自1985年发现了巴基球,1991年1992年又相继发现了巴基管(碳纳米管)和巴基葱,碳有了第四种同素异形体富勒烯,于是人们便开始了对其结构与特性的研究,并广泛应用。本文综述了富勒烯的发现、特性、结构极其应用。 关键词:富勒烯结构特性应用 目前为止,碳的同素异形体已被发现四种:金刚石,石墨,不定形碳和富勒烯。其中,人们对前三种应该早就熟知了,而对于最后一种恐怕大多人知知甚少。巴基球,巴基管和巴基丛统称富勒烯。以下则介绍富勒烯的发现特性,结构极其应用。 一.发现 (一) 巴基球的发现 英国萨塞克斯大学的波谱学家克罗托(h.w.kvoto)在研究星际空间暗云中含碳的尘埃时,发现此尘埃中有氰基聚分子,克罗托很想研究该分子形成的机制,但没有相应的设备.1984年克罗托赴美参加陂得萨斯州奥斯汀举行的学术会议,并到莱斯大学参观,现该校化学系系主任科生(R.F.cuv.jv)教授介绍,认识了研究原子簇化学的斯莫利教授,观看了斯莫利和他的研究生用他们设计的激光超团簇发生器,在氦气中用激光使碳化硅变成蒸汽的实验,克罗托对这台仪器非常感兴趣,这正是所渴求的仪器。三位科学家优异合作并安排在1985年8月到9月间进行合作研究。是时,他们用功率激光轰击石墨,使石墨中的碳原子汽化,用氮气流把气态碳原子送入真空室。迅速冷却后形成碳原子簇,再用质谱仪检测。他们解析质谱图后发现,该实验产生了含不同碳原子数的原子簇。其中相当于60个碳原子,质量数落在720处的信号最强,其次是相当于70个碳原子,质量数为840处的信号最强。说明C60是相对稳定的原子簇分子。(图1) (二) 巴基管和巴基丛的发现 1991年日本NFC公司的电镜专家饭岛博士,在氮气直流电弧放电后的阴极棒上发现了管状的结构的碳原子簇,直径约几纳米,成为碳纳米管(Cerbonnanofubes),又称巴基管(Buckytabes)。碳纳米管也是典型的富勒烯,可以有单层和多层之分,多层管则由几个或几十个单层管回轴套叠而成.想另管距为0。34nm与石墨层检举0。335nm相近.饭岛发现,如果巴基管全由方边形碳环组成,该管是不封闭的,可以向两端伸长;如果在管子两端有五边形,会将巴基管末端封闭。(图4) 1992年瑞士联邦大学的D.vgarte年人用高强度电子来对碳棒长时间照射,发现了多层相套的巴基球,结构像洋葱(Buckyonlons)。巴基葱的层面可达70多层。(图5) 二.结构及特性 (一)结构

