系统辨识实验报告

系统辨识实验报告
系统辨识实验报告

系统辨识实验报告

学院:信息科学与技术学院专业:自动化

日期:2016/4/26

目录

实验1 (4)

一.实验内容及要求: (4)

二.实验原理: (4)

三.软件设计思想: (4)

四.程序结构框图: (5)

五.运行示意图: (5)

实验2 (8)

一.实验内容及要求: (8)

二.实验原理: (8)

三.软件设计思想: (9)

四.程序设计框图: (10)

五.程序运行流程图: (10)

实验3 (12)

一.实验内容及要求: (12)

二.实验原理: (12)

三.程序数据流程图: (12)

四.实验运行结果: (13)

实验4 (14)

一.实验内容及要求: (14)

二.实验原理: (14)

三.数据递推关系图: (14)

四.实验运行结果: (15)

心得体会 (16)

附录(实验代码) (17)

https://www.360docs.net/doc/f913946443.html,bWork1 (17)

https://www.360docs.net/doc/f913946443.html,bWork2 (21)

https://www.360docs.net/doc/f913946443.html,bWork3 (23)

https://www.360docs.net/doc/f913946443.html,bWork4 (26)

实验1

一.实验内容及要求:

1.编出矩阵A与B相乘得到的矩阵R的运算计算机程序

要求:

(1)A和B的维数及数值可通过键盘及数据文件输入

(2)计算结果R可由屏幕及文件输出

2.将1改写为子程序

3.查找有关的资料,读懂及调通矩阵求逆程序,并改写为子程序。

二.实验原理:

1.两个矩阵A、B相乘得到C矩阵,首先要满足的条件是A的列数与B行数相

等,否则不能相乘。当满足条件后,根据C(i,k)=可以求得

C矩阵。

2.当求矩阵的逆时,首先要判断其是否为方阵,若是则可以对其进行下一步的

操作。本次实验中求逆主要是通过构造一个增广矩阵(FangZ | E)矩阵的初等行变换得到(E | FZNi)的这样的一个矩阵就可以求得矩阵的逆。若矩阵FangZ不是满秩矩阵时,FangZ没有FZNi 。通过这样的求逆方式,避免了大方阵的求取行列式运算。

三.软件设计思想:

1.确定该软件的功能主要有:键盘输入两个矩阵然后相乘;文本data输入两

个矩阵将结果放在文本result中;键盘输入一个方阵求得其逆矩阵。其中前两个的矩阵相乘运算部分设置为一个函数Mul。

2.在main函数中提供两个关于矩阵的选择:multiplitation;invertion。其

相对应的子函数为MulOp(a,b,c),Inv()。

3.在MulOp(a,b,c)子函数中,有两种输入矩阵的方式:way1,way2。相对应的

功能为键盘输入,文本输入。并且两者在处理矩阵时,都调用了Mul函数。

4.在Inv()子函数中,输入和显示原矩阵,和其相应的逆矩阵。调用qiuni

(double FangZ[][M],double FZNi[][M],int n)子函数,可以都得到原矩阵的逆矩阵。但当原矩阵不可逆时,系统输出为”The array is not invertible!“。

四.程序结构框图:

五.运行示意图:

1.main函数的主界面:

2.MulOp子函数的界面:

main函数

Inv子函数

矩阵求逆

way2文本输入

矩阵

MulOp子函数

矩阵乘积

way1键盘输入

矩阵

qiuni子函数

Mul矩阵乘积

子函数

退出程序

3.Inv子函数的界面:

4.通过键盘操作计算两个矩阵的乘积:

5.求方阵的逆矩阵:

实验2

一.实验内容及要求:

编写并调试动态模型仿真程序:

模型:y(k)-1.5y(k-1)+0.7y(k-2)=u(k-1)+0.5u(k-2)+v(k) 已知:白噪声{v(k)}数据文件为DV ,数据长度为L=500 要求:(1) 产生长度为L 的M 序列数据文件DU (2) 产生长度为L 的模型输出数据文件DY

二.实验原理:

由于在现实中,白噪声序列很难求,所以寻找到M 序列在一定程度上可以代替白色噪声序列。由L=500,所以n=9。 根据M 序列的特征方程:

可知9阶移位寄存器的多项式为

,及可得

c=[0,0,0,1,0,0,0,0,1]

9级线性移位寄存器:

图中Ci 表示反馈的两种可能连接方式,Ci=1表示连线接通,第9-i 级加入反馈中;Ci=0表示连线断开,第9-i 级未参加反馈。 系统产生M 序列的结构流程图:

C0 + + + C1 C8 输出

三.软件设计思想:

1. 该软件的主要功能是:产生M 序列赋给u(k)保存在DU.txt 文件中;由u(k)

和v(k)求得y(k)保存在DY.txt 文件中。

2. 在main 函数中给出3个选择:求u(k)

;求y(k);退出程序。其相对应的函

数名称为gener ,ouput ,exit 。

3. 在gener 子函数中产生M 序列u(k)保存到DU.txt 文本文件中。

4. 在output 子函数中,通过对input 子函数(读入v(k),u(k)的数据)、deal

子函数(由公式y(k)-1.5y(k-1)+0.7y(k-2)=u(k-1)+0.5u(k-2)+v(k)求y(k))的调用来达到生成y(k)序列并保存到DY.txt 文本文件中。

输出M 序列

M 序列DU(i)=a(i)

寄存器向前移1位

移位寄存器

M 序列的长度为L=500

初始化寄存器

a=[1,1,0,0,0,1,0,1,0]

i

i=1

Y

N

四.程序设计框图:

五.程序运行流程图:

1.main函数:

2.gener函数:

3.output函数:

main函数

deal子函数

得DY

input子函数

输入DU,DV

退出程序

output子函数

产生DY

gener子函数

产生DU

实验3

一.实验内容及要求:

编写并调试动态离散时间模型LS成批算法程序。

要求:(1)原始数据由DU和DY读出。

(2)调用求逆及相乘子程序。

(3)显示参数辨识结果。

二.实验原理:

1.批次处理的方法就是把所有的数据采集到一次性进行处理,但前提是白色噪

声、及M序列所共同作用而产生的输出,才能使用最小二乘法。虽然这种方法的计算量庞大,但经常用于处理时不变系统,方法简单。

2.构造模型Y=X*sita+V

3.Y=[DY(3) DY(4) DY(499) ]已知n=2,L=500,可知m=497

所以有X=

三.程序数据流程图:

