经典竞赛几何题

经典竞赛几何题
经典竞赛几何题

绝密★启用前

2018年05月17日张朋松的初中数学组卷

试卷副标题

考试范围:xxx;考试时间:100分钟;命题人:xxx

题号一总分

得分

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息

2.请将答案正确填写在答题卡上

第Ⅰ卷(选择题)

请点击修改第I卷的文字说明

评卷人得分

一.解答题(共50小题)

1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.

(1)如图1,求证:△AFB≌△ADC;

(2)请判断图1中四边形BCEF的形状,并说明理由;

(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.

3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;

(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.

4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK 与DK有怎样的大小关系?并说明理由.

5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.

6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.

7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.

8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.

9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD 交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)

10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.

提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.

11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.

(1)求证:PN=QN;

(2)求证:MN⊥BC.

12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;

②∠PAE=∠PBF.

13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.

14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.

15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,

求证:HF∥BC.

16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;

(2)试猜想∠MPB与∠FCM数量关系并证明.

17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.

求证:∠BAD=∠C.

18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.

19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.

20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,

求证:△AMN的周长等于2.

21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.

22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.

23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.

(1)求证:CE=BF;

(2)探索线段CE与AB+AC之间的数量关系,并证明.

24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.

25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,

BC=DC=10,求AC的长.

26.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°

﹣∠DBC.求证:AC=AD.

27.如图,正方形ABDE和ACFG是以△ABC的AB、AC为边的正方形,P、Q 为它们的中心,M是BC的中点,试判断MP、MQ在数量和位置是有什么关系?并证明你的结论.

28.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.

29.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC 上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.

30.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,

(1)求:∠AOC的度数;

(2)求证:AC=AE+CD.

31.如图,已知△ABC中AB>AC,P是角平分线AD上任一点,求证:AB﹣AC>PB﹣PC.

32.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.

33.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.

34.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE度数.

35.如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N分别是边AC 和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.

36.如图,△ABC中,BD为∠ABC的平分线;

(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;

(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.

37.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.

求证:BD=CD.

38.如图所示,在△ABF中,已知BC=CE=EF,∠BAC=∠CAD=∠DAE=45°,求的值.

39.如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C 分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.

40.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,

DH⊥AF于点H,交AC于点G,DH延长线交AB于点E

求证:.

41.已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.

42.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.

43.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD 交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.

求证:DE=CF.

44.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE上,Q在CF 的延长线上且BP=AC,CQ=AB,

(1)求证:△ABP≌△QCA.

(2)AP和AQ的位置关系如何,请给予证明.

45.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,说明BG=CF的理由.

46.在△ABC中,∠ACB=90°,D是AB上一点,M是CD的中点,若∠AMD=∠BMD,求证:∠CDA=2∠ACD.

47.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.

48.如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG ⊥CD交BE延长线于G,求证:BG=AF+FG.

49.已知△ABC,∠C=90°,AC=BC.M为AC中点,延长BM到D,使MD=BM;N为BC中点,延长NA到E,使AE=NA,连接ED,求证:ED⊥BD.

50.如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.

2018年05月17日张朋松的初中数学组卷

参考答案与试题解析

一.解答题(共50小题)

1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.

(1)如图1,求证:△AFB≌△ADC;

(2)请判断图1中四边形BCEF的形状,并说明理由;

(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;

(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;

(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,

∴AF=AD,AB=AC,∠FAD=∠BAC=60°,

又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,

∴∠FAB=∠DAC,

在△AFB和△ADC中,

∴△AFB≌△ADC(SAS);

(2)由①得△AFB≌△ADC,

∴∠ABF=∠C=60°.

又∵∠BAC=∠C=60°,

∴∠ABF=∠BAC,

∴FB∥AC,

又∵BC∥EF,

∴四边形BCEF是平行四边形;

(3)成立,理由如下:

∵△ABC和△ADF都是等边三角形,

∴AF=AD,AB=AC,∠FAD=∠BAC=60°,

又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,

∴∠FAB=∠DAC,

在△AFB和△ADC中,

∴△AFB≌△ADC(SAS);

∴∠AFB=∠ADC.