富勒烯的应用现状

富勒烯(C60)研究与应用现状

富勒烯(C60)研究与应用现状 大连工业大学 摘要:富勒烯发现至今只有短短20年时间,由于其独特的结构和物理、化学性质,吸引了众多科学家的目光,因此在这20 年中,使得C60化学得到了很大的发展.文章综述了富勒烯的几种合成方法,并阐述了目前常用的应用现状,最后对其未来的发展作了展望。 关键词富勒烯;合成方法;应用 引言 富勒烯的发现始于1985 年Kroto 等【1】在高真空环境下激光溅射石墨的研究。利用这种方法只能产生数以千计的富勒烯分子,根本无法进行富勒烯详细的性质表征研究, 当然更谈不上应用。1990 年,Krastchmer 等【2】发明了低压氦气环境下石墨电极电弧放电法合成富勒烯,能够得到克量级的C60 产物。由于富勒烯特殊的结构和性能,在材料、化学、超导与半导体物理、生物等学科和激光防护、催化剂、燃料、润滑剂、合成、化妆品、量子计算机等工程领域具有重要的研究价值和应用前景。1991 年富勒烯被美国《科学》杂志评为年度分子,富勒烯被列为21 世纪的新材料。此后,科学家经过不断的探索和研究,发明了更多生产富勒烯的方法,例如连续石墨电极放电法、激光配合高温石墨棒蒸发法【3】、引入铁磁性金属催化剂法【4、5】、高温等离子体石墨蒸发法【6、7】,苯高温火焰燃烧法【8-10】等。而且富勒烯在日常生活中的应用越来越广泛, 因而富勒烯产品在未来社会具有很好的发展前景。 2.富勒烯的合成方法 2.1水下放电法 水下放电法【11】将电弧室中的介质由惰性气体换为去离子水, 采用直流电弧放电, 以碳纯度为99%、直径6mm的碳棒做阳极, 直径为12mm的碳棒做阴极, 放入2. 5L 的去离子水中至其底部3mm的位置, 在电压为16 ~17V、电流为30A的条件下拉直流电弧, 产物可在水表面收集。 水下放电法不需要传统电弧法的抽气泵和高度密封的水冷真空室等系统, 免除了复杂昂贵的费用, 可进一步降低反应温度, 能耗更小, 并且产物在水表面收集而不是在整个有较多粉尘的反应室。与传统电弧法相比, 此法产率及质量均较高。此法可制备出球形洋葱富勒烯、像富勒烯似的碳纳米粒子、类似碳纳米管和富勒烯粉末。 总之, 电弧法是目前应用最广泛、有可能进一步扩大生产规模的制备方法, 其C60产率可达10% ~13% , 为其物理、化学的研究奠定了基础。电弧法制备碳纳米管产率约为30% ~70% , 在电弧放电的过程中能达到4 000K的高温, 这样的温度下碳纳米管最大程度地石墨化, 所以制备的管缺陷少, 比较能反映碳纳米管的真正性能。但由于电弧放电通常十分剧烈, 难以控制进程和产物, 合成的沉积物中存在有碳纳米颗粒、无定形炭或石墨碎片等杂质, 而且碳管和杂质融合在一起, 很难分离。 2.2CVD法 CVD是制备富勒烯的另一种典型方法。催化热分解反应过程一般是将有机气体(通常为C2 H2 )混以一定比例的氮气作为压制气体, 通入事先除去氧的石英管中, 在一定的温度下, 在催化剂表面裂解形成碳源, 碳源通过催化剂扩散,在催化剂后表面长出碳纳米管, 同时推着小的催化剂颗粒前移。直到催化剂颗粒全部

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理研究

非富勒烯受体ITIC及其改性材料的有机太阳能电池的器件物理 研究 目前,电压损失成为进一步提高光伏性能的明显阻碍之一,因此本文利用变光强、变温以及电致发光等方法系统研究了电荷转移、能量无序度和电荷转移态(ECT)对于光电转换效率超过11%的高性能非富勒烯本体异质结太阳能电池的影响。并且通过系统的优化路线对另一种代表性的非富勒烯受体太阳能电池进行优化和性能提升,主要通过变光强和其表面形貌的变化来考察不同给受体比例和不同添加剂对器件的影响,并进行了系统研究。 (1)利用Voc随温度变化来探究太阳能电池器件的电压上限,通过实验证实了器件的Voc与能量无序有关。我们发现最优太阳能电池基于PBDB-T:IT-M与ITIC,PC71BM作为受体的器件相比,具有最低能量无序度。 确定的能量无序度可以调节不同能带器件的Voc,基于EQE和EL 光谱对能量的计算,我们发现PBDB-T:IT-M器件ΔVnonrad随ECT增加而减小,Voc辐射限制结合非辐射损失获得的数值和实验Voc数值相符。结论表明,传输和CTS的能量无序度最小化与是减少Voc损失改善器件性能的关键,通过精确调节BHJs的能量和传输性能,可以减少非辐射电压损失。 (2)基于聚合物给体PBDB-T和一种非富勒烯受体m-ITIC组合,制备本体异质结有机太阳能电池器件,并基于添加剂来调控电池的光伏性能和电荷复合,我们发现PBDB-T:m-ITIC体系和不同添加剂(DIO,CN,DPE和NMP)均表现出优异性能。通过进一步调节优化可获得光电转换效率超过11%的出色性能。