X(m,4)矩阵TX(4,m)矩阵

ni(4,4)方阵Y(m,1)列矩阵

ji1(4,4)方阵

xishu(4,1)列矩阵ji2(4,m)矩阵

转置

相乘

相乘

求逆

相乘

四.实验运行结果:

实验4

一.实验内容及要求:

编写并调试动态离散时间模型LS递推算法程序。

要求:

(1)原始数据由DU和DY读出。

(2)显示参数辨识结果。

(3)设置选择变量决定是否输出中间结果。

二.实验原理:

1.基本思路:

新的估计值sita'(k+1)=老的估计值sita'(k)+修正项

1.基本模型:y(k)=-a1y(k-1)-a2y(k-2)+b1u(k-1)+b2u(k-2)+v(k)。

2.引入信息矩阵P(k),维数为4*4,初始化为10^5~10^12*E的一单位阵。gama(k)

为修正系数,为无穷小标量。x(k+1)=[-y(k) -y(k-1) u(k) u(k-1)]。

sita'=[a1 a2 b1 b2]。y(k+1)=DY[k+3]。

3.sita'(k+1)=sita'(k)+gama(k+1)*P(k)*x(k+1)*[y(k+1)-x'(K=1)*sita'(k)

];

4.P(k+1)=P(k)-gama(k+1)*P(k)*x(k+1)*x'(k+1)*P(k);

5.gama(k+1)=1/[1+x'(k+1)*P(k)*x(k+1)];

三.数据递推关系图:

四.实验运行结果:1.main函数界面示意图:

6.只显示结果界面:

7.显示过程的参考界面:

心得体会

我很喜欢这个课程的期末考核方式,不用再拘泥于在题目当中对该课程的了解,而是通过4个C语言设计的练习来达到学习的目的,而且对以后的学习还有很大的帮助。

在编写C语言的过程中,也遇到了一些阻碍,特别是在编写第3,4个的时候。比如:用的数组太多,并且未将其初始化,运行出来的结果经常是很长的一段随机数;或者一模一样的程序有时候就可以正常运行,有时候就总是出现报错……这些都是让我心塞了两周的问题。在这些问题解决之后,运行出来的结果却与实际模型参数的出入有点大,于是又重新查找第2个实验是否是M序列产生的方式有问题。通过对初始化寄存器赋给不同的值,可以让结果与真实模型参数之间的误差达到最小。

通过这学期对系统辨识这个课程的学习,让我了解到系统辨识在建立数学模型的方面的重要性。对于不了解系统的工作机理的人来说,也有了一个可以知道系统模型的构建方法。但是也必须要我们对所构建模型有一个较为清醒的认识,比如要知道模型的类型,如果是动态模型,则要知道模型的参数或者阶次(但是权函数模型就不需要事前知道模型的参数或者阶次,不知道这种方法有没有什么我们不知道的缺陷)。在处理数据上,又一次让我了解到世上没有两全其美的事情,计算的复杂程度和精度就好像鱼和熊掌不能兼得。也正是因为这样,才会成为促使人们在这方面的不断寻找最优化算法的动力。在对模型进行研究时,都是从最简单的模型开始研究,比如在没有噪声的情况下,所得到的模型参数就为系统模型真实参数。进一步,在白色噪声的情况下,所得到的参数就为系统模型真实参数的估计……通过这样的推理,就可以得到LS在系统辨识问题上的普适性,不管系统受怎样的干扰,只要通过一系列的变换,最后还是通过LS来解决模型参数的确定工作。

虽然我们对化学工艺不怎么了解,但通过学习系统辨识,让我们对已经投运后的工业生产设备的性能有一个跟踪性的了解,可以对系统做出一个较为完整的评估,从而来改善生产工艺或者是及时更换生产设备,从而来达到最大的经济效益。

这学期主要就是介绍LS方法,虽然LS可以处理一些特殊情况的有噪声和没有噪声的系统,但对于那些噪声模型都不可预测的系统中,LS还是显得无能为力。希望以后还有机会学习其他的系统辨识方法。

附录(实验代码)

https://www.360docs.net/doc/f913946443.html,bWork1

#define M 100

double FangZ[M][M]={0},FZNi[M][M]={0};

/* 求矩阵的乘法函数 */

void Mul(double a[][M],double b[][M],double c[][M],int n1,int n2,int n4)

{

int i,j,k;

for(i=0;i

for(k=0;k

for(j=0;j

c[i][k]+=a[i][j]*b[j][k];

}

/* 求方阵的逆 */

void qiuni(double FangZ[][M],double FZNi[][M],int n)

{

double E[M][M],value=1.0,stemp,temp=0.0,san,c[M][M];

int i,j,row,nextrow,flag=0;

int col,switchtime=0;

/* 构造原矩阵的增广矩阵 */

for(i=0;i

for(j=0;j

{

if(j==i) E[i][j]=1;

else E[i][j]=0;

}

for(i=0;i

{

for(j=0;j

c[i][j]=FangZ[i][j];

for(j=0;j

c[i][j+n]=E[i][j];

}

/* 对增广矩阵进行运算(FangZ|E)->(E|FZNi) */ for(row=0;row

{

nextrow=row+1;

if(c[nextrow][row]==0)

{

while(c[nextrow][row]==0)

{

nextrow++;

if(nextrow==n)

{

flag=1;

break;

}

}

if(flag==1) continue;

switchtime++;

/* 交换第一个数字为0的行 */ for(col=0;col<2*n;col++)

{

stemp=c[row][col];

c[row][col]=c[nextrow][col];

c[nextrow][col]=stemp;

}

}

for(nextrow=row+1;nextrow

temp=c[nextrow][row]*1.0/c[row][row];

for(col=0;col<2*n;col++)

c[nextrow][col]+=-temp*c[row][col];

系统辨识实验1实验报告

实验报告 --实验1.基于matlab的4阶系统辨识实验 课程:系统辨识 题目:基于matlab的4阶系统辨识实验 作者: 专业:自动化 学号:11351014 目录 实验报告 (1) 1.引言 (2) 2.实验方法和步骤 (2) 3.实验数据和结果 (2) 4.实验分析 (4)