又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,

∴∠ADC=∠EAF,

∴∠AFB=∠EAF,

∴BF∥AE,

又∵BC∥EF,

∴四边形BCEF是平行四边形.

【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.

2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.

【分析】EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE 分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.

【解答】证明:∵E,F分别为AC,AB的中点,

∴EF∥BC,

根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;

同理可证∠CDE=∠B,

∴∠DEF=∠B.

又∵AH⊥BC,且F为AB的中点,

∴HF=BF,

∴∠B=∠BHF,

∴∠HFE=∠B=∠DEF.

即∠HFE=∠DEF.

【点评】本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.

3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,

(1)如图1,若AB=BC,求证:OE=OF;

(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.

【分析】(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;

(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt

△OEM,则OE=OF成立.

【解答】证明:(1)∵∠B=60°,AB=BC,

∴∠A=∠C=60°,

∵AECF分别平分∠A,∠C,

∴∠OAC=∠OCA=30°,

∴OA=OC,△ACF≌△CAE(ASA),

∴AE=CF,

∴OE=OF;

(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.

∵点O在∠A,∠C的平分线上,

∴ON=OH,OH=OM,从而OM=ON,

∴点O在∠B的平分线上(1分)

∴∠OBN=∠OBM=30°,ON=OM (2分)

又∠OEM=∠B+∠A=60°+∠A

∠OFN=∠A+∠C=(∠A+∠C)+∠A=(180°﹣60°)+∠A=60°+∠A.∴∠OEM=∠OFN.(2分)

∴Rt△OFN≌Rt△OEM(AAS),(1分)

∴OE=OF.(1分)

【点评】本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.

4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK 与DK有怎样的大小关系?并说明理由.

【分析】首先作出EI⊥AB,DH⊥AB,证明△EAI≌△DCF再得出DH=DF进而得出△EKI≌△DKH即可证出.

【解答】解:结论:EK=DK.(2分)

理由:过点E作EI⊥AB,过点D作DH⊥AB于H,DF⊥BC于F,

在△EAI和△DCF中

∵,

∴△EAI≌△DCF(AAS),(2分)

∴EI=DF,(2分)

∵BD是∠ABC的平分线,

∴DH=DF,(2分)

∴DH=EI,

在△EKI和△DKH中,

∵,

∴△EKI≌△DKH(AAS),(2分)

∴EK=DK.(2分)

【点评】此题主要考查了三角形全等证明方法,根据题意作出EI⊥AB,DH ⊥AB,从而利于全等证明是解决问题的关键.

5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.

【分析】延长AC、BE交于点M,易证得△ACD≌△BCM,可得AD=BM①,可证得△AEM≌△AEB,可得EM=BE,即BM=2BE②,由①②即可得结论.【解答】解:如图,延长AC、BE交于点M,

∵∠A的平分线AD,BE垂直AD于E,

∴∠MAE=∠BAE,∠AEM=∠AEB=90°,

∵AE=AE,

∴△AEM≌△AEB(ASA),

∴EM=BE,即BM=2BE①;

∵∠A的平分线AD,AC=BC,∠C=90°,

∴∠CAD=∠DAB=22.5°,∠ABC=45°,

∵BE垂直AD于E,

∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,

∴∠CAD=∠DBE,

又∵AC=BC,且∠ACB=∠BCM=90°,

∴△ACD≌△BCM(ASA),

∴AD=BM②;

由①②得AD=2BE,

即BE=AD.

【点评】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、三角形内角和定理等知识点,正确作出辅助线是解题的关键.

6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.

【分析】先延长DB,使BE=CD,连接AE,BC,根据已知条件得出A,B,D,C四点共圆,得出∠ACB=∠ADE,再根据等边三角形的性质得出△ABC是等边三角形,在△ABE和△ACD中,根据SAS得出△ABE≌△ACD,得出△ADE 是等边三角形,得出AD=DE,再根据DE=BD+BE,即可证出AD=BD+CD.