富勒烯

富勒烯 富勒烯(Fullerene) 是一种碳的同素异形体.任何由碳一种元素组成, 以球状, 椭圆状, 或管状结构存在的物质, 都可以被叫做富勒烯. 富勒烯与石墨结构类似, 但石墨的结构中只有六元环, 而富勒烯中可能存在五元环. C60是于1985年由Rich ard Buckminster Fuller发现的第一个富勒烯, 又被称为足球烯. 这是因为C60的表面结构与足球完全一致. 富勒烯这个名称也由Fuller 而来, 而我们一般用Buckm inster fullerene 指足球烯. 性质 密度和溶解性 C60的密度为cm。 C60不溶于水,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性。 导电性 碳原子本具有导电性,而C60分子的导电性优于铜,重量只有铜的六分之一,一个巴克球分子相当于一纳米,可谓极微小,它的导电性来自奇特的分子结构并非靠其他原子,可见不久的将来人类世界将诞生非金属电缆、非金属电路板...等富勒烯产品。 结构

克罗托受建筑学家理查德·巴克明斯特·富勒(RichardBuckminsterFuller,18 95年7月12日~1983年7月1日)设计的美国万国博览馆球形圆顶薄壳建筑的启发,认为C60可能具有类似球体的结构,因此将其命名为buckminster fullerene(巴克明斯特·富勒烯,简称富勒烯)。 富勒烯是一系列纯碳组成的原子簇的总称。它们是由非平面的五元环、六元环等构成的封闭式空心球形或椭球形结构的共轭烯。现已分离得到其中的几种,如C60和C70等。在若干可能的富勒烯结构中C60,C240,C540和直径比为1:2:3。C60的分子结构的确为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的具有30个碳碳双键(C=C)的足球状空心对称分子,所以,富勒烯也被称为足球烯。球体直径约为710pm,即由12个五边形和20个六边形组成。其中五边形彼此不相联接只与六边形相邻。与石墨相似,每个碳原子以sp2杂化轨道和相邻三个碳原子相连,剩余的p轨道在C60分子的外围和内腔形成π键。 (补充:C60双键数的计算方法 由于每个孤立的碳原子周围有三个键(一个双键,两个单键)。而每个键却又是两个碳原子所共有,因此棱数=60×3×(1/2)=90 由于单键数+双键数=总棱边数单键数=2×双键数(即单键数为双键数的2倍)设单键数为a个,双键数为b个,则 a+b=90 a=2b 所以b=30) 其他

碳材料介绍

新型碳材料的发展及简介 摘要:碳是世界上含量十分丰富的一种元素。碳材料在人类发展史上起着主导的作用,其应用最为出众的一次是在第二次工业革命。现代科技的发展使得人类又获得了几种新型的碳材料--碳纳米管、碳纤维、C60、碳素系功能材料等。 关键词:碳材料碳纳米管碳纤维 一、前言 碳是世界上含量及广的一种元素。它具有多样的电子轨道特性(SP、SP2、SP3杂化),再加之SP2的异向性而导致晶体的各向异性和其排列的各向异性,因此以碳元素为唯一构成元素的的碳材料,具有各式各样的性质。在历史的发展中传统的碳材料包括:木炭、竹炭、活性炭、炭黑、焦炭、天然石墨、石墨电极、炭刷、炭棒、铅笔等。而随着社会的发展人们不断地对碳元素的研究又发明了许多新型炭材料:金刚石、碳纤维、石墨层间化合物、柔性石墨、核石墨、储能型碳材料、玻璃碳等。其中新型纳米碳材料有:富勒烯、碳纳米管、纳米金刚石、石墨烯等。 没有任何元素能像碳这样作为单一元素可形成如此多类结构和性质不同的物质,可以说碳材料几乎包括了地球上所有物质所具有的性质,如最硬--最软、绝缘体--半导体--超导体、绝热-良导热、吸光--全透光等。随着时代的变迁和科学的进步,人们不断地发现和利用碳,可以这么说人们对碳元素的开发具有无限的可能性。 自1989年著名的科学杂志《Science》设置每年的“明星分子”以来,碳 ”相继于1990年和1991年连续两年获此的两种同素异构体“金刚石”和“C 60 殊荣,1996年诺贝尔化学奖又授予发现C 的三位科学家,这些事充分反映了 60 碳元素科学的飞速发展。但是由于碳元素和碳材料具有形式和性质的多样性,从而决定了碳元素和碳材料人有许多不为人们知晓的未开发部分。 二、国内外新型碳材料的发展趋势