1、 引言 系统辨识是研究如何确定系统的数学模型及其参数的理论。而模型化是进行系统分析、仿真、设计、预测、控制和决策的前提和基础。 本次实验利用matlab 工具对一个简单的4阶系统进行辨识,以此熟悉系统辨识的基本步骤,和matlab 里的一些系统辨识常用工具箱和函数。 这次实验所采取的基本方法是对系统输入两个特定的激励信号,分别反映系统的动态特性和稳态特性。通过对输入和输出两个系统信号的比较,来验证系统的正确性。 2、 实验方法和步骤 2.1 实验方法 利用matlab 对一个系统进行辨识,选取的输入信号必须能够反映系统的动态和稳态两个方面的特性,才能更好地确定系统的参数。本次实验采取了两种输入信号,为反映动态特性,第一个选的是正弦扫频信号,由下面公式产生: 选定频率范围 ,w(t)是时间t 的线性函数,具有扫频性质,可以反映系统的动态特性。 为反映稳态特性,选的输入信号是阶跃信号。以上的到两组数据,利用matlab 的merge()函数,对两组数据融合,然后用matlab 系统辨识工具箱中的基于子空间方法的状态空间模型辨识函数n4sid()来对系统进行辨识 2.2 实验步骤 (1)建立一个4阶的线性系统,作为被辨识的系统,传递函数为 3243211548765 ()125410865 s s s G s s s s s -+-+=++++ (2)产生扫频信号u1和阶跃信号u2 (3)u1、u2作为输入对系统进行激励,分别产生输出y1和y2 (4)画出稳态测试输入信号u1-t 的曲线,和y1-t 的曲线 画出动态测试输入信号u2-t 的曲线,和y2-t 的曲线 (5)使用merge()函数对u1-y1数据和u2-y2数据进行融合,并使用n4sid()函数对系统进行辨识。 (6)画出原系统和辨识出的系统的零极点图,画出原系统和辨识出的系统的阶跃响应特性曲线,通过对比,验证辨识出的系统的准确性。 3、 实验数据和结果 (1) 分别以扫频正弦函数、阶跃函数作为系统的激励,得到的输出:

系统辨识实验二

《系统辨识与自适应控制》实验报告 题目:最小二乘法在系统辨识中的应用 班级:工控08.1 指导老师: 学生姓名: 学号: 时间:2011.5.19 成都信息工程学院控制工程系

实验目的: 1、掌握系统辨识的基本步骤。 2、熟悉matlab 下系统辨识编程(M 文件)。 3、M 序列的产生方法。 4、用最小二乘法对系统进行辨识。 实验设备: 硬件:计算机一台(参数:主频2.8G 、奔腾4核处理器、内存512M ) 软件:matlab6.5 实验原理: 1、最小二乘法系统辨识结构: 把待辨识的过程看作“黑箱”。只考虑过程的输入输出特性。 图中,输入u(k)和输出z(k)是可测的;G (错误!未找到引用源。)是系统模型,用来描述系统的输入输出特性;N (错误!未找到引用源。)是噪声模型,v(k)是白噪声,e(k)是有色噪声,根据表示定理: 可以表示为 )()()()()(11k v k u q B k z q A +=-- (1) + + e (k ) 图1 SISO 系统辨识“黑箱” y (k ) u (k ) z (k ) v (k ) )(1-z N )(1-z G

???+++=++++=-------nb nb na na q b q b b q B q a q a q a q A ...21)(...211)(11211 (2) 由上两式可以表示: l k k v i k u bi i k z ai k z nb i na i ,...,2,1)....()(*)(*)(11=+-+--=∑∑== (3) 上式可以描述成如下最小二乘法格式: )()()(k v k h k z +=θ (4) 2、准则函数 设一个随机序列{}),,2,1(),(L k k z ∈的均值是参数θ的线性函数: {}θ)()(k h k z E T =,其中)(k h 是可测的数据向量,那么利用随机序列的一个实现,使准则函数: 21])()([)(∑=-=L k T k h k z J θθ (5) 达到极小的参数估计值∧ θ称作θ的最小二乘估计。 最小二乘格式: )()()(k e k h k z t +=θ,θ为模型参数向量,()k e 为零均值随机噪声。 3、最小二乘问题的解 考虑系统模型: )()()(k e k h k z t +=θ (6) 准则函数可写成: ()()()θθθL L L T L L H z H -Λ-=z J (7) 极小化准则函数得到:

系统辨识实验报告30288

一、相关分析法 (1)实验原理 图1 实验原理图 本实验的原理图如图1。过程传递函数()G s 中12120,8.3, 6.2K T Sec T Sec ===;输入变量()u k ,输出变量()z k ,噪声服从2(0,)v N σ,0()g k 为过程的脉冲响应理论 值,?()g k 为过程脉冲响应估计值,()g k 为过程脉冲响应估计误差。 过程输入()u k 采用M 序列,其输出数据加白噪声()v k 得到输出数据()z k 。利 用相关分析法估计出过程的脉冲响应值?()g k ,并与过程脉冲响应理论值0()g k 比较,得到过程脉冲响应估计误差值()g k 。 M 序列阶次选择说明:首先粗略估计系统的过渡过程时间T S (通过简单阶跃响应)、截止频率f M (给系统施加不同周期的正弦信号或方波信号,观察输出)。本次为验证试验,已知系统模型,经计算Hz T T f M 14.01 2 1≈= ,s T S 30≈。根据式M f t 3 .0≤ ?及式S T t N ≥?-)1(,则t ?取值为1,此时31≥N ,由于t ?与N 选择时要求完全覆盖,则选择六阶M 移位寄存器,即N =63。

(2)编程说明 图2 程序流程图 (3)分步说明 ① 生成M 序列: M 序列的循环周期63126=-=N ,时钟节拍1t Sec ?=,幅度1a =,移位寄存器中第5、6位的内容按“模二相加”,反馈到第一位作为输入。其中初始数据设为{1,0,1,0,0,0}。程序如下:

② 生成白噪声序列: 程序如下: ③ 过程仿真得到输出数据: 如图2所示的过程传递函数串联,可以写成形如1212 11 ()1/1/K G s TT s T s T = ++, 其中112 K K TT = 。 图2 过程仿真方框图 程序如下: ④ 计算脉冲响应估计值:

系统辨识答案

1:修改课本p61的程序,并画出相应的图形; u = -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1 z = Columns 1 through 11 0 0 Columns 12 through 16 HL =

0 0 0 ZL = c = a1 =

a2 = b1 = 1 b2 = 2:修改课本p63的程序,并画出相应的图形(V的取值范围为54-200); V = [, , , , , ]τ P = [, , , , , ]τ ZL = [, , , , , ]τ HL = c4 = alpha = beita = +004 3:表1中是在不同温度下测量同一热敏电阻的阻值, 70时根据测量值确定该电阻的数学模型,并求出当温度在C?