【解答】解:延长DB,使BE=CD,连接AE,BC,

∵∠BAC+∠ACD+∠BDC+∠ABD=360°,∠BAC=60°,∠BDC=120°,

∴∠ABD+∠ACD=180°,

∴A,B,D,C四点共圆,

∴∠ACB=∠ADE,

∵∠ABD+∠ABE=180°,

∴∠ABE=∠ACD,

∵AB=AC,

∴△ABC是等边三角形,

∴∠ACB=60°,

∴∠ADE=60°,

在△ABE和△ACD中,

∴△ABE≌△ACD(SAS),

∴AE=AD,

∴△ADE是等边三角形,

∴AD=DE,

∵DE=BD+BE,

∴AD=BD+CD.

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和 22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=- -y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-=-y y x y ,联立抛物线方程消去x 可得:22 00 22120-+-=y y y y (1), 由题意, 12,y y 是方程(1)的两个实根,且12≠y y ,所 以 22 00044(212)0?=-->?-<

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

【竞赛】解析几何3——曲线系

高二数学竞赛——曲线系 曲线系是具有某种性质的曲线集合,利用曲线系解题体现了参数变换的数学思想,整体处理的钥匙策略,以及“基本量”和“待定系数”等重要的解题方法. 曲线系:如果两条曲线方程是 f 1(x ,y )=0和 f 2(x ,y )=0, 它们的交点是P (x 0,y 0),则方程 f 1(x ,y )+ f 2(x ,y )=0的曲线也经过点P (x 0,y 0) (是任意常数). 证明:由方程?? ?f 1(x ,y )=0·······①f 2(x ,y )=0·······② 得到 f 1(x ,y )+ f 2(x ,y )=0·······③ 只须 将(x 0, y 0)代入证明. ◆ 设圆C 1∶x 2 +y 2 +D 1x +E 1y +F 1=0和圆C 2∶x 2 +y 2 +D 2x +E 2y +F 2=0.若两圆相交,则过交点的圆系 方程为x 2+y 2+D 1x +E 1y +F 1+ (x 2+y 2 +D 2x +E 2y +F 2)=0 ( 为参数,圆系中不包括圆C 2, =-1为两圆的公共弦所在直线方程). ◆ 设圆C ∶x 2 +y 2+Dx +Ey +F =0与直线l :Ax +By +C =0,若直线与圆相交,则过交点的圆系方程为 x 2+y 2+Dx +Ey +F + (Ax +By +C )=0( 为参数). 曲线系方程③不能包含过两曲线公共点的所有曲线,那么使用时怎么知道所求方程在不在方程③中呢? ——m ·f 1(x ,y )+n ·f 2(x ,y )=0 由直线生成的二次曲线系: 设f i =A i x +B i y +C i (i =1,2,3,···) (1)若三角形三边的方程为:f i =0(i =1,2,3),则经过三角形三个顶点的二次曲线系为: f 1·f 2+ f 2·f 3+ f 3·f 1=0( 、 为参数) (2)若四边形四条边的方程为:f i =0(i =1,2,3,4),则经过四边形四个顶点的二次曲线系为: f 1·f 3+ f 2·f 4=0( 为参数), 其中f 1=0与f 3=0、f 2=0与f 4=0分别为四边形的对边所在直线方程. (3)与两条直线f 1=0、f 2=0分别相切于M 1、M 2的二次曲线系为: f 1·f 2+ f 3·f 3=0( 为参数), 其中f 3=0是过M 1、M 2的直线方程. (3)过直线f 1=0、f 2=0与一个二次曲线F (x ,y )=0的4个交点的二次曲线系为: F (x ,y )+ f 1·f 2=0( 为参数). 【例题选讲】 例1. 求经过两圆x 2+y 2+6x -4=0和x 2+y 2 +6y -28=0的交点,并且圆心在直线x -y -4=0上的圆 的方程. 解: 构造方程 x 2+y 2+6x -4+ (x 2+y 2 +6y -28)=0 即:(1+ )x 2 +(1+ )y 2 +6x +6 y -(4+28 )=0 此方程的曲线是过已知两圆交点的圆,且圆心为(-3 1+ ,-3 1+ ) 当该圆心在直线x -y -4=0上时,即 -3 1+ +3 1+ -4=0,解得: =-7. ∴ 所求圆方程为 x 2 +y 2 -x +7y -32=0 例2. 求与圆x 2 +y 2 -4x -2y -20=0切于A (―1,―3),且过B (2,0)的圆的方程. 解法一:视A (―1,―3)为圆(x +1)2+(y +1)2=r 2,当r →0时,极限圆(x +1)2+(y +3)2 =0 构造圆系:(x 2+y 2-4x -2y -20)+ [(x +1)2+(y +3)2 ]=0