2015.11太阳能受体材料详解

受体材料读书报告 体异质结太阳能电池有低成本、轻质、柔性和可溶液加工的特点。近些年通过开发高空穴迁移率、协调的能级结构和良好波谱吸收的给体材料,单层和叠层太阳能电池光电转换效率均达到10%。在体异质结太阳能电池中受体材料与给体材料有着一样的重要性,然而受体材料的研究远落后于给体材料。目前富勒烯及其衍生物因其在混合膜中高电子迁移率、良好的电子捕捉能力和各向同性的电荷传输性能被广泛作为受体材料应用。但富勒烯及其衍生物低的可见光吸收能力、局限的能级结构和制作纯化的高成本一定程度上制约了以富勒烯为受体材料的体异质结太阳能电池发展。而非富勒烯受体材料分子结构容易设计修饰,可以调节能级结构和提高自身电子迁移率,因此进一步发展非富勒烯受体材料仍有必要。 1.1调节受体分子侧基 Zhan等在2015年报道了高效非富勒烯小分子受体的结构(见下图)。受体分子中三苯胺(TPA)结构中的N原子采用的是SP3杂化,N原子上孤电子对相当于第四个基团,同时因为每条臂都具有相当的刚性和空间位阻,受体分子结构如图螺旋桨结构一般。文献中以P3HT 为给体材料(HOMO-4.76eV、LUMO-2.74eV),星型S(TPA–DPP)为受体材料(HOMO-5.26eV、LUMO-3.26eV),电池的开路电压为1.18V,短路电流2.68mA*cm-2,PCE为1.20%。其中开路电压高达1.18V这是因为S(TPA–DPP)的LUMO能级与P3HT的HOMO能级差值为1.5 eV。文献中采取了退火操作,退火后P3HT的结晶尺寸适当程度增大,表面粗糙程度增加,退火操作增加了电荷传输性能,IPCE明显提高。从薄膜和溶液中紫外-可见光吸收谱图得出,该扭曲的螺旋桨结构受体分子在薄膜中没有产生大的聚集状态。文中退火操作适当的提高了相分离尺寸,从而提高了Jsc和IPCE。

化学所在氯取代有机光伏材料设计方面取得系列进展

化学所在氯取代有机光伏材料设计方面取得系列进展 有机光伏(OPV)电池是一项具有重大应用前景的绿色能源技术。近年来,得益于新材料的发展,OPV电池的光伏效率取得了大幅提升,表现出巨大的实际应用潜力。面向OPV 技术产业化,提升材料光伏性能的同时,必须注重对合成成本的控制。在材料设计中,引入卤原子是最常见且有效改善光谱、能级以及聚集形貌等基本特性的分子设计方法。目前,众多高效率给、受体材料的制备过程大多包含步骤冗长、产率较低且成本高昂的氟化过程,严重制约了有机光伏材料的大批量制备研发进程。 在北京分子科学国家研究中心、国家自然科学基金委和科技部的支持下,中国科学院化学研究所高分子物理与化学实验室侯剑辉课题组采取氯化方法设计高性能有机光伏材料,取得了系列进展。聚合物给体方面,该课题组与北京科技大学副教授张少青合作,将苯并二噻吩(BDT)类聚合物PBDB-TF中的氟原子替换为氯原子,不仅大幅缩短了合成步骤,而且材料在电池器件中也表现出更高的光伏效率(Adv. Mater. 2018, 30, e1800868);非富勒烯受体方面,该课题组通过引入二氯氰基茚二酮作为端基,显著地增强了分子内电荷转移效应,拓宽了材料的吸收范围,相应材料在各类型电池中都获得了优异的性能(Adv. Mater. 2017, 29, 1703080; Sci. China Chem. 2018, 61, 1328-1337; Adv. Mater. 2018, 30, 1800613; Nat. Commun. 2019, 10, 2515)。近期,该课题组系统总结了有机光伏材料的氯取代修饰方法,深入探讨了相关的分子设计及光伏特征,相关内容发表在Acc. Chem. Res. 2020, 53, 4, 822-832,论文第一作者为副研究员姚惠峰,通讯作者是研究员侯剑辉。 在最近的工作中,该课题组通过细致地优化近期出现的明星受体分子Y6,通过氯化的方式制备了新的受体BTP-eC9;该方法提升了分子排列有序性,促进了电荷传输,在单节电池中获得了最高17.8%的光伏效率,并得到了国家计量研究院的认证(17.3%),证明了氯取代修饰方法在高性能有机光伏材料设计中的重要作用。国家纳米科学中心魏志祥课题组和瑞典林雪平大学高峰课题组提供了材料形貌表征及器件物理相关的支持。相关研究工作发表在近期的Advanced Materials上,通讯作者是姚惠峰,第一作者是崔勇。