的电阻值。 要求用递推最小二乘求解: (a )设观测模型为 利用头两个数据给出 ?? ???===-0L T L L T L L z H P θH H P P 000)0()0(?)()()0(1 0 (b )写出最小二乘的递推公式; (c )利用Matlab 计算 T k a k b k )](),([)(?=θ 并画出相应的图形。 解:首先写成[][]?? ? ???=??????=+==a b t a b h h a bt k k z k k 1)()(12 θτ h θL L H z = T L L z z ],...,[1=z ,????? ???? ???=1 (112) 1 L L t t t H ,??????=a b θ 的形式。 利用头两个数据给出最小二乘的初值: ,126120.50??????=L H ?? ????=7907650L z 这样可以算得 i i v bt a y ++=

系统辨识与自适应控制硕士研究生必修课程考核

《系统辨识与自适应控制》硕士研究生必修课程考核(检测技术与自动化装置专业)2003.5. 22 可下载自https://www.360docs.net/doc/f913946443.html,/xuan/leader/mrj/ 学生姓名:考核成绩: 一、笔试部分 (占课程成绩的 80% ) 考试形式:笔试开卷 答卷要求:笔答,可以参阅书籍,要求简明扼要,不得大段抄教材,不得相互抄袭 试题: 1 简述系统辨识的基本概念(概念、定义和主要步骤)(10分) 2 简述相关辨识的基本原理和基于二进制伪随机序列的相关辩识方法(原理、 框图、特点)。(10分) 3 简述离散线性动态(SI / SO)过程参数估计最小二乘方法(LS法)的主要 内容和优缺点。带遗忘因子递推最小二乘估计(RLS法)的计算步骤和主要递推算式的物理意义(10分) 4 简述什么是时间序列?时间序列建模如何消除恒定趋势、线性趋势和季节性 的影响?(10分) 5 何谓闭环系统的可辨识性问题,它有那些主要结论?(10分) 6 何谓时间离散动态分数时滞过程?“分数时滞”对过程模型的零点和极点有 什么影响?(10分) 7 简述什么是自适应控制,什么是模型参考自适应控制(MRAC)?,试举一例说明MRAC的设计方法(10分)。 8 请设计以下过程( yr = 0 ) y(k) -1.6y(k-1)+0.8y(k-2) = u(k-2)- 0.5u(k-3)+ε(k)+1.5ε(k-1)+0.9ε(k-2) 的最小方差控制器(MVC)和广义最小方差控制器(GMVC), 并分析他们的主要性能。(10分) 二、上机报告RLS仿真(占课程成绩的 20%) 交卷时间:6月9日下午

系统辨识实验报告

南京理工大学 电加热炉动态特性辨识实验报告 作者: 张志鹏(94)学号:813001010014 实验时间2013年11月24日 组员: 刘心刚(63)李昊(88)倪镭(90) 任课老师:郭毓教授 2013 年 11 月

1.熟悉对实际控制系统的辨识与参数估计,并利用所得模型进行控制仿真,进而控制实际系统。 2.掌握实际工程中常用的辨识方法,如LS,RLS,RLES等。 二、实验平台: 嵌入式温度控制系统主要由嵌入式温度控制器、立式RGL-9076A 型温箱、NETGEAR 无线路由器和24V 开关电源等组成。系统电气连接如图1 所示。系 统采用CS(客户端—服务器)模式实现了一对一的服务器、客户端的数据通信。 嵌入式控制系统软软硬件运行平台. 硬件:PC 机、嵌入式温度控制器、NETGEAR 无线路由器等。 软件:Windows XP、Microsoft Visual C++ 6.0、Matlab 2007a 等。 图1 实验硬件平台

1.设置硬件。根据实验手册上的连接方式,确认硬件连接是否正确。根据使用手册进行IP设置、系统参数设置,直至软件可以实时显示温度曲线。 2.达到稳态。我们首先采用81V的加热电压加热使系统尽快到达某一较稳定温度。使用3S的采样周期进行采样温度信号。当温箱实际温度达到135度左右时,温度变化曲线几乎持平,我们认定此时温箱系统处于稳态。 3.加入辨识信号。这里选选取M序列进行辨识,在试验阶段我们组做了一组数据:选取M序列幅值为+20,-20,,辨识信号的采样周期为40s。加入辨识信号后继续进行数据采集。 4.数据处理、辨识系统模型。 5.分析辨识结果得出结论。 四、辨识算法及过程 经过分析研究,确定使用计算残差平方和的RELS方法验证模型的阶次及延时并辨识系统模型参数。 1、确定系统的延迟d

系统辨识内容与要求

系统辨识实验内容与要求 实验题目:三温区空间晶体生长炉温度系统建模 实验对象:三温区空间晶体生长炉 单晶体是现代电子设备制造技术的一个必不可少的部分,它应用广泛,如二极管、三极管等半导体器件都需要用到单晶体。组分均匀(compositional uniformity)、结晶完整(crystallographic perfection)的高质量晶体材料是保证电子设备性能重要因素。 目前,单晶体制备主要靠晶体生长技术完成。其主要过程是:首先在坩埚等加热器皿中对籽晶进行加热,使其由固相转变为液相或气相,再降低器皿中温度,使液相或气相的籽晶材料冷却结晶,就可得到最终的单晶体。这个过程中,为保证晶体的组分均匀和结晶完整,必须使晶体内部各晶格的受力均匀。因此,为减小重力对晶体生长的影响,研究者提出在空间微重力环境下进行晶体生长的方案。我们研究的空间晶体生长炉就是该方案中的晶体加热设备。 我们研究的空间晶体生长炉采用熔体Bridgman生长方式,其结构如图1所示。炉身由三部分构成:外筒、炉管以及炉管外部的隔热层。炉管由多个加热单元组成,每个加热单元组成一个温区。加热单元由导热性能良好的陶瓷材料制成,两个加热单元之间有隔热单元隔开。加热单元的外测均匀缠绕加热电阻丝,内侧中间部位安装有测温热电偶。炉管外部的隔热层由防辐射绝热材料制成。 微重力环境下,晶体内部各晶格之间的热应力是影响晶体生长质量的关键因素,而热应力是由炉内温场决定的。因此,必须对晶体炉内各温区的温度进行控制,以构造一个具有一定的梯度的、满足晶体生长需要的温场。工作时,将装有籽晶的安瓿管按一定的速度插入晶体炉炉膛内,通过控制流过各温区加热电阻丝的电流控制炉内温场,通过热电偶在线获取各温区的实时温度值,进行闭环控制,。其中,流过电阻丝的电流通过PWM(脉宽调制)方式进行控制。另外,由于晶体炉工作温度的变化范围比较大,传感器热电偶难以在全量程范围内保持很高的线性度,因此,使用的热电偶的电压读数与实际温度值间需要进行查表变换。 本实验内容是运用系统辨识的方法建立晶体炉中某个温区的动力学模型,辨识数据已给出,见SI_Data.xls文件。