平面几何三角形四心竞赛题A卷及答案

三角形四心竞赛训练题1 一、填空题 1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。 2、在△ABC 中,∠A=40o,为△ABC 的内心,则∠BOC = 度。 3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。 4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。 5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。 二、解答题 6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求 证:∠BAO=∠DAC 。 7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的2 3。 8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证: ABC BT TC S ??=。 9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。 10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内 切圆相切。 11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。 12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。 13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60o;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。 14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。 15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180o 16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。 17、如图10,设过△ABC 的内心I 作BC 的平行线和AB 、AC 分别交于D 、E 、M 是BC 的中点,求证:∠DME 是钝角。 重内垂外A 卷 (1) (5) (2) I (3) C B A (4) D C B A (6)M O H D C B A (7)(9) F E D C B A (10)D (8) H G F E C B A

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江 省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题函数是描 述客观世界中变量间依赖关系的重要数学模型。抓住问题 中引起变化的主变量,并用一个具体的量(斜率或点的坐 标等)来表示它,同时把问题中的的因变量用主变量表示 出来,从而变成一个函数的问题,这就是解决问题的函 数观点。在解析几何问题中,经常会碰到由于某个量 (很多时候是线或点)的变化,而引起图形中其它量(面 积或长度等)的变化的情况,所以函数观点成为了解决解 析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值. 【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —- X i X2 、亘y y2 y o 6 6 线段AB的中垂线方程:八。鲁(X 2),易知线段 AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y y o 2(x 2),联立抛物线方程消 y o 去x可得:y2 2y o y 2y2 12 0 ( 1 ), 由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3 弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;) 点C(5,o)到直线AB的距离:h |CM|十

平面几何习题集大全

平面几何习题大全 下面的平面几何习题均是我两年来收集的,属竞赛围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。 几何计算-1 命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少? 解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF <==> 10/y=x/15 <==> xy=150. 所以,矩形DECF的面积150. 几何证明-1 命题在圆接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。 证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。 易证ΔAPO≌ΔORD,所以DR=OP,AP=OR, 故OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。

证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证 RtΔAPO≌RtΔORD,故得DR=OP,AP=OR, 即OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。 几何不等式-1 命题设P是正△ABC任意一点,△DEF是P点关于正△ABC的接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P 点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。 证明设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。 由三角形重心坐标定义易求得: AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y). 故得: △AEF的面积X=AE*AF*sin60°/2=Syz/(z+x)(x+y); △BFD的面积Y=BF*BD*sin60°/2=Szx/(x+y)(y+z); △CDE的面积Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x). 从而有S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。 因为P点是△KNM的费马点,从而易求得:

高中数学竞赛之路

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》《数学选修4-5:不等式选讲》《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星)1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社2、《数学竞赛培优教程(一试)》浙江大学出版社3、命题人讲座《数列与数学归纳法》单樽4、《数列与数学归纳法》(小丛书第二版,冯志刚)5、《数列与归纳法》浙江大学出版社韦吉珠6、《解析几何的技巧》单樽(建议买华东师大出版的版本)7、《概率与期望》单樽8、《同中学生谈排列组合》苏淳9、《函数与函数方程》奥林匹克小丛书第二版10、《三角函数》奥林匹克小丛书第二版11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星)12、《圆锥曲线的几何性质》13、《解析几何》浙江大学出版社 二试 平几1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星) 2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神10、《重要不等式》中科大出版社11、奥林匹克小丛书《柯西不等式与平均值不等式》数论(9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题)12、奥林匹克小丛书初中版《整除,同余与不定方程》13、奥林匹克小丛书《数论》14、命题人讲座《初等数论》冯志刚组合15、奥林匹克小丛书第二版《组合数学》16、奥林匹克小丛书第二版《组合几何》17、命题人讲座刘培杰《组合问题》18、《构造法解题》余红兵19、《从特殊性看问题》中科大出版社20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦《近代欧式几何学》《近代的三角形的几何学》《不等式的秘密》范建熊、隋振林《奥赛经典:奥林匹克数学中的数论问题》沈文选《奥赛经典:数学奥林匹克高级教程》叶军《初等数论难题集》命题人讲座《图论》奥林匹克小丛书第二版《图论》《走向IMO》

解析几何竞赛题求解的几种常见策略

陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且 124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-= -y y x y ,联立抛物线方程消去x 可得:22 0022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以22 00044(212)0?=-->?-<

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

大学生数学竞赛空间解析几何练习题

试题1:如果平面:0Ax By D π++=与曲面261z xy +=的交线是圆,求实数,A B 的比值。 解:不妨设0B ≠以平面π为新的''X Y 平面,以(0,/,0)D B -为原点,以 '223(,,0)/e A B A B =+,'22'''1231(,,0)/,(0,0,1)e B A A B e e e =-+=?=为基本向量 建立一个新的坐标系''''O X Y Z ,则坐标变换公式为 '' 2222 ''2222'/B A x x z A B A B A B y D B x z A B A B z y ?=+?++? ?=-- +?++? ?=?? 在新的坐标系中,平面的方程为:'0z =, 而曲线的方程为: '2'''' 22 22 2 2 2 2 6( )(/)1 B A A B y x z D B x z A B A B A B A B ++ -- + =+++ + 所以交线的方程为: '2' '''22 22 22 22 '6()(/)1 B A A B y x z D B x z A B A B A B A B z ?++--+ =?++++? ?=? 化简得: '2' '22 22 '6()(/)1 0B A y x D B x A B A B z ?+--=?++? ?=? 因为交线是圆,所以 226AB A B -=+ 解得 322A B =-.

试题2:求过点)0,1,0(P 并且和两条直线 ? ? ?=+=+++?? ?=+=++020 13:,0201:21y x z y x l y x y x l 均相交的直线的方程。 解:把直线的方程化为点向式方程为: ,1 11 2 :,1 20 1:21-+==-=+=-z y x l z y x l 设所求的直线为,l 记l 和i l 所确定的平面为,1,2i i π=,那么12l ππ=, 试题3:在二次曲面2222360x y z xy xz z +-++-=上,求过点(1,4,1)-的所有直线的方程. 解:设所求的直线的方程为:141x lt y mt z nt =+??=-+??=+? ,又因为所求的直线在二次曲 面上,所以对任意的,t 有 2222(1 )(4)(1) 3(1)( 4)(1)(1 )6(1) l t m t n t l t m t l t n t n t ++--+++-+++-+=, 化简得; 2222(23)(757)0t l m n ml nl l m n t +-++-++= 由于上式对任意的,t 都成了,所以 222230 (1)7570l m n ml nl l m n ?+-++=? ++=? 由于n m l ,,可相差一个公共的非零常数倍,所以可分两种情况讨论 (1):,0=l 代入方程组(1)得 220 (1)570 m n m n ?-=? +=?

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________。(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆2 22:1x C y m +=,1,2F F 分别为椭圆C 的左、 右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为 ,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范 围.(6分) 3已知以原点O 为中心,) F 为右焦点的双曲线C 的离心率2 e = 。 (I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点 ()22,N x y (其中2x x ≠)的直 线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ?的面积。(8分)

4.如图,已知椭圆 22 22 1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右 焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、. (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、 2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得 ·A B C D A B C D λ +=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分) 5.在平面直角坐标系xoy 中,如图,已知椭圆15 922=+y x

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

相关文档
最新文档