高效三元非富勒烯有机太阳能电池的研究

高效三元非富勒烯有机太阳能电池的研究有机太阳能电池(OSCs)具备低成本、质量轻、可柔性、易于大规模生产等特点,是具有重大产业前景的新一代绿色能源技术。非富勒烯材料合成路径简单,分子能级可调性强,基于非富勒烯受体的OSCs近年来备受关注。 然而,目前主流的非富勒烯普遍存在薄膜形貌难以调控、载流子迁移率低等缺陷。三元策略能有效拓宽活性层吸收光谱范围,提升器件的短路电流密度 (JSC)和填充因子(FF)。 但是三元器件的研究中存在着光电转化效率(PCE)较低、稳定性差等问题。针对以上问题,本论文基于经典的非富勒烯体系PTB7-Th:ITIC,采用三元策略来优化器件的性能,得到了高效率高稳定性的三元非富勒烯器件。 主要内容如下:1.在PTB7-Th:ITIC体系中引入了一种基于菲并咪唑的小分子材料TPPI-TPE,实现了高效率的三元非富勒烯器件。当掺杂比例为10 wt%时,与二元器件相比,三元器件的FF从57.88%提升到65.63%,PCE从7.88%提升到9.50%,提升幅度超过20%。 研究表明,TPPI-TPE与二元主体系的吸收光谱互补,引入可以增强共混膜的光吸收,更重要的是TPPI-TPE可以促进聚合物给体的结晶,增强其π-π堆叠强度,对活性层的形貌起到了调控作用,激子解离和电荷传输同时得到了改善。2.在此基础上,向PTB7-Th:ITIC体系中引入染料分子香豆素7(C7),实现了高性能三元非富勒烯器件,并详细研究了第三组分与主体系的分子间相互作用对性能造成的影响。 当C7掺杂比例为10 wt%时,三元器件JSC从14.87 mA/cm2提升为18.36 mA/cm2,获得了10.16%的PCE,较

富勒烯及其衍生物的制备和生物医学效应

专业课程实践论文题目:富勒烯及其衍生物的制 备和生物医学效应任课教师:罗志勇 姓名:刘远见 学号:20096918 学院:化学化工学院 专业班级:2009级材料化学1班