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

闭环系统辨识 报告

闭环系统辨识 气动参数辨识在导弹研发中的作用 气动力参数辨识是飞行器系统辨识中发展最为成熟的一个领域。对于导弹而言,采用系统辨识技术从飞行试验数据获取导弹空气动力特性,已经成为导弹研制和评估程序的重要组成部分。导弹气动参数辨识的作用主要体现在以下几个方面: (1)验证气动力数值计算和风洞试验结果。如前所述,数值计算和风洞试验各有其优点,也各有其局限性,必须通过飞行试验进行验证。如果飞行试验气动参数辨识结果与数值计算和风洞试验结果一致,则说明数值计算和风洞试验结果是正确的;如果不一致,就要找出产生不一致的原因,通过相关性分析,将地面试验结果换算到真实飞行状态下。 (2)为导弹系统仿真提供准确的气动参数。在导弹打靶仿真中,控制系统的执行元件、旋转台、控制系统、目标源等都可以采用实物,但导弹所受外作用力,特别是空气动力是飞行状态参数的函数,无法用实物实现,应代之以数学模型。该数学模型是否正确决定了系统仿真的置信度,因此,采用系统辨识技术,辨识出导弹的外作用力数学模型,特别是气动力数学模型,是导弹系统仿真技术的关键环节之一。 (3)为导弹飞行控制系统设计提供准确的气动参数。控制律设计取决于导弹的气动特性。如果控制律设计所依赖的气动数据误差过大,可能会导致控制失效;如果气动数据误差带很大,为了满足控制系统鲁棒性要求,或者控制精度降低,或者对指令的响应时间加长。利用飞行试验气动参数辨识结果,经过相关性分析给出的导弹气动特性,其可信度可望显著提高,用于飞行控制律设计,可以大大提高控制系统的性能。 (4)自适应控制。自适应控制系统能根据系统的状态和环境参数变化,自动调节控制系统的相应系数,以达到最佳控制状态。系统实时辨识是自适应控制系统的重要组成部分。对于导弹,机动性与导弹的静稳定裕度和动压关系很大,实

系统辨识报告

系统辨识实验报告

实验一 最小二乘法 1 最小二乘算法 1.1 基本原理 系统模型 )()()()()(11k n k u z B k z z A +=-- a a n n z a z a z a z A ----++++= 221111)( b b n n z b z b z b z B ----+++= 22111)( 最小二乘格式 )()()(k n k h k z T +=θ [][] ?????=------=T n n T b a b a b b a a n k u k u n k z k z k h 11)()1()()1()(θ 对于L k ,,2,1 =,构成线性方程组 L L L n H z +=θ 式中, []T L L z z z z )()2()1( = []T L L n n n n )()2()1( = ? ????? ???? ??--------------= ??????????????=)()1()()1()2()1()2()1()1() 0() 1()0()()2()1(b a b a b a T T T L n L u L u n L z L z n u u n z z n u u n z z L h h h H 参数估计值为 ()L T L L T L LS z H H H 1 ?-=θ 1.2 Matlab 编程 % 基本最小二乘法LS clear;clc A=ones(5,1);B=ones(4,1);%A 为首1多项式,B 中体现时滞(d=1) na=length(A)-1;nb=length(B); load dryer2

系统辨识基础实验指导书

实验一 离散模型的参数辨识 一、实验目的 1. 掌握随机序列的产生方法。 2. 掌握最小二乘估计算法的基本原理。 3. 掌握最小二乘递推算法。 二、实验内容 1. 基于Box--Jinkins 模型模拟一个动态过程,动态过程取为各种不同的情况,输入信号采用M 序列,实验者可尝试不同周期的M 序列。信噪比、观测数据长度也由实验者取为各种不同情况。 2. 模拟生成输入输出数据。 3. 根据仿真过程的噪声特性,选择一种模型参数估计算法,如RLS 、RIV 、RELS 、RGLS 、COR-LS 、STAA 、RML 或MLS 等,估计出模型的参数。 三、实验器材 计算机 1台 四、实验原理 最小二乘法是一种经典的有效的数据处理方法。它是1795年高斯(K.F.Guass )在预测行星和彗星运动的轨道时提出并实际使用的。 最小二乘法也是一种根据实验数据进行参数估计的主要方法。这种方法容易被理解,而且由于存在唯一解,所以也比较容易实现。它在统计学文献中还被称为线性回归法,在某些辨识文献中还被称为方程误差法。正如各个学科都用到系统辨识技术建立模型一样,最小二乘法也用于很多场合进行参数估计,虽然不一定是直接运用,但很多算法是以最小二乘为基础的。 在系统辨识和参数估计领域中,最小二乘法是一种最基本的估计方法。它可用于动态系统,也可用于静态系统;可用于线性系统,也可用于非线性系统;可用于离线估计,也可用于在线估计。在随机的环境下利用最小二乘法时,并不要求知道观测数据的概率统计信息,而用这种方法所获得的估计结果,却有相当好的统计性质。 在系统辨识和参数估计领域中,应用最广泛的估计方法是最小二乘法和极大似然法,而其他的大多数算法都与最小二乘法有关。最小二乘法采用的模型为 11()()()()()A z y k B z u k e k --=+ 最小二乘估计是在残差二乘方准则函数极小意义下的最优估计,即按照准则函数 ????()()min T T J e e Y Y ΦθΦθ==--= 来确定估计值?θ。求J 对?θ的偏导数并令其等于0,可得 ????()()()()0??T T T J Y Y Y Y ΦθΦθΦΦθΦΦθθ θ??=--=----=?? 即?T T Y ΦΦθΦ=。当T ΦΦ为非奇异,即Φ列满秩时,有1?()T T LS Y θΦΦΦ-=,此即参数的最小二乘估计值。 具体使用时不仅占用内存量大,而且不能用于在线辨识。一次完成算法还有如下的缺陷: (1)数据量越多,系统参数估计的精度就越高。为了获得满意的辨识结果,矩阵T ΦΦ的阶数常常取得相当大。这样,矩阵求逆的计算量很大,存储量也很大。 (2)每增加一次观测量,都必须重新计算1,()T ΦΦΦ-。 (3)如果出现Φ列相关,即不满秩的情况,T ΦΦ为病态矩阵,则不能得到最小二乘估计值。 解决这个问题的办法是把它化成递推算法。依观测次序的递推算法就是每获得一次新的观测数据就修正一次参数估计值,随着时间的推移,便能获得满意的辨识结果。递推辨识算法具有无矩阵求逆,以及跟踪时变系统等特点,这样不仅可以减少计算量和储存量,而且能实现在线辨识。

最优控制实验报告

实验报告 课程名称:现代控制工程与理论实验课题:最优控制 学号:12014001070 姓名:陈龙 授课老师:施心陵

最优控制 一、最优控制理论中心问题: 给定一个控制系统(已建立的被控对象的数学模型),选择一个容许的控制律,使被控对象按预定要求运行,并使给定的某一性能指标达到极小值(或极大值) 二、最优控制动态规划法 对离散型控制系统更为有效,而且得出的是综合控制函数。这种方法来源于多决策过程,并由贝尔曼首先提出,故称贝尔曼动态规划。 最优性原理:在一个多级决策问题中的最优决策具有这样的性质,不管初始级、初始状态和初始决策是什么,当把其中任何一级和状态做为初始级和初始状态时,余下的决策对此仍是最优决策 三、线性二次型性能指标的最优控制 用最大值原理求最优控制,求出的最优控制通常是时间的函数,这样的控制为开环控制当用开环控制时,在控制过程中不允许有任何干扰,这样才能使系统以最优状态运行。在实际问题中,干扰不可能没有,因此工程上总希望应用闭环控制,即控制函数表示成时间和状态的函数。 求解这样的问题一般来说是很困难的。但对一类线性的且指标是

二次型的动态系统,却得了完全的解决。不但理论比较完善,数学处理简单,而且在工际中又容易实现,因而在工程中有着广泛的应用。 一.实验目的 1.熟悉Matlab的仿真及运行环境; 2.掌握系统最优控制的设计方法; 3.验证最优控制的效果。 二.实验原理 对于一个给定的系统,实现系统的稳定有很多途径,所以我们需要一个评价的指标,使系统在该指标下达到最优。如果给定指标为线性二次型,那么我们就可以利用MATLAB快速的计算卡尔曼增益。 三.实验器材 PC机一台,Matlab仿真平台。 四.实验步骤 例题1 (P269)考虑液压激振系统简化后的传递函数方框图如下,其中K a为系统前馈增益,K f为系统反馈增益,w h为阻尼固有频率。(如图5-5所示) 将系统传递函数变为状态方程的形式如下: ,

系统辨识及自适应控制实验..

Harbin Institute of Technology 系统辨识与自适应控制 实验报告 题目:渐消记忆最小二乘法、MIT方案 与卫星振动抑制仿真实验 专业:控制科学与工程 姓名: 学号: 15S004001 指导老师: 日期: 2015.12.06 哈尔滨工业大学 2015年11月

本实验第一部分是辨识部分,仿真了渐消记忆递推最小二乘辨识法,研究了这种方法对减缓数据饱和作用现象的作用; 第二部分是自适应控制部分,对MIT 方案模型参考自适应系统作出了仿真,分别探究了改变系统增益、自适应参数的输出,并研究了输入信号对该系统稳定性的影响; 第三部分探究自适应控制的实际应用情况,来自我本科毕设的课题,我从自适应控制角度重新考虑了这一问题并相应节选了一段实验。针对挠性卫星姿态变化前后导致参数改变的特点,探究了用模糊自适应理论中的模糊PID 法对这种变参数系统挠性振动抑制效果,并与传统PID 法比较仿真。 一、系统辨识 1. 最小二乘法的引出 在系统辨识中用得最广泛的估计方法是最小二乘法(LS)。设单输入-单输出线性定长系统的差分方程为: ()()()()()101123n n x k a x k a k n b u k b u x k n k +-+?+-=+?+-=,,,, (1.1) 错误!未找到引用源。 式中:()u k 错误!未找到引用源。为控制量;错误!未找到引用源。为理论上的输出值。错误!未找到引用源。只有通过观测才能得到,在观测过程中往往附加有随机干扰。错误!未找到引用源。的观测值错误!未找到引用源。可表示为: 错误!未找到引用源。 (1.2) 式中:()n k 为随机干扰。由式(1.2)得 错误!未找到引用源。 ()()()x k y k n k =- (1.3) 将式(1.3)带入式(1.1)得 ()()()()()()()101111()n n n i i y k a y k a y k n b u k b u k b u k n n k a k i n =+-+?+-=+-+?+ -++-∑ (1.4) 我们可能不知道()n k 错误!未找到引用源。的统计特性,在这种情况下,往往把()n k 看做均值为0的白噪声。 设 错误!未找到引用源。 (1.5)

matlab实验报告

专业仿真课程设计题目: 学院: 专业班级: 学号: 学生姓名: 指导教师: 设计时间:

专业仿真课程设计题目 主要研究内容: 从所拍摄的多个目标物中检测三角形物,给出三角形物几何中心、三个边长以及边长的方向、面积。 设计要求: (1)提交能够实现题目要求、并通过演示验收的可执行文件。 (2)提交课程设计报告(包括程序清单)。 (3)通过答辩,答辩成绩满分20分,其中个人设计部分10分,非个人设计部分10分。 (4)软件设计要求:有一个人机交互界面,模块化设计,在模块之间通过BMP文件或者文本文件传送数据,可以查看中间结果。 (5)5个人一组,组长协调分工,每个组员一定要有具体任务,以便考核。预期达到的目标: 1、能够通过相关文献查阅、文献综述和总结,给出问题求解的多种可行方案。 2、能够综合运用测控技术与仪器专业理论和技术手段,设计实验方案、分析实验结果,得出有效的结论。 3、能够借助MATLAB仿真软件,进一步掌握高等数学、复变函数与积分变换等相关数学和自然科学知识以及测控技术与仪器专业的基本理论知识,能够结合本专业“自动控制原理”、“数字信号处理”、“误差理论”等相关课程,采用MATLAB软件对复杂工程问题建立模型并进行预测与模拟; 4、能够与团队中其他学科成员合作开展工作,能够与其他队员很好地沟通和交流意见,能够通过口头或书面方式表达自己的设计思路,具有一定的表达能力和人际交往能力。