富勒烯及其衍生物的制备和生物医学效 应 刘远见liuyuanjian [重庆大学化工学院2009级材料化学1班重庆中国 400044] [摘要]:富勒烯和其衍生物作为一种新型含碳纳米材料,由于其独特的结构和物理化学性质,在生物、医学、超导、光学及催化等多领域有着极为广阔的应用前景。在生物和医学领域,富勒烯及其衍生物具有抗氧化活性和细胞保护作用、抗菌活性、抗病毒作用、载带药物和肿瘤治疗等活性。在总结国内外相关研究基础上,论文重点综述了几种典型富勒烯及衍生物的制备和生物效应。 [关键字]:富勒烯;纳米材料;生物效应;细胞保护; [Abstract]:Due to their unique structure and physical and chemical properties,fullerene and its denvatives have a widerange of potential appacations in biomedical field.They have many advantages in cell protection and antioxidant properties,antibacterial activity,antiviral activity,drug delivery and anti-tumor activities.In this paper,biomedical effects of fullerenes have been highlighted,and the synthesis of fullerene its derivative have been reviewed as well. [Key words]:fullerene;Nano-materials;Biological effects;Cytoprotective 纳米科学、信息科学和生命科学并列成为2l世纪的三大支柱科学领域。纳米颗粒(nanoparticles,Nas)和超细颗粒物(ultrafine particles,UFPs),一般是指尺寸至少有一维在l~100 nm间的粒子。纳米尺度是处在原子簇和宏观物体交界的过渡区域,处于这个区域的材料具有一些独特性质,如小尺寸效应、表面、界面效应和量子尺寸效应等。空气中纳米颗粒虽然浓度很低,但具有很高的颗粒物数目。将宏观物体细分成纳米颗粒后,它的光学、热学、电学、磁学、力学以及化学性质和大体积固体相比将会显著不同。纳米材料的小尺寸、化学成分、表面结构、溶解性、外形和聚集情况决定着它们特殊的物理化学性质,这些性质使得纳米材料在将来有着广泛的用途。(1) Kroto等(1985)于1985年发现了巴基球,并提出了球型中空分子的模型,将之命名为富勒烯(C60)。Kratschrner等(1990)首先用石墨电弧放电法实现了富勒烯的宏量制备,此后在世界范围内掀起了研究富勒烯的热潮。涉及的学科包括物理、化学、生物、天文和材料科学等。一个分子能如此迅速地打开通向科学新领域的大门,这是非常罕见的。由于富勒烯分子的巨大科学意义,被美国‘科学’杂志评为1991年的“明星分子”。

高效非富勒烯受体材料的设计合成及性质研究

高效非富勒烯受体材料的设计合成及性质研究本论文分别从末端受体单元与中间给体单元间的连接单元和末端受体单元两个方面分别对本组已报道的优秀小分子受体材料的化学结构进行细微调控,设计并合成了四个高效的“受体-给体-受体”(A-D-A)型非富勒烯受体材料。并对这些化合物的化学结构、热稳定性、光学吸收性质、电化学性质、作为受体材料的有机光伏器件性能,以及活性层形貌做了系统的研究。 两部分的摘要如下:一、以FDICTF(F-H)受体分子为基础,通过在末端基团双氰基茚满二酮上引入卤素原子(F,Cl和Br),设计合成了三个新的非富勒烯受体分子。相对于受体分子F-H,三个分子表现了红移的紫外可见吸收光谱,增强的结晶性以及电荷迁移率。 引入卤素后,给受体混合膜中出现了更倾向于face-on的堆积方式,这种堆积方式有利于双分子复合的减弱以及电荷的传输与收集,从而获得较高的短路电流密度以及填充因子。当采用PBDB-T作为给体材料制备器件,分别获得了 10.85%,11.47%和12.05%的能量转换效率(Power Conversion Efficiencies,PCE),明显高于相同条件下的基于F-H的器件的能量转换效率9.59%。 是同时期文献报道的基于非富勒烯受体的单层有机太阳能电池的最高值之一。二、设计合成了以非富勒烯受体分子F-H的核作为中间给体单元D,以双氟取代的双氰基茚满二酮为末端受体单元A,以噻吩并噻吩甲酸异辛基酯为D-A间连接单元Q的小分子受体材料F-TT-2F。 噻吩并噻吩甲酸异辛基酯的引入增加了醌式共振效应,双氟取代的双氰基茚满二酮的强拉电子作用使得分子的能级也有所降低,吸收光谱明显红移。当采用

面向非富勒烯型有机光伏电池的聚合物给体材料设计

物理化学学报(Wuli Huaxue Xuebao) December Acta Phys. -Chim. Sin.2017,33 (12), 2327?2338 2327 [Feature Article] doi: 10.3866/PKU.WHXB201706161 https://www.360docs.net/doc/f88624176.html, 面向非富勒烯型有机光伏电池的聚合物给体材料设计 张少青1,2侯剑辉2,* (1北京科技大学化学与生物工程学院,北京 100083; 2中国科学院化学研究所,北京分子科学国家实验室,高分子物理与化学实验室,北京 100190) 摘要:可溶液加工的有机光伏电池(OPV)是一种具有重要应用潜力的新型光伏技术。在OPV技术的发展过程 中,富勒烯衍生物作为电子受体材料占据了相当长时间的统治地位,因此聚合物给体材料设计中对如何与富 勒烯受体材料相互匹配考虑较多。最近几年来,基于聚合物给体和非富勒烯有机受体的OPV电池,简称为 非富勒烯型NF-OPV,得到了十分快速的发展。在此类电池中,聚合物电子给体和非富勒烯型电子受体材料 均起到了十分重要的作用。相比于较为经典的富勒烯型OPV,NF-OPV对聚合物给体的光电特性和聚集态结 构提出了新的要求。因此,本文针对NF-OPV的特点,重点介绍NF-OPV对聚合物给体材料的吸收光谱、分 子能级以及聚集态结构等特征的新要求,总结最近几年来的相关进展,并在此基础上进一步讨论聚合物电子 给体材料面临的挑战和展望。 关键词:有机太阳能电池;共轭聚合物;分子设计;非富勒烯受体;光伏效率 中图分类号:O646 Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells ZHANG Shao-Qing1,2 HOU Jian-Hui2,* (1School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China; 2State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China) Abstract: Solution-processable organic photovoltaic cells (OPVs) have attracted considerable interest. Over the past twenty years, fullerene and its derivatives have been predominately used as the electron acceptor materials to fabricate OPV devices. In recent few years, non-fullerene organic photovoltaic cells (NF-OPVs), consisting of polymers as the donors and the non-fullerene (NF) materials as the acceptors, have been developed rapidly, and the highest power conversion efficiencies of NF-OPVs exceed those of fullerene-based OPVs. In these NF-OPVs, both polymeric donor materials and NF acceptors play critical roles in achieving outstanding efficiencies, and hence, the molecular design of the polymer donors has been deemed a very important topic of research in the field. In this review, we will present an introduction of the specific requirements for polymer donors in NF-OPVs and summarize the recent progress related to polymer donors for the applications in highly efficient NF-OPVs. Key Words: Organic photovoltaic cells; Conjugated polymer; Molecular design; Non-fullerene Received: May 29, 2017; Revised: June 11, 2017; Published online: June 16, 2017. *Corresponding author. Email: hjhzlz@https://www.360docs.net/doc/f88624176.html,; Tel: +86-10-82615900. The project was supported by National Nature Science Foundation of China (91333204, 21325419, 51673201) and the Chinese Academy of Sciences (XDB12030200). 国家自然科学基金委(91333204, 21325419, 51673201)和中国科学院战略性B类先导科技专项(XDB12030200) ? Editorial office of Acta Physico-Chimica Sinica

内嵌金属富勒烯

摘要 富勒烯是近年来研究较多的碳笼结构高分子化合物, 其分离、纯化是影响该研究领域进展的关键因素。本文概述了富勒烯及内嵌金属富勒烯的性质及应用,同时还介绍了富勒烯、内嵌金属富勒烯的柱色谱分离。色谱法是目前分离富勒烯的重要手段, 本文概述了该法在富勒烯分离、纯化中的应用。 关键词色谱法富勒烯分离纯化 Abstract Significant increases of fullerenes yields, as well as the additional, selective extractions of higher order fullerenes were achieved. Chromatographic separations of fullerenes from the obtained soot extracts were performed by continue elution, in one phase of each process, under atmospheric pressure, with original, defined gradients of solvents, from pure hexane or 5 % toluene in hexane to pure toluene, on active Al2O3 columns, by the new, improved methods.The advances in chromatographic purification using alumina, as well as in understanding of the unique, main optical absorption properties of these molecules are reported. Keywords: Carbon soot, Basic and higher fullerenes, Solvent

相关文档
最新文档