目录 第一章课程设计相关知识综述 1.1 MATLAB相关知识叙述 1.1.1 MATLAB基本知识介绍 1.1.2 MATLAB的优势特点 1.1.3 MATLAB的发展历程 1.2 MATLAB工具箱与函数 1.2.1 MATLAB图像处理工具箱 1.2.2 课程设计所用图像处理函数介绍第二章课程设计内容和要求 2.1 课程设计主要研究内容 2.2 课程设计要求 2.3 课程设计预期目标 第三章设计过程 3.1 设计方案 3.2 设计步骤及流程图 3.3 程序清单及相关注释 3.4 实验结果分析 3.5 结论 第四章团队情况 第五章总结 第六章参考文献

系统辨识复习资料

1请叙述系统辨识的基本原理(方框图),步骤以及基本方法 定义:系统辨识就是从对系统进行观察和测量所获得的信息重提取系统数学模型的一种理论和方法。 辨识定义:辨识有三个要素——数据、模型类和准则。辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型 辨识的三大要素:输入输出数据、模型类、等价准则 基本原理: 步骤:对一种给定的辨识方法,从实验设计到获得最终模型,一般要经历如下一些步骤:根据辨识的目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最后经过验证获得最终模型。 基本方法:根据数学模型的形式:非参数辨识——经典辨识,脉冲响应、阶跃响应、频率响应、相关分析、谱分析法。参数辨识——现代辨识方法(最小二乘法等) 2随机语言的描述 白噪声是最简单的随机过程,均值为零,谱密度为非零常数的平稳随机过程。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数: 谱密度: 白噪声序列,白噪声序列是白噪声过程的离散形式。如果序列 满足: 相关函数: 则称为白噪声序列。 谱密度: M 序列是最长线性移位寄存器序列,是伪随机二位式序列的一种形式。 M 序列的循环周期 M 序列的可加性:所有M 序列都具有移位可加性 辨识输入信号要求具有白噪声的统计特性 M 序列具有近似的白噪声性质,即 M 序列“净扰动”小,幅度、周期、易控制,实现简单。 3两种噪声模型的形式是什么 第一种含噪声的被辨识系统数学模型0011()()()()n n i i i i y k a y k i b u k i v k ===-+-+∑∑,式中,噪声序列v(k)通常假定为均值为零独立同分布的平稳随机序列,且与输入的序列u(k)彼此统计独立. 上式写成:0 ()()()T y k k v k ψθ=+。其中,()()()()()()()=1212T k y k y k y k n u k u k u k n ψ------????L L ,,,,,,, ) ()(2τδστ=W R +∞ <<∞-=ωσω2)(W S )}({k W Λ,2,1,0,)(2±±==l l R l W δσ2)()(σωω== ∑ ∞-∞=-l l j W W e l R S ???≠=≈+=?0 , 00,Const )()(1)(0ττττT M dt t M t M T R bit )12(-=P P N

系统辨识试验

2、用普通最小二乘法(OLS)法辨识对象数学模型 选择得仿真对象得数学模型如下 )()2(5.0)1()2(7.0)1(5.1)(k v k u k u k z k z k z +-+-=-+-- 其中,)(k v 就是服从正态分布得白噪声N )1,0(。输入信号采用4阶M 序列,幅度为1。选择如下形式得辨识模型 )()2()1()2()1()(2121k v k u b k u b k z a k z a k z +-+-=-+-+ 设输入信号得取值就是从k =1到k =16得M 序列,则待辨识参数LS θ?为LS θ?=L τL 1L τL z H )H H -(。其中,被辨识参数LS θ?、观测矩阵z L 、H L 得表达式为 ????? ???????=2121?b b a a LS θ , ????????????=)16()4()3(z z z L z , ????????????------=)14()2()1()15()3()2()14()2()1()15()3()2(u u u u u u z z z z z z L H 程序框图如下所示: 参考程序: %ols M 序列z=zeros(1,16); %for k=3:16 z(k)=1、end subplot(3,1,1) %stem(u) %subplot(3,1,2) %画三行一列图形窗口中得第二个图形 i=1:1:16; %横坐标范围就是1到16,步长为1 plot(i,z) %图形得横坐标就是采样时刻i, 纵坐标就是输出观测值z, 图形格式为连续曲线

subplot(3,1,3) %画三行一列图形窗口中得第三个图形 stem(z),grid on%画出输出观测值z得经线图形,并显示坐标网格 u,z%显示输入信号与输出观测信号 %L=14%数据长度 HL=[-z(2) -z(1) u(2) u(1);-z(3) -z(2) u(3) u(2);-z(4) -z(3) u(4) u(3);-z(5) -z(4) u(5) u(4);-z(6) -z(5) u(6) u(5);-z(7) -z(6) u(7) u(6);-z(8) -z(7) u(8) u(7);-z(9) -z(8) u(9) u(8);-z(10) -z(9) u(10) u(9);-z(11) -z(10) u(11) u(10);-z(12) -z(11) u(12) u(11);-z(13) -z(12) u(13) u(12);-z(14) -z(13) u(14) u(13);-z(15) -z(14) u(15) u(14)] %给样本矩阵HL赋值 ZL=[z(3);z(4);z(5);z(6);z(7);z(8);z(9);z(10);z(11);z(12);z(13);z(14);z(15); z(16)]% 给样本矩阵zL赋值 %calculating parameters%计算参数 c1=HL'*HL; c2=inv(c1); c3=HL'*ZL; c=c2*c3 %计算并显示 %DISPLAY PARAMETERS a1=c(1), a2=c(2), b1=c(3), b2=c(4) %从中分离出并显示a1 、a2、 b1、 b2 %End 注:由于输出观测值没有任何噪音成分,所以辨识结果也无任何误差,同学们可以在输出观测值中添加噪音,观察ols得辨识效果。同时,可以尝试增加输入信号得数量,瞧辨识结果有何变化。

系统辨识实验报告

实验一:系统辨识的经典方法 一、实验目的 掌握系统的数学模型与输入、输出信号之间的关系,掌握经辨辨识的实验测试方法和数据处理方法,熟悉MATLAB/Simulink环境。 二、实验内容 1、用阶跃响应法测试给定系统的数学模型 在系统没有噪声干扰的条件下通过测试系统的阶跃响应获得系统的一阶加纯滞后或二阶加纯滞后模型,对模型进行验证。 2、在被辨识系统中加入噪声干扰,重复上述1的实验过程。 三、实验方法 在MATLAB环境下用Simulink构造测试环境,被测试的模型为水槽液位控制对象。 利用非线性水槽模型(tank)可以搭建单水槽系统的模型,也可以搭建多水槽系统的模型,多水槽模型可以是高低放置,也可以并排放置。

1.噪声强度0.5,在t = 20的时候加入阶跃测试信号相应曲线 2.乘同余法产生白噪声 A=19;N=200;x0=37;f=2;M=512; %初始化; for k=1: N %乘同余法递推100次; x2=A*x0; %分别用x2和x0表示xi+1和xi-1; x1=mod(x2,M); %取x2存储器的数除以M的余数放x1(xi)中; v1=x1/M; %将x1存储器中的数除以256得到小于1的随v(:,k)=(v1-0.5 )*f; x0=x1; % xi-1= xi; v0=v1; end %递推100次结束; v2=v; k1=k; h=k1; %以下是绘图程序; k=1:1:k1; plot(k,v,'r'); grid on set(gca,'GridLineStyle','*'); grid(gca,'minor')

3.白噪声序列图像 020406080100120140160180200 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 四、 思考题 (1) 阶跃响应法测试系统数学模型的局限性。 答:只适用于某些特殊对象或者低阶简单系统;参数估计的精度有限,估计方法缺乏一般性。 (2) 对模型测试中观察到的现象进行讨论。 答:由系统的阶跃响应曲线可以看出,加入干扰后二阶系统明显比一阶系统相应缓慢,但由于此系统是自恒模型,故最终将从一个稳态到另一个稳态。

《系统辨识》实验手册-16页文档资料

《系统辨识》 实验手册 哈尔滨工业大学控制与仿真中心 2012年8月 目录 实验1白噪声和M序列的产生---------------------------------------------------------- 2实验2脉冲响应法的实现----------------------------------------------------------------5实验3最小二乘法的实现--------------------------------------------------------------- 9 实验4递推最小二乘法的实现---------------------------------------------------------- 12附录实验报告模板----------------------------------------------------------------------16 实验1 白噪声和M序列的产生 一、实验目的 1、熟悉并掌握产生均匀分布随机序列方法以及进而产生高斯白噪声方法

2、熟悉并掌握M 序列生成原理及仿真生成方法 二、实验原理 1、混合同余法 混合同余法是加同余法和乘同余法的混合形式,其迭代式如下: 式中a 为乘子,0x 为种子,b 为常数,M 为模。混合同余法是一种递归算法,即先提供一个种子0x ,逐次递归即得到一个不超过模M 的整数数列。 2、正态分布随机数产生方法 由独立同分布中心极限定理有:设随机变量12,,....,,...n X X X 相互独立,服从同一分布,且具有数学期望和方差: 则随机变量之和1n k i X =∑的标准化变量: () n n n k k k X E X X n Y μ --= = ∑∑∑近似服从(0,1)N 分布。 如果n X 服从[0, 1]均匀分布,则上式中0.5μ=,2 1 12 σ= 。即 0.5n k X n Y -= ∑近似服从(0,1)N 分布。 3、M 序列生成原理 用移位寄存器产生M 序列的简化框图如下图所示。该图表示一个由4个双稳态触发器顺序连接而成的4级移位寄存器,它带有一个反馈通道。当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。

过程建模与系统辨识课程报告

过程建模与系统辨识课程报告 班级: 姓名: 学号: 课题:人体运动计算机仿真建模方法地研究 1.人体运动计算机仿真地理论基础 (1)人体运动计算机仿真地理论 所谓人体运动计算机仿真地理论, 是指人体运动领域及其计算机仿真技术应用时作为基本立论地专业理论知识依据, 也就是指导人们从事人体运动计算机仿真应用与研究活动赖以建立和存在地专业领域内地前提和一些基本思想.总之, 因为仿真技术具有“学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候和场地空间条件限制”等独特优点, 故而, 无论在交通工具安全、人机项目、虚拟设计、机器人、医疗康复、体育运动以及影视娱乐等诸多领域, 应用计算机仿真技术研究人体运动都有着其它技术所无法比拟地价值和效益.因此, 本文着眼于人体运动生物力学、计算机仿真等领域地知识基础, 从计算机仿真技术及其在人体运动领域地应用发展、人体及其运动建模等主要层面进行研究成果地综述性讨论, 旨在进一步促进人体运动领域应用计算机仿真技术在理论与实践上得以不断拓宽和深入发展. (2)人体及其运动建模 当人体被作为一种系统来看待时, 其本身及其运动包含了众多不

同层面而复杂地因素和交互作用.因此, 要深刻理解和把握人体及其运动, 模型化方法是不可或缺地.概略来说, 人体及其运动模型地构造主要有两种方式( 或者两者地结合) : 第一种方式从逻辑上看是演绎为主地, 即将人体系统分成子系统, 且子系统地性质和关系已被成熟地理论知识或规律所涵盖, 进而把这些子系统用数学方法加以联结得到整个系统地模型, 因为它无须对人体实际系统进行试验, 故而, 这种方式通常就被称为建模; 第二种方式则主要是归纳地, 它主要依据从实际人体地实验数据( 记录人体系统地输入输出) 并进而进行数据分析来建立数学模型或图象模型, 通常被称为系统辩识.就人体运动地力学模型而言, 从最简化地质点、刚体, 到多刚体、柔性多体等模型, 都以阐释人体机械运动形式地机理为目标, 其主要内容涵盖多体系统力学模型、非完整系统力学模型等, 并为人体地动力学研究提供了理论基础.在计算机仿真地交互效果上, 人体地逼真形象模型是在计算机图形学与先进仿真技术不断融合促进下发展起来地, 又在虚拟现实技术大力推动下, 三维“虚拟人”模型亦不断推出, 其中主要有如下几种形式: 骨架、体素、曲线、球体堆积、曲面等模型形式. (3)人体运动计算机仿真地理论地发展 随着系统仿真技术及相关地计算机图形学、数据库技术、虚拟现实技术地交互融合与推动, 加上以人体或其运动为核心地不同领域地强烈需求地推动, 虚拟人体及其运动成为当前研究发展地热点, 在建模方法与技术地核心理论基础方面, 人工智能( 专家知识、神经网

相关文档
最新